Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chemphyschem ; 24(20): e202300292, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37491736

RESUMO

The 1 H nuclear magnetic resonance (1 H-NMR) spectrum is a useful tool for characterizing the hydrogen bonding (H-bonding) interactions in ionic liquids (ILs). As the main hydrogen bond (H-bond) donor of imidazolium-based ILs, the chemical shift (δH2 ) of the proton in the 2-position of the imidazolium ring (H2) exhibits significant and complex solvents, concentrations and anions dependence. In the present work, based on the dielectric constants (ϵ) and Kamlet-Taft (KT) parameters of solvents, we identified that the δH2 are dominated by the solvents polarity and the competitive H-bonding interactions between cations and anions or solvents. Besides, the solvents effects on δH2 are understood by the structure of ILs in solvents: 1) In diluted solutions of inoizable solvents, ILs exist as free ions and the cations will form H-bond with solvents, resulting in δH2 being independent with anions but positively correlated with ßS . 2) In diluted solutions of non-ionzable solvents, ILs exist as contact ion-pairs (CIPs) and H2 will form H-bond with anions. Since non-ionizable solvents hardly influence the H-bonding interactions between H2 and anions, the δH2 are not related to ßS but positively correlated with ßIL .

2.
Phys Chem Chem Phys ; 23(38): 21893-21900, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34558588

RESUMO

Polymer solubility in ionic liquids (ILs) cannot be predicted by the solubility parameter approach based on the "like dissolves like" principle. According to the Kamlet-Abraham-Taft (KAT) multi-parameter polarity scale, ILs can be categorized on the basis of hydrogen-bond acidity or basicity ones. The experimental observations, that acidic ILs easily dissolve basic polymers and basic ILs dissolve acidic polymers, reflect the complementary nature of hydrogen-bonding interactions. A quantitative hydrogen-bonding analysis is proposed for predicting the solubility by taking the product of ΔαΔß as an indicator of the competition between cross-association and self-association hydrogen bonding (H-bonding), where Δα is the difference of acidity parameters between the polymer and IL, and Δß is the difference of basicity. This solubility criterion has been validated by the solubility data of 19 polymers (11 acidic and 8 basic) in 11 ILs (7 acidic and 4 basic). These principles based on KAT parameters can be applied to other systems dominated by hydrogen bonding.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA