Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Biosens Bioelectron ; 260: 116429, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38838573

RESUMO

Developing highly sensitive and specific on-site tests is imperative to strengthen preparedness against future emerging infectious diseases. Here, we describe the construction of a Cas12a-mediated DNAzyme actuator capable of converting the recognition of a specific DNA sequence into an amplified colorimetric signal. To address viral RNA extraction challenges for on-site applications, we developed a rapid and efficient method capable of lysing the viral particles, preserving the released viral RNA, and concentrating the viral RNA. Integration of the DNAzyme actuator with the viral RNA extraction method and loop-mediated isothermal amplification enables a streamlined colorimetric assay for highly sensitive colorimetric detection of respiratory RNA viruses in gargle and saliva. This assay can detect as few as 83 viral particles/100 µL in gargle and 166 viral particles/100 µL in saliva. The entire assay, from sample processing to visual detection, was completed within 1 h at a single controlled temperature. We validated the assay by detecting SARS-CoV-2 in 207 gargle and saliva samples, achieving a clinical sensitivity of 96.3 % and specificity of 100%. The assay is adaptable for detecting specific nucleic acid sequences in other pathogens and is suitable for resource-limited settings.


Assuntos
Técnicas Biossensoriais , Colorimetria , DNA Catalítico , Técnicas de Amplificação de Ácido Nucleico , RNA Viral , SARS-CoV-2 , Saliva , Colorimetria/métodos , RNA Viral/isolamento & purificação , RNA Viral/genética , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/genética , DNA Catalítico/química , Técnicas Biossensoriais/métodos , Saliva/virologia , Saliva/química , Humanos , Técnicas de Amplificação de Ácido Nucleico/métodos , COVID-19/virologia , COVID-19/diagnóstico , Proteínas Associadas a CRISPR/isolamento & purificação , Proteínas Associadas a CRISPR/química , Endodesoxirribonucleases/química , Limite de Detecção , Fezes/virologia , Fezes/química , Proteínas de Bactérias , Técnicas de Diagnóstico Molecular
2.
Behav Pharmacol ; 35(4): 193-200, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38567425

RESUMO

Prepulse inhibition (PPI) is a crucial indicator of sensorimotor gating that is often impaired in neuropsychiatric diseases. Although dopamine D1 receptor agonists have been found to disrupt PPI in mice, the underlying mechanisms are not fully understood. In this study, we aimed to identify the brain regions responsible for the PPI-disruptive effect of the D1 agonist in mice. Results demonstrated that intraperitoneal administration of the selective dopamine D1 receptor agonist SKF82958 dramatically inhibited PPI, while the dopamine D1 receptor antagonist SCH23390 enhanced PPI. Additionally, local infusion of SKF82958 into the nucleus accumbens and medial prefrontal cortex disrupted PPI, but not in the ventral hippocampus. Infusion of SCH23390 into these brain regions also failed to enhance PPI. Overall, the study suggests that the nucleus accumbens and medial prefrontal cortex are responsible for the PPI-disruptive effect of dopamine D1 receptor agonists. These findings provide essential insights into the cellular and neural circuit mechanisms underlying the disruptive effects of dopamine D1 receptor agonists on PPI and may contribute to the development of novel treatments for neuropsychiatric diseases.


Assuntos
Benzazepinas , Agonistas de Dopamina , Núcleo Accumbens , Córtex Pré-Frontal , Inibição Pré-Pulso , Receptores de Dopamina D1 , Animais , Masculino , Camundongos , Benzazepinas/farmacologia , Agonistas de Dopamina/farmacologia , Antagonistas de Dopamina/farmacologia , Camundongos Endogâmicos C57BL , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Inibição Pré-Pulso/efeitos dos fármacos , Inibição Pré-Pulso/fisiologia , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/metabolismo
3.
Phytochemistry ; 222: 114089, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38626831

RESUMO

Meroterpenoids discovered in Rhododendrons species possess unique chemical structures and biological activities and are expected to become new drug targets for Alzheimer's disease, metabolic disorders, and chronic kidney disease, and these compounds have attracted increasing attention in recent years. In this study, Rhododendron meroterpenoids and their structures, classifications, racemate distribution, biosynthetic pathways, chemical synthesis, and bioactivities are reviewed prior to 2023.


Assuntos
Rhododendron , Terpenos , Rhododendron/química , Terpenos/química , Terpenos/farmacologia , Terpenos/isolamento & purificação , Terpenos/síntese química , Humanos , Estrutura Molecular , Descoberta de Drogas
4.
Anal Chim Acta ; 1302: 342506, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38580410

RESUMO

BACKGROUND: Mitophagy plays indispensable roles in maintaining intracellular homeostasis in most eukaryotic cells by selectively eliminating superfluous components or damaged organelles. Thus, the co-operation of mitochondrial probes and lysosomal probes was presented to directly monitor mitophagy in dual colors. Nowadays, most of the lysosomal probes are composed of groups sensitive to pH, such as morpholine, amine and other weak bases. However, the pH in lysosomes would fluctuate in the process of mitophagy, leading to the optical interference. Thus, it is crucial to develop a pH-insensitive probe to overcome this tough problem to achieve exquisite visualization of mitophagy. RESULTS: In this study, we rationally prepared a pH-independent lysosome probe to reduce the optical interference in mitophagy, and thus the process of mitophagy could be directly monitored in dual color through cooperation between IVDI and MTR, depending on Förster resonance energy transfer mechanism. IVDI shows remarkable fluorescence enhancement toward the increase of viscosity, and the fluorescence barely changes when pH varies. Due to the sensitivity to viscosity, the probe can visualize micro-viscosity alterations in lysosomes without washing procedures, and it showed better imaging properties than LTR. Thanks to the inertia of IVDI to pH, IVDI can exquisitely monitor mitophagy with MTR by FRET mechanism despite the changes of lysosomal pH in mitophagy, and the reduced fluorescence intensity ratio of green and red channels can indicate the occurrence of mitophagy. Based on the properties mentioned above, the real-time increase of micro-viscosity in lysosomes during mitophagy was exquisitely monitored through employing IVDI. SIGNIFICANCE AND NOVELTY: Compared with the lysosomal fluorescent probes sensitive to pH, the pH-inert probe could reduce the influence of pH variation during mitophagy to achieve exquisite visualization of mitophagy in real-time. Besides, the probe could monitor the increase of lysosomal micro-viscosity in mitophagy. So, the probe possesses tremendous potential in the visualization of dynamic changes related to lysosomes in various physiological processes.


Assuntos
Corantes Fluorescentes , Mitofagia , Humanos , Concentração de Íons de Hidrogênio , Viscosidade , Células HeLa , Corantes Fluorescentes/química , Lisossomos/química
5.
Small ; : e2312037, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409635

RESUMO

The flexible protective coatings and substrates frequently exhibit unstable bonding in industrial applications. For strong interfacial adhesion of heterogeneous materials and long-lasting adhesion of flexible protective coatings even in harsh corrosive environments. Inspired by the interdigitated structures in Phloeodes diabolicus elytra, a straightforward magnetic molding technique is employed to create an interlocking microarray for reinforced heterogeneous assembly. Benefiting from this bio-inspired microarrays, the interlocking polydimethylsiloxane (PDMS) coating recorded a 270% improvement in tensile adhesion and a 520% increase in shear resistance, approaching the tensile limitation of PDMS. The elastic polyurethane-polyamide (PUPI) coating equipped with interlocking structures demonstrated a robust adhesion strength exceeding 10.8 MPa and is nearly unaffected by the corrosion immersion. In sharp contrast, its unmodified counterpart exhibited low initial adhesion and maintain ≈20% of its adhesion strength after 30 d of immersion. PUPI coating integrated with microarrays exhibits superior resistance to corrosion (30 d, |Z|0.01HZ ≈1010  Ω cm2 , Rct ≈108  Ω cm2 ), cavitation and long-term adhesion retention. These interlocking designs can also be adapted to curved surfaces by 3D printing and enhances heterogeneous assembly of non-bonded materials like polyvinylidene fluoride (PTFE) and PDMS. This bio-inspired interlocking structures offers a solution for durably bonding incompatible interfaces across varied engineering applications.

6.
Trends Analyt Chem ; 165: 117107, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37317683

RESUMO

Molecular detection of SARS-CoV-2 in gargle and saliva complements the standard analysis of nasopharyngeal swabs (NPS) specimens. Although gargle and saliva specimens can be readily obtained non-invasively, appropriate collection and processing of gargle and saliva specimens are critical to the accuracy and sensitivity of the overall analytical method. This review highlights challenges and recent advances in the treatment of gargle and saliva samples for subsequent analysis using reverse transcription polymerase chain reaction (RT-PCR) and isothermal amplification techniques. Important considerations include appropriate collection of gargle and saliva samples, on-site inactivation of viruses in the sample, preservation of viral RNA, extraction and concentration of viral RNA, removal of substances that inhibit nucleic acid amplification reactions, and the compatibility of sample treatment protocols with the subsequent nucleic acid amplification and detection techniques. The principles and approaches discussed in this review are applicable to molecular detection of other microbial pathogens.

7.
Molecules ; 28(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37110689

RESUMO

As a vital parameter in living cells and tissues, the micro-environment is crucial for the living organisms. Significantly, organelles require proper micro-environment to achieve normal physiological processes, and the micro-environment in organelles can reflect the state of organelles in living cells. Moreover, some abnormal micro-environments in organelles are closely related to organelle dysfunction and disease development. So, visualizing and monitoring the variation of micro-environments in organelles is helpful for physiologists and pathologists to study the mechanisms of the relative diseases. Recently, a large variety of fluorescent probes was developed to study the micro-environments in living cells and tissues. However, the systematic and comprehensive reviews on the organelle micro-environment in living cells and tissues have rarely been published, which may hinder the research progress in the field of organic fluorescent probes. In this review, we will summarize the organic fluorescent probes for monitoring the microenvironment, such as viscosity, pH values, polarity, and temperature. Further, diverse organelles (mitochondria, lysosome, endoplasmic reticulum, cell membrane) about microenvironments will be displayed. In this process, the fluorescent probes about the "off-on" and ratiometric category (the diverse fluorescence emission) will be discussed. Moreover, the molecular designing, chemical synthesis, fluorescent mechanism, and the bio-applications of these organic fluorescent probes in cells and tissues will also be discussed. Significantly, the merits and defects of current microenvironment-sensitive probes are outlined and discussed, and the development tendency and challenges for this kind of probe are presented. In brief, this review mainly summarizes some typical examples and highlights the progress of organic fluorescent probes for monitoring micro-environments in living cells and tissues in recent research. We anticipate that this review will deepen the understanding of microenvironment in cells and tissues and facilitate the studies and development of physiology and pathology.


Assuntos
Corantes Fluorescentes , Mitocôndrias , Corantes Fluorescentes/química , Mitocôndrias/metabolismo , Lisossomos/metabolismo , Retículo Endoplasmático/metabolismo , Membrana Celular/metabolismo
8.
Trends Analyt Chem ; 161: 117000, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36937152

RESUMO

The continuing evolution of the SARS-CoV-2 virus has led to the emergence of many variants, including variants of concern (VOCs). CRISPR-Cas systems have been used to develop techniques for the detection of variants. These techniques have focused on the detection of variant-specific mutations in the spike protein gene of SARS-CoV-2. These sequences mostly carry single-nucleotide mutations and are difficult to differentiate using a single CRISPR-based assay. Here we discuss the specificity of the Cas9, Cas12, and Cas13 systems, important considerations of mutation sites, design of guide RNA, and recent progress in CRISPR-based assays for SARS-CoV-2 variants. Strategies for discriminating single-nucleotide mutations include optimizing the position of mismatches, modifying nucleotides in the guide RNA, and using two guide RNAs to recognize the specific mutation sequence and a conservative sequence. Further research is needed to confront challenges in the detection and differentiation of variants and sublineages of SARS-CoV-2 in clinical diagnostic and point-of-care applications.

9.
Insects ; 13(7)2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35886781

RESUMO

The development of artificial diets could considerably simplify and reduce the cost of mass rearing of natural enemies compared to conventional rearing methods. However, improvement of artificial diets can be tedious, convoluted and often uncertain. For accelerating diet development, a better method that can offer informative feedback to target deficiencies in diet improvement is required. Our previous research demonstrated several biological characteristics were diminished in the insect predator, Arma chinensis Fallou, fed on an artificial diet formulated with the aid of transcriptomic methods compared to the Chinese oak silk moth pupae. The present study reports differential proteomic analysis by iTRAQ-PRM, which unravels the molecular mechanism of A. chinensis responding to improvements in the artificial diet. Our study provides multivariate proteomic data and provides comprehensive sequence information in studying A. chinensis. Further, the physiological roles of the differentially expressed proteins and pathways enable us to explain several biological differences between natural prey-fed and improved diet-fed A. chinensis, and subsequent proposed reformulation optimizations to artificial diets.

10.
ACS Meas Sci Au ; 2(3): 224-232, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36785867

RESUMO

Samples of nasopharyngeal swabs (NPS) are commonly used for the detection of SARS-CoV-2 and diagnosis of COVID-19. As an alternative, self-collection of saliva and gargle samples minimizes transmission to healthcare workers and relieves the pressure of resources and healthcare personnel during the pandemic. This study aimed to develop an enhanced method enabling simultaneous viral inactivation and RNA preservation during on-site self-collection of saliva and gargle samples. Our method involves the addition of saliva or gargle samples to a newly formulated viral inactivation and RNA preservation (VIP) buffer, concentration of the viral RNA on magnetic beads, and detection of SARS-CoV-2 using reverse transcription quantitative polymerase chain reaction directly from the magnetic beads. This method has a limit of detection of 25 RNA copies per 200 µL of gargle or saliva sample and 9-111 times higher sensitivity than the viral RNA preparation kit recommended by the United States Centers for Disease Control and Prevention. The integrated method was successfully used to analyze more than 200 gargle and saliva samples, including the detection of SARS-CoV-2 in 123 gargle and saliva samples collected daily from two NPS-confirmed positive SARS-CoV-2 patients throughout the course of their infection and recovery. The VIP buffer is stable at room temperature for at least 6 months. SARS-CoV-2 RNA (65 copies/200 µL sample) is stable in the VIP buffer at room temperature for at least 3 weeks. The on-site inactivation of SARS-CoV-2 and preservation of the viral RNA enables self-collection of samples, reduces risks associated with SARS-CoV-2 transmission, and maintains the stability of the target analyte.

11.
Anal Chem ; 93(37): 12808-12816, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34506127

RESUMO

CRISPR-Cas systems integrated with nucleic acid amplification techniques improve both analytical specificity and sensitivity. We describe here issues and solutions for the successful integration of reverse transcription (RT), recombinase polymerase amplification (RPA), and CRISPR-Cas12a nuclease reactions into a single tube under an isothermal condition (40 °C). Specific detection of a few copies of a viral DNA sequence was achieved in less than 20 min. However, the sensitivity was orders of magnitude lower for the detection of viral RNA due to the slow initiation of RPA when the complementary DNA (cDNA) template remained hybridized to RNA. During the delay of RPA, the crRNA-Cas12a ribonucleoprotein (RNP) gradually lost its activity in the RPA solution, and nonspecific amplification reactions consumed the RPA reagents. We overcame these problems by taking advantage of the endoribonuclease function of RNase H to remove RNA from the RNA-cDNA hybrids and free the cDNA as template for the RPA reaction. As a consequence, we significantly enhanced the overall reaction rate of an integrated assay using RT-RPA and CRISPR-Cas12a for the detection of RNA. We showed successful detection of 200 or more copies of the S gene sequence of SARS-CoV-2 RNA within 5-30 min. We applied our one-tube assay to 46 upper respiratory swab samples for COVID-19 diagnosis, and the results from both fluorescence intensity measurements and end-point visualization were consistent with those of RT-qPCR analysis. The strategy and technique improve the sensitivity and speed of RT-RPA and CRISPR-Cas12a assays, potentially useful for both semi-quantitative and point-of-care analyses of RNA molecules.


Assuntos
COVID-19 , Transcrição Reversa , Teste para COVID-19 , Humanos , Técnicas de Amplificação de Ácido Nucleico , RNA Viral/genética , Recombinases/genética , SARS-CoV-2 , Sensibilidade e Especificidade , Tecnologia
12.
Insects ; 12(8)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34442235

RESUMO

Mass production of Coenosia attenuata Stein at low cost is very important for their use as a biological control agent. The present study reports the performance of C. attenuata adults when reared on Drosophila melanogaster Meigen or Bradysia impatiens (Johannsem). Different densities (6, 9, 15, 24 and 36 adults per predator) of D. melanogaster or (6, 12, 24, 36 and 48 adults per predator) of B. impatiens were used at 26 ± 1 °C, 14:10 (L:D) and 70 ± 5% RH. The results concluded that C. attenuata adults had higher fecundity, longer longevity and less wing damage when reared on B. impatiens adults compared to D. melanogaster adults. Additionally, C. attenuata adults demonstrated greater difficulty catching and carrying heavier D. melanogaster adults than lighter B. impatiens adults. In this case, 12 to 24 adults of B. impatiens daily per predator were considered optimal prey density in the mass rearing of adult C. attenuata.

13.
Anal Chem ; 92(24): 16204-16212, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33238709

RESUMO

We have developed a single-tube assay for SARS-CoV-2 in patient samples. This assay combined advantages of reverse transcription (RT) loop-mediated isothermal amplification (LAMP) with clustered regularly interspaced short palindromic repeats (CRISPRs) and the CRISPR-associated (Cas) enzyme Cas12a. Our assay is able to detect SARS-CoV-2 in a single tube within 40 min, requiring only a single temperature control (62 °C). The RT-LAMP reagents were added to the sample vial, while CRISPR Cas12a reagents were deposited onto the lid of the vial. After a half-hour RT-LAMP amplification, the tube was inverted and flicked to mix the detection reagents with the amplicon. The sequence-specific recognition of the amplicon by the CRISPR guide RNA and Cas12a enzyme improved specificity. Visible green fluorescence generated by the CRISPR Cas12a system was recorded using a smartphone camera. Analysis of 100 human respiratory swab samples for the N and/or E gene of SARS-CoV-2 produced 100% clinical specificity and no false positive. Analysis of 50 samples that were detected positive using reverse transcription quantitative polymerase chain reaction (RT-qPCR) resulted in an overall clinical sensitivity of 94%. Importantly, this included 20 samples that required 30-39 threshold cycles of RT-qPCR to achieve a positive detection. Integration of the exponential amplification ability of RT-LAMP and the sequence-specific processing by the CRISPR-Cas system into a molecular assay resulted in improvements in both analytical sensitivity and specificity. The single-tube assay is beneficial for future point-of-care applications.


Assuntos
Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Técnicas de Amplificação de Ácido Nucleico , SARS-CoV-2/genética , Humanos , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
14.
Proc Natl Acad Sci U S A ; 117(17): 9349-9355, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32291342

RESUMO

Mitochondria metabolize almost all the oxygen that we consume, reducing it to water by cytochrome c oxidase (CcO). CcO maximizes energy capture into the protonmotive force by pumping protons across the mitochondrial inner membrane. Forty years after the H+/e- stoichiometry was established, a consensus has yet to be reached on the route taken by pumped protons to traverse CcO's hydrophobic core and on whether bacterial and mitochondrial CcOs operate via the same coupling mechanism. To resolve this, we exploited the unique amenability to mitochondrial DNA mutagenesis of the yeast Saccharomyces cerevisiae to introduce single point mutations in the hydrophilic pathways of CcO to test function. From adenosine diphosphate to oxygen ratio measurements on preparations of intact mitochondria, we definitely established that the D-channel, and not the H-channel, is the proton pump of the yeast mitochondrial enzyme, supporting an identical coupling mechanism in all forms of the enzyme.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/química , Heme/química , Oxirredutases/química , Bactérias/metabolismo , Cobre/química , Cobre/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Transporte de Íons , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Oxirredução , Oxirredutases/metabolismo , Oxigênio/metabolismo , Bombas de Próton/metabolismo , Prótons , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
17.
Nat Metab ; 1(6): 643-651, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-32694804

RESUMO

Advanced bioproduct synthesis via reductive metabolism requires coordinating carbons, ATP and reducing agents, which are generated with varying efficiencies depending on metabolic pathways. Substrate mixtures with direct access to multiple pathways may optimally satisfy these biosynthetic requirements. However, native regulation favouring preferential use precludes cells from co-metabolizing multiple substrates. Here we explore mixed substrate metabolism and tailor pathway usage to synergistically stimulate carbon reduction. By controlled cofeeding of superior ATP and NADPH generators as 'dopant' substrates to cells primarily using inferior substrates, we circumvent catabolite repression and drive synergy in two divergent organisms. Glucose doping in Moorella thermoacetica stimulates CO2 reduction (2.3 g gCDW-1 h-1) into acetate by augmenting ATP synthesis via pyruvate kinase. Gluconate doping in Yarrowia lipolytica accelerates acetate-driven lipogenesis (0.046 g gCDW-1 h-1) by obligatory NADPH synthesis through the pentose cycle. Together, synergistic cofeeding produces CO2-derived lipids with 38% energy yield and demonstrates the potential to convert CO2 into advanced bioproducts. This work advances the systems-level control of metabolic networks and CO2 use, the most pressing and difficult reduction challenge.


Assuntos
Moorella/metabolismo , Yarrowia/metabolismo , Trifosfato de Adenosina/metabolismo , Ciclo do Ácido Cítrico/fisiologia , Glucose/metabolismo , NADP/metabolismo , Oxirredução , Via de Pentose Fosfato/fisiologia
18.
Forensic Sci Int ; 281: 152-160, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29136579

RESUMO

This research successfully demonstrated the first use of simultaneous superglue & iodine fuming on leather surfaces compared to superglue, iodine, superglue-iodine and iodine-superglue fuming methods which typically give low fingermark yields. A novel fuming chamber was developed and used for simultaneous superglue & iodine fuming. Results show that the simultaneous fuming method produced significantly better enhancement for light-coloured leather substrates relative to other processing procedures, but was found to be ineffective on dark-coloured leather. However, superglue, as one of the most common methods in practice, was found to be effective for freshly deposited latent fingermarks on dark-coloured leather. The newly designed chamber for the simultaneous fuming method has proved to be fast, effective and delightfully easy to use.

19.
PLoS One ; 12(8): e0182079, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28763492

RESUMO

This study was envisaged to comprehensively profile genes in selected tissues along with a few biochemical indicators and integrate resulting information with dietary selenium (Se) deficiency symptoms in broilers. A total of 120 one-day-old Cobb male broilers were equally divided into two groups and fed a Se deficient corn-soybean-based basal diet supplemented with 0.3 mg/kg sodium selenite (Control, Se adequate) or without selenite (Se deficiency) for five weeks. Effects of Se deficiency on mRNA abundance of twenty-three selenoprotein encoding genes and seventeen insulin signaling related genes were studied at day 35 in pancreas, liver and muscle along with plasma biochemical constituents and enzyme activities. Compared to healthy birds in control diet, Se deficient diet induced deficiency symptoms in 90% birds and classic nutritional pancreatic atrophy, depressed growth performance of broilers, and decreased (P < 0.01 to P < 0.05) total antioxidant capacity and activities of superoxide dismutase and glutathione peroxidase in plasma and three other tissues. Se deficiency resulted in 58% higher mortality than control birds. Dietary Se deficiency down-regulated (P < 0.01-0.05) eighteen selenoprotein encoding genes in pancreas, fourteen genes in muscle and nine genes in liver, and up-regulated (P < 0.05) Txnrd1 and Selx in liver. Meanwhile, six, thirteen and five insulin signaling related genes were down-regulated (P < 0.01-0.05) in pancreas, muscle and liver, respectively, and three genes were up-regulated (P < 0.01) in liver. The decrease (P < 0.05) in levels of plasma insulin, total triglyceride and total cholesterol, and concurrent elevated (P < 0.05) levels of plasma glucose and inflammatory cytokines accompanied the global down-regulation of selenoprotein encoding- and insulin signaling related- genes in Se deficient birds. It was concluded that dietary Se deficiency induces nutritional pancreatic atrophy and metabolic disorder of glucose and lipid in broilers via down-regulation of selenoprotein encoding- and insulin signaling related- genes, indicating potential roles of these genes in metabolic regulation.


Assuntos
Hiperglicemia/complicações , Insulina/metabolismo , Pâncreas/patologia , Selênio/deficiência , Selenoproteínas/metabolismo , Ração Animal , Animais , Animais Recém-Nascidos , Antioxidantes/metabolismo , Atrofia , Galinhas , Regulação para Baixo , Fígado/metabolismo , Masculino , RNA Mensageiro/metabolismo , Transdução de Sinais
20.
Proc Natl Acad Sci U S A ; 114(27): E5308-E5316, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28630295

RESUMO

Acetic acid can be generated through syngas fermentation, lignocellulosic biomass degradation, and organic waste anaerobic digestion. Microbial conversion of acetate into triacylglycerols for biofuel production has many advantages, including low-cost or even negative-cost feedstock and environmental benefits. The main issue stems from the dilute nature of acetate produced in such systems, which is costly to be processed on an industrial scale. To tackle this problem, we established an efficient bioprocess for converting dilute acetate into lipids, using the oleaginous yeast Yarrowia lipolytica in a semicontinuous system. The implemented design used low-strength acetic acid in both salt and acid forms as carbon substrate and a cross-filtration module for cell recycling. Feed controls for acetic acid and nitrogen based on metabolic models and online measurement of the respiratory quotient were used. The optimized process was able to sustain high-density cell culture using acetic acid of only 3% and achieved a lipid titer, yield, and productivity of 115 g/L, 0.16 g/g, and 0.8 g⋅L-1⋅h-1, respectively. No carbon substrate was detected in the effluent stream, indicating complete utilization of acetate. These results represent a more than twofold increase in lipid production metrics compared with the current best-performing results using concentrated acetic acid as carbon feed.


Assuntos
Biocombustíveis , Biotecnologia/métodos , Fermentação , Lipídeos/química , Ácido Acético/química , Algoritmos , Biomassa , Reatores Biológicos , Carbono/química , Ácido Cítrico/química , Desenho de Equipamento , Filtração , Gases , Modelos Teóricos , Nitrogênio/química , Yarrowia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA