Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Chem Commun (Camb) ; 60(60): 7737-7740, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38973454

RESUMO

We demonstrate a simple method for preparing highly active Au/TS-1 catalysts for propylene hydro-oxidation, which involves sequentially impregnating HAuCl4 and Cs2CO3 solutions onto TS-1. The Au/TS-1 catalysts synthesized by this method exhibit high Au uptake efficiency (∼100%), high dispersion of Au nanoparticles and superior activity.

2.
Chaos ; 32(8): 083134, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36049936

RESUMO

In modern society, new communication channels and social platforms remarkably change the way of people receiving and sharing information, but the influences of these channels on information spreading dynamics have not been fully explored, especially in the aspects of outbreak patterns. To this end, based on a susceptible-accepted-recovered model, we examined the outbreak patterns of information spreading in a two-layered network with two coexisting channels: the intra-links within a layer and the inter-links across layers. Depending on the inter-layer coupling strength, i.e., average node degree and transmission probability between the two layers, we observed three different spreading patterns: (i) a localized outbreak with weak inter-layer coupling, (ii) two peaks with a time-delay outbreak appear for an intermediate coupling, and (iii) a synchronized outbreak for a strong coupling. Moreover, we showed that even though the average degree between the two layers is small, a large transmission probability still can compensate and promote the information spread from one layer to another, indicating by that the critical average degree decreases as a power law with transmission probability between the two layers. Additionally, we found that a large gap closed to the critical inter-layer average degree appears in the phase space of theoretical analysis, which indicates the emergence of a global large-scope outbreak. Our findings may, therefore, be of significance for understanding the outbreak behaviors of information spreading in real world.


Assuntos
Surtos de Doenças , Modelos Teóricos , Humanos , Probabilidade
3.
Phys Rev E ; 104(5-1): 054407, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34942771

RESUMO

Experimentally, certain cells in the brain exhibit a spike-burst activity with burst synchronization at transition to and during sleep (or drowsiness), while they demonstrate a desynchronized tonic activity in the waking state. We herein investigated the neural activities and their transitions by using a model of coupled Hindmarsh-Rose neurons in an Erdos-Rényi random network. By tuning synaptic strength, spontaneous transitions between tonic and bursting neural activities can be realized. With excitatory chemical synapses or electrical synapses, slow-wave activity (SWA) similar to that observed during sleep can appear, as a result of synchronized bursting activities. SWA cannot appear in a network that is dominated by inhibitory chemical synapses, because neurons exhibit desynchronized bursting activities. Moreover, we found that the critical synaptic strength related to the transitions of neural activities depends only on the network average degree (i.e., the average number of signals that all the neurons receive). We demonstrated, both numerically and analytically, that the critical synaptic strength and the network average degree obey a power-law relation with an exponent of -1. Our study provides a possible dynamical network mechanism of the transitions between tonic and bursting neural activities for the wakefulness-sleep cycle, and of the SWA during sleep. Further interesting and challenging investigations are briefly discussed as well.

4.
J Phys Chem A ; 125(40): 8882-8890, 2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34607427

RESUMO

Photodissociation dynamics of the jet-cooled vinoxy radical (CH2CHO) via the B̃2A″ state was studied in the near-ultraviolet (near-UV) region of 308-328 nm using high-n Rydberg H atom time-of-flight (HRTOF) and resonance-enhanced multiphoton ionization (REMPI) techniques. The vinoxy radical beam was produced by 193 nm photolysis of ethyl vinyl ether followed by supersonic expansion. The H + CH2CO product channel was observed directly in the H atom TOF spectra. The H atom photofragment yield (PFY) spectra were obtained by integrating the H atom TOF spectra and measuring the H atom REMPI signals, and showed several vibronic bands of the B̃2A″ state. The translational energy distributions of the H + CH2CO products, P(ET)'s, were obtained at several vibronic transitions. The P(ET) distributions were broad, peaking at a low energy of ∼3500 cm-1. The product translational energy release was moderate; the average translational energy release in the maximum available energy, ⟨fT⟩, was in the range of 0.24-0.27. The product angular distributions in this wavelength region were slightly anisotropic, with the ß parameter in the range of 0.10-0.24. The near-UV photodissociation mechanism of the H + CH2CO product channel of the vinoxy radical is consistent with unimolecular dissociation on the electronic ground state (X̃2A″) following internal conversion from the B̃2A″ state to the Ã2A' state and then to the X̃2A″ state (although unimolecular dissociation from the first excited Ã2A' may also contribute).

5.
Chaos ; 28(10): 106321, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30384618

RESUMO

The multistable behavior of neural networks is actively being studied as a landmark of ongoing cerebral activity, reported in both functional Magnetic Resonance Imaging (fMRI) and electro- or magnetoencephalography recordings. This consists of a continuous jumping between different partially synchronized states in the absence of external stimuli. It is thought to be an important mechanism for dealing with sensory novelty and to allow for efficient coding of information in an ever-changing surrounding environment. Many advances have been made to understand how network topology, connection delays, and noise can contribute to building this dynamic. Little or no attention, however, has been paid to the difference between local chaotic and stochastic influences on the switching between different network states. Using a conductance-based neural model that can have chaotic dynamics, we showed that a network can show multistable dynamics in a certain range of global connectivity strength and under deterministic conditions. In the present work, we characterize the multistable dynamics when the networks are, in addition to chaotic, subject to ion channel stochasticity in the form of multiplicative (channel) or additive (current) noise. We calculate the Functional Connectivity Dynamics matrix by comparing the Functional Connectivity (FC) matrices that describe the pair-wise phase synchronization in a moving window fashion and performing clustering of FCs. Moderate noise can enhance the multistable behavior that is evoked by chaos, resulting in more heterogeneous synchronization patterns, while more intense noise abolishes multistability. In networks composed of nonchaotic nodes, some noise can induce multistability in an otherwise synchronized, nonchaotic network. Finally, we found the same results regardless of the multiplicative or additive nature of noise.


Assuntos
Análise por Conglomerados , Imageamento por Ressonância Magnética , Redes Neurais de Computação , Algoritmos , Coleta de Dados , Humanos , Canais Iônicos/fisiologia , Magnetoencefalografia , Modelos Neurológicos , Condução Nervosa , Dinâmica não Linear , Oscilometria , Processos Estocásticos , Sinapses , Temperatura
6.
Sci Rep ; 8(1): 8370, 2018 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-29849108

RESUMO

Chaotic dynamics has been shown in the dynamics of neurons and neural networks, in experimental data and numerical simulations. Theoretical studies have proposed an underlying role of chaos in neural systems. Nevertheless, whether chaotic neural oscillators make a significant contribution to network behaviour and whether the dynamical richness of neural networks is sensitive to the dynamics of isolated neurons, still remain open questions. We investigated synchronization transitions in heterogeneous neural networks of neurons connected by electrical coupling in a small world topology. The nodes in our model are oscillatory neurons that - when isolated - can exhibit either chaotic or non-chaotic behaviour, depending on conductance parameters. We found that the heterogeneity of firing rates and firing patterns make a greater contribution than chaos to the steepness of the synchronization transition curve. We also show that chaotic dynamics of the isolated neurons do not always make a visible difference in the transition to full synchrony. Moreover, macroscopic chaos is observed regardless of the dynamics nature of the neurons. However, performing a Functional Connectivity Dynamics analysis, we show that chaotic nodes can promote what is known as multi-stable behaviour, where the network dynamically switches between a number of different semi-synchronized, metastable states.

7.
Front Comput Neurosci ; 11: 12, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28344550

RESUMO

In this article, we describe and analyze the chaotic behavior of a conductance-based neuronal bursting model. This is a model with a reduced number of variables, yet it retains biophysical plausibility. Inspired by the activity of cold thermoreceptors, the model contains a persistent Sodium current, a Calcium-activated Potassium current and a hyperpolarization-activated current (Ih) that drive a slow subthreshold oscillation. Driven by this oscillation, a fast subsystem (fast Sodium and Potassium currents) fires action potentials in a periodic fashion. Depending on the parameters, this model can generate a variety of firing patterns that includes bursting, regular tonic and polymodal firing. Here we show that the transitions between different firing patterns are often accompanied by a range of chaotic firing, as suggested by an irregular, non-periodic firing pattern. To confirm this, we measure the maximum Lyapunov exponent of the voltage trajectories, and the Lyapunov exponent and Lempel-Ziv's complexity of the ISI time series. The four-variable slow system (without spiking) also generates chaotic behavior, and bifurcation analysis shows that this is often originated by period doubling cascades. Either with or without spikes, chaos is no longer generated when the Ih is removed from the system. As the model is biologically plausible with biophysically meaningful parameters, we propose it as a useful tool to understand chaotic dynamics in neurons.

8.
Sci Rep ; 4: 7568, 2014 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-25524172

RESUMO

Many experiments have evidenced the transition with different time scales from short-term memory (STM) to long-term memory (LTM) in mammalian brains, while its theoretical understanding is still under debate. To understand its underlying mechanism, it has recently been shown that it is possible to have a long-period rhythmic synchronous firing in a scale-free network, provided the existence of both the high-degree hubs and the loops formed by low-degree nodes. We here present a simplified memory network model to show that the self-sustained synchronous firing can be observed even without these two necessary conditions. This simplified network consists of two loops of coupled excitable neurons with different synaptic conductance and with one node being the sensory neuron to receive an external stimulus signal. This model can be further used to show how the diversity of firing patterns can be selectively formed by varying the signal frequency, duration of the stimulus and network topology, which corresponds to the patterns of STM and LTM with different time scales. A theoretical analysis is presented to explain the underlying mechanism of firing patterns.


Assuntos
Memória/fisiologia , Modelos Neurológicos , Rede Nervosa/fisiologia , Humanos
9.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(4 Pt 2): 046207, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22181245

RESUMO

The synchronization is investigated in a two-dimensional Hindmarsh-Rose neuronal network by introducing a global coupling scheme with time delay, where the length of time delay is proportional to the spatial distance between neurons. We find that the time delay always disturbs synchronization of the neuronal network. When both the coupling strength and length of time delay per unit distance (i.e., enlargement factor) are large enough, the time delay induces the abnormal membrane potential oscillations in neurons. Specifically, the abnormal membrane potential oscillations for the symmetrically placed neurons form an antiphase, so that the large coupling strength and enlargement factor lead to the desynchronization of the neuronal network. The complete and intermittently complete synchronization of the neuronal network are observed for the right choice of parameters. The physical mechanism underlying these phenomena is analyzed.


Assuntos
Modelos Biológicos , Rede Nervosa/citologia , Neurônios/citologia , Dinâmica não Linear , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA