Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Neurol Sci ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38831166

RESUMO

OBJECTIVE: Identify the genotype and clinical characteristics of mitochondrial epilepsy caused by nDNA mutations in Chinese children and explore the treatment and prognosis of the condition. STUDY DESIGN: This is a retrospective cohort study conducted at a single center, including patients diagnosed with an established nDNA mutation-associated primary mitochondrial disease between October 2012 and March 2023 who also met the practical clinical definition of epilepsy published by the ILAE in 2014. RESULTS: Of the 58 patients identified, 74.1% had an onset before the age of 1 year and 63.8% had seizures as their initial symptom. Developmental and epileptic encephalopathy (DEE) (31%) are the most common phenotypes. The most frequently observed MRI abnormalities include abnormal signal asymmetry in the bilateral basal ganglia and/or brainstem (34.7%), as well as brain atrophy, myelin sheath dysplasia, and corpus callosum dysplasia (32.7%). Of the 40 patients followed, seizure treatment was effective in 18 of the cases, while it was ineffective in 22. The mitochondrial DNA depletion syndrome (MDS) was found to be more difficult to control seizures than other phenotypes (P < 0.05). Additionally, the MDS was associated with a significantly higher mortality rate compared to alternative phenotypes (P < 0.05). CONCLUSIONS: The onset of mitochondrial epilepsy due to nDNA mutations is early and seizures are the most common initial symptom. DEE is the most common phenotype. Characteristic MRI abnormalities in the brain may be helpful in the diagnosis of primary mitochondrial disease. People with MDS typically face challenges in seizure control and have a poor prognosis.

2.
G3 (Bethesda) ; 13(10)2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37462278

RESUMO

Tandem gene duplicates are important parts of eukaryotic genome structure, yet the phenotypic effects of new tandem duplications are not well-understood, in part owing to a lack of techniques to build and modify them. We introduce a method, Recombinase-Mediated Tandem Duplication, to engineer specific tandem duplications in vivo using CRISPR and recombinases. We describe construction of four different tandem duplications of the Alcohol Dehydrogenase (Adh) gene in Drosophila melanogaster, with duplicated block sizes ranging from 4.2 to 20.7 kb. Flies with the Adh duplications show elevated ADH enzyme activity over unduplicated single copies. This approach to engineering duplications is combinatoric, opening the door to systematic study of the relationship between the structure of tandem duplications and their effects on expression.


Assuntos
Drosophila melanogaster , Duplicação Gênica , Animais , Drosophila melanogaster/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Genoma
3.
bioRxiv ; 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36711585

RESUMO

Tandem gene duplicates are important parts of eukaryotic genome structure, yet the phenotypic effects of new tandem duplications are not well-understood, in part owing to a lack of techniques to build and modify them. We introduce a method, Recombinase-Mediated Tandem Duplication (RMTD), to engineer specific tandem duplications in vivo using CRISPR and recombinases. We describe construction of four different tandem duplications of the Alcohol Dehydrogenase ( Adh ) gene in Drosophila melanogaster , with duplicated block sizes ranging from 4.2 kb to 20.7 kb. Flies with the Adh duplications show elevated ADH enzyme activity over unduplicated single copies. This approach to engineering duplications is combinatoric, opening the door to systematic study of the relationship between the structure of tandem duplications and their effects on expression.

4.
Genome Med ; 14(1): 38, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35379322

RESUMO

BACKGROUND: Lack of functional evidence hampers variant interpretation, leaving a large proportion of individuals with a suspected Mendelian disorder without genetic diagnosis after whole genome or whole exome sequencing (WES). Research studies advocate to further sequence transcriptomes to directly and systematically probe gene expression defects. However, collection of additional biopsies and establishment of lab workflows, analytical pipelines, and defined concepts in clinical interpretation of aberrant gene expression are still needed for adopting RNA sequencing (RNA-seq) in routine diagnostics. METHODS: We implemented an automated RNA-seq protocol and a computational workflow with which we analyzed skin fibroblasts of 303 individuals with a suspected mitochondrial disease that previously underwent WES. We also assessed through simulations how aberrant expression and mono-allelic expression tests depend on RNA-seq coverage. RESULTS: We detected on average 12,500 genes per sample including around 60% of all disease genes-a coverage substantially higher than with whole blood, supporting the use of skin biopsies. We prioritized genes demonstrating aberrant expression, aberrant splicing, or mono-allelic expression. The pipeline required less than 1 week from sample preparation to result reporting and provided a median of eight disease-associated genes per patient for inspection. A genetic diagnosis was established for 16% of the 205 WES-inconclusive cases. Detection of aberrant expression was a major contributor to diagnosis including instances of 50% reduction, which, together with mono-allelic expression, allowed for the diagnosis of dominant disorders caused by haploinsufficiency. Moreover, calling aberrant splicing and variants from RNA-seq data enabled detecting and validating splice-disrupting variants, of which the majority fell outside WES-covered regions. CONCLUSION: Together, these results show that streamlined experimental and computational processes can accelerate the implementation of RNA-seq in routine diagnostics.


Assuntos
RNA , Transcriptoma , Alelos , Humanos , Análise de Sequência de RNA/métodos , Sequenciamento do Exoma
5.
G3 (Bethesda) ; 12(5)2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35266526

RESUMO

Insect body color is an easily assessed and visually engaging trait that is informative on a broad range of topics including speciation, biomaterial science, and ecdysis. Mutants of the fruit fly Drosophila melanogaster have been an integral part of body color research for more than a century. As a result of this long tenure, backlogs of body color mutations have remained unmapped to their genes, all while their strains have been dutifully maintained, used for recombination mapping, and part of genetics education. Stemming from a lesson plan in our undergraduate genetics class, we have mapped sable1, a dark body mutation originally described by Morgan and Bridges, to Yippee, a gene encoding a predicted member of the E3 ubiquitin ligase complex. Deficiency/duplication mapping, genetic rescue, DNA and cDNA sequencing, RT-qPCR, and 2 new CRISPR alleles indicated that sable1 is a hypomorphic Yippee mutation due to an mdg4 element insertion in the Yippee 5'-UTR. Further analysis revealed additional Yippee mutant phenotypes including curved wings, ectopic/missing bristles, delayed development, and failed adult emergence. RNAi of Yippee in the ectoderm phenocopied sable body color and most other Yippee phenotypes. Although Yippee remains functionally uncharacterized, the results presented here suggest possible connections between melanin biosynthesis, copper homeostasis, and Notch/Delta signaling; in addition, they provide insight into past studies of sable cell nonautonomy and of the genetic modifier suppressor of sable.


Assuntos
Proteínas de Drosophila , Mustelidae , Animais , Drosophila/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Mutação , Fenótipo , Asas de Animais
6.
J Inherit Metab Dis ; 45(2): 264-277, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34873722

RESUMO

Pyruvate, the end product of glycolysis, is a key metabolic molecule enabling mitochondrial adenosine triphosphate synthesis and takes part in multiple biosynthetic pathways within mitochondria. The mitochondrial pyruvate carrier (MPC) plays a vital role in transporting pyruvate from the cytosol into the organelle. In humans, MPC is a hetero-oligomeric complex formed by the MPC1 and MPC2 paralogs that are both necessary to stabilize each other and form a functional MPC. MPC deficiency (OMIM#614741) due to pathogenic MPC1 variants is a rare autosomal recessive disease involving developmental delay, microcephaly, growth failure, and increased serum lactate and pyruvate. To date, two MPC1 variants in four cases have been reported, though only one with a detailed clinical description. Herein, we report three novel pathogenic MPC1 variants in six patients from three unrelated families, identified within European, Kuwaiti, and Chinese mitochondrial disease patient cohorts, one of whom presented as a Leigh-like syndrome. Functional analysis in primary fibroblasts from the patients revealed decreased expression of MPC1 and MPC2. We rescued pyruvate-driven oxygen consumption rate in patient's fibroblasts by reconstituting with wild-type MPC1. Complementing homozygous MPC1 mutant cDNA with CRISPR-deleted MPC1 C2C12 cells verified the mechanism of variants: unstable MPC complex or ablated pyruvate uptake activity. Furthermore, we showed that glutamine and beta-hydroxybutyrate were alternative substrates to maintain mitochondrial respiration when cells lack pyruvate. In conclusion, we expand the clinical phenotypes and genotypes associated with MPC deficiency, with our studies revealing glutamine as a potential therapy for MPC deficiency.


Assuntos
Proteínas de Transporte da Membrana Mitocondrial , Transportadores de Ácidos Monocarboxílicos , Glutamina/metabolismo , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Ácido Pirúvico/metabolismo
7.
J Med Genet ; 59(4): 351-357, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33811136

RESUMO

BACKGROUND: Progressive cavitating leukoencephalopathy (PCL) is thought to result from mutations in nuclear genes affecting mitochondrial function and energy metabolism. To date, mutations in two subunits of complex I, NDUFS1 and NDUFV1, have been reported to be related to PCL. METHODS: Patients underwent clinical examinations, brain MRI, skin biopsy and muscle biopsy. Whole-genome or whole-exome sequencing was performed on the index patients from two unrelated families with PCL. The effects of the mutations were examined through complementation of the NDUFV2 mutation by cDNA expression. RESULTS: The common clinical features of the patients in this study were recurring episodes of acute or subacute developmental regression that appeared in the first years of life, followed by gradual remissions and prolonged periods of stability. MRI showed leukoencephalopathy with multiple cavities. Three novel NDUFV2 missense mutations were identified in these families. Complex I deficiency was confirmed in affected individuals' fibroblasts and a muscle biopsy. Functional and structural analyses revealed that these mutations affect the structural stability and function of the NDUFV2 protein, indicating that defective NDUFV2 function is responsible for the phenotypes in these individuals. CONCLUSIONS: Here, we report the clinical presentations, neuroimaging and molecular and functional analyses of novel mutations in NDUFV2 in two sibling pairs of two Chinese families presenting with PCL. We hereby expand the knowledge on the clinical phenotypes associated with mutations in NDUFV2 and the genotypes causative for PCL.


Assuntos
Leucoencefalopatias , Doenças Mitocondriais , NADH Desidrogenase , Exoma , Humanos , Leucoencefalopatias/diagnóstico por imagem , Leucoencefalopatias/genética , Doenças Mitocondriais/genética , Mutação , NADH Desidrogenase/genética , Sequenciamento do Exoma
8.
Mitochondrion ; 62: 13-23, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34656796

RESUMO

Leigh syndrome (LS) is one of the most common mitochondrial diseases in children, for which at least 90 causative genes have been identified. However, many LS patients have no genetic diagnosis, indicating that more disease-related genes remain to be identified. In this study, we identified a novel variant, m.3955G > A, in mitochondrially encoded NADH:ubiquinone oxidoreductase core subunit 1 (MT-ND1) in two unrelated LS patients, manifesting as infancy-onset frequent seizures, neurodegeneration, elevated lactate levels, and bilateral symmetrical lesions in the brainstem, basal ganglia, and thalamus. Transfer of the mutant mtDNA with m.3955G > A into cybrids disturbed the MT-ND1 expression and CI assembly, followed by remarkable mitochondrial dysfunction, reactive oxygen species production, and mitochondrial membrane potential reduction. Our findings demonstrated the pathogenicity of the novel m.3955G > A variant, and extend the spectrum of pathogenic mtDNA variants.


Assuntos
Predisposição Genética para Doença , Doença de Leigh/genética , Potencial da Membrana Mitocondrial/fisiologia , NADH Desidrogenase/genética , NADH Desidrogenase/metabolismo , Transporte de Elétrons/genética , Feminino , Humanos , Lactente , Masculino , Potencial da Membrana Mitocondrial/genética , Modelos Moleculares , Mutação , Consumo de Oxigênio/genética , Linhagem , Conformação Proteica , Espécies Reativas de Oxigênio
9.
Stem Cell Res ; 59: 102633, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34953328

RESUMO

Mutations in CARS2 gene, encoding for the mitochondrial cysteinyl-tRNA synthetase, has been reported to be associated with early-onset epileptic encephalopathy (EOEE). Here, we generated an induced pluripotent stem cell (iPSC) line from the human dermal fibroblasts (HDFs) of an one-year-old boy with EOEE carrying homozygous c.1426G > A mutation in CARS2 gene. These iPSCs exhibited stable amplification, expressed pluripotent markers, and differentiated spontaneously into three germ layers in vitro.

10.
Front Pharmacol ; 12: 669516, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34690748

RESUMO

Alpers' syndrome is an early inceptive neurodegenerative disorder with a poor prognosis, characterized by developmental regression, intractable epilepsy, and hepatic dysfunction. Candidate genes, such as POLG, PARS2, CARS2, FARS2, NARS2, and GABRB2 are distinguished and registered following research on large cohorts that portray the clinical phenotype in such patients using expanded access to whole-exome sequencing (WES). In this study, we aimed to better understand the electroencephalogram (EEG) characteristics and clinical phenotype of different genotypes of the Alpers' syndrome, which are currently insufficiently studied. We conducted a study on seven patients with Alpers' syndrome who received treatment in Beijing Children's Hospital and had a detailed clinical EEG. Furthermore, a substantial literature search of the Chinese Biomedical Literature Database, PubMed, and Cochrane Central Register of Controlled Trials EMBASE was also conducted, which revealed a total of 22 reported cases between January 2008 to January 2021. We analyzed 29 cases of Alpers' syndrome caused by different gene variants, of which 22 cases were related to POLG gene mutation and 7 cases were related to PARS2, CARS2, FARS2, NARS2, and GABRB2 gene mutation, and found that patients with distinctive pathogenic variants exhibited comparable phenotypes and similar EEG patterns. And we defined EEG characteristics found specifically in Alpers' syndrome. Rhythmic high-amplitude delta with superimposed (poly) spikes (RHADS) is a characteristic EEG finding in the early stages of Alpers' syndrome and is a kind of epileptic phenomenon, which can provide clues for the early diagnosis of the disease.

11.
Front Genet ; 12: 685035, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34322155

RESUMO

OBJECTIVE: The cytochrome c oxidase assembly factor 7 (COA7) gene encodes a protein localized to mitochondria that is involved in the assembly of mitochondrial respiratory chain complex IV. Here, we report the clinical, genetic and biochemical analysis of a female patient with suspected mitochondrial disorder and novel variants in COA7, that presented with a considerably different phenotype and age of onset than the five COA7 patients reported to date. METHODS: We performed trio-exome sequencing in the affected patient and both parents. To verify the pathogenicity of the detected variants in COA7, mitochondrial enzyme activities and oxygen consumption rate were investigated in fibroblasts of the patient and her parents. RESULTS: A Chinese girl was referred at 9 months of age with a history of developmental delay and regression since 3 months of age. In the following months, she lost previously acquired skills and developed progressive spasticity of the lower extremities. Trio-exome sequencing revealed compound heterzygous variants in COA7 (c.511G > A/p.Ala171Thr and c.566A > G/p.Asn189Ser). Functional validation experiments revealed isolated complex IV deficiency and a significantly reduced mitochondrial respiration rate in patient-derived fibroblasts. INTERPRETATION: Hitherto, characteristic features of COA7 patients were described as slowly progressing neuropathy and spinocerebellar ataxia, starting at the toddler age and progressing into adulthood. In contrast, our patient was reported to show developmental delay from 3 months of age, which was found to be due to a rapidly progressive encephalopathy and brain atrophy seen at 9 months of age. Unexpectedly, the genetic investigation revealed a COA7-associated mitochondrial disease, which was confirmed functionally. Thus, this report broadens the genetic and clinical spectrum of this heterogeneous mitochondriopathy and highlights the value of the presented unbiased approach.

13.
Front Genet ; 12: 638749, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054915

RESUMO

Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) is a maternally inherited mitochondrial disease. Most cases of MELAS are caused by the m.3243A > G variant in the MT-TL1 gene encoding tRNALeu(UUR). However, the genetic cause in 10% of patients with MELAS is unknown. We investigated the pathogenicity of the novel mtDNA variant m.9396G > A/MT-CO3 (p.E64K), which affects an extremely conserved amino acid in the CO3 subunit of mitochondrial respiratory chain (MRC) complex IV (CIV) in a patient with MELAS. Biochemical assays of a muscle biopsy confirmed remarkable CIV deficiency, and pathological examination showed ragged red fibers and generalized COX non-reactive muscle fibers. Transfer of the mutant mtDNA into cybrids impaired CIV assembly, followed by remarkable mitochondrial dysfunction and ROS production. Our findings highlight the pathogenicity of a novel m.9396G > A variant and extend the spectrum of pathogenic mtDNA variants.

14.
Front Pharmacol ; 12: 605803, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33762937

RESUMO

3-Hydroxyisobutyryl-CoA hydrolase (HIBCH, NM_014362.3) gene mutation can cause HIBCH deficiency, leading to Leigh/Leigh-like disease. To date, few case series have investigated the relationship between metabolites and clinical phenotypes or the effects of treatment, although 34 patients with HIBCH mutations from 27 families have been reported. The purpose of this study was to analyze the phenotypic spectrum, follow-up results, metabolites, and genotypes of patients with HIBCH deficiency presenting with Leigh/Leigh-like syndrome and explore specific metabolites related to disease diagnosis and prognosis through retrospective and longitudinal studies. Applying next-generation sequencing, we identified eight patients with HIBCH mutations from our cohort of 181 cases of genetically diagnosed Leigh/Leigh-like syndrome. Six novel HIBCH mutations were identified: c.977T>G [p.Leu326Arg], c.1036G>T [p.Val346Phe], c.750+1G>A, c.810-2A>C, c.469C>T [p.Arg157*], and c.236delC [p.Pro79Leufs*5]. The Newcastle Pediatric Mitochondrial Disease Scale (NPMDS) was employed to assess disease progression and clinical outcomes. The non-invasive approach of metabolite analysis showed that levels of some were associated with clinical phenotype severity. Five (5/7) patients presented with elevated C4-OH in dried blood spots, and the level was probably correlated with the NPMDS scores during the peak disease phase. 2,3-Dihydroxy-2-methylbutyrate in urine was elevated in six (6/7) patients and elevated S-(2-caboxypropyl)cysteamine in urine was found in three patients (3/3). The median age at initial presentation was 13 months (8-18 months), and the median follow-up was 2.3 years (range 1.3-7.2 years). We summarized and compared with all reported patients with HIBCH mutations. The most prominent clinical manifestations were developmental regression/delay, hypotonia, encephalopathy, and feeding difficulties. We administered drug and dietary treatment. During follow-up, five patients responded positively to treatment with a significant decrease in NPMDS scores. Our research is the largest case series of patients with HIBCH mutations.

15.
Front Pharmacol ; 10: 1454, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31920647

RESUMO

Epileptic encephalopathy, caused by mutations in the dynamin-1 (DNM1; NM_004408) gene, is a newly identified neurologic disorder in children. Thus far, the full clinical and electroencephalographic features of children with DNM1 mutation-related epileptic encephalopathy have not been established. The aim of this study is to characterize the phenotypic, genetic, and electroencephalographic features of children with DNM1 mutation-related epileptic encephalopathy. Here, we investigated a patient with a novel pathogenic DNM1 variant, who received treatment in Beijing Children's Hospital and had detailed clinical, EEG, and genetic information. Conversely, we performed an extensive literature search in PubMed, EMBASE, Cochrane Central Register of Controlled Trials, Chinese BioMedical Literature Database, China National Knowledge Infrastructure, and Wanfang Database using the term "DNM1" and were able to find 32 cases reported in nine articles (in English) from January 2013 to December 2018. The clinical features of 33 cases with pathogenic DNM1 variants were analyzed and the results showed that patients carrying pathogenic variants in the GTPase or middle domains present with epileptic encephalopathy and severe neurodevelopmental symptoms. Patients carrying pathogenic variants in both domains exhibited comparable phenotypes.

16.
Am J Hum Genet ; 103(5): 817-825, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30401461

RESUMO

ADP-ribosylation is a reversible posttranslational modification used to regulate protein function. ADP-ribosyltransferases transfer ADP-ribose from NAD+ to the target protein, and ADP-ribosylhydrolases, such as ADPRHL2, reverse the reaction. We used exome sequencing to identify five different bi-allelic pathogenic ADPRHL2 variants in 12 individuals from 8 families affected by a neurodegenerative disorder manifesting in childhood or adolescence with key clinical features including developmental delay or regression, seizures, ataxia, and axonal (sensori-)motor neuropathy. ADPRHL2 was virtually absent in available affected individuals' fibroblasts, and cell viability was reduced upon hydrogen peroxide exposure, although it was rescued by expression of wild-type ADPRHL2 mRNA as well as treatment with a PARP1 inhibitor. Our findings suggest impaired protein ribosylation as another pathway that, if disturbed, causes neurodegenerative diseases.


Assuntos
Ataxia Cerebelar/genética , Deficiências do Desenvolvimento/genética , Glicosídeo Hidrolases/genética , Mutação/genética , Doenças Neurodegenerativas/genética , ADP-Ribosilação/genética , Adenosina Difosfato Ribose/genética , Adolescente , Alelos , Criança , Pré-Escolar , Exoma/genética , Feminino , Humanos , Lactente , Masculino , Malformações do Sistema Nervoso/genética , Processamento de Proteína Pós-Traducional/genética
17.
Zhonghua Er Ke Za Zhi ; 52(7): 548-51, 2014 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-25224064

RESUMO

OBJECTIVE: To analyze clinical characteristics of a combination of dystrophinopathies and Klinefelter's syndrome (karyotype 47, XXY) in one patient. METHOD: The patient was diagnosed as Duchenne muscular dystrophy (DMD) and Klinefelter's syndrome in Beijing Children's Hospital in March, 2013. The clinical manifestations, physical examinations and laboratory test results were analyzed respectively. The clinical characteristics of four cases reported previously were analyzed as well. RESULT: The 8.5 years old boy presented with symptoms of walking disorder and developmental delay. The patient had facial dysmorphism, waddling gait, Gower's manoeuvre and enlarged calves.Serum creatine kinase level was 21 040 U/L, and he had mild intellectual impairment. Deletions of exons 49-54 of the dystrophin gene were found.Gene dosage analysis revealed a heterozygous deletion in his mother. Five cases have been reported till now, their age ranged from 3.5 to 18 years; 3 of them were DMD, while the other 2 cases were Becker muscular dystrophy (BMD). One of them, detected in pedigree study, whose weakness was minimal in contrast to the proband. The others came to the hospital because of walking disorder or developmental delay. All the patients had enlarged calves, some of them also had Gower's manoeuvre and waddling gait. The patients' height was between 3 rd and 50 th percentile, while 2 of them had facial dysmorphism.Some degree of mental impairment is usual. Their serum creatine kinase were 2 469-24 750 U/L.One of them was detected in pedigree study. Three of them were diagnosed by muscle biopsy, while in the other one mutation analysis was used. CONCLUSION: The combination of dystrophinopathies and Klinefelter's syndrome is quite rare, and has clinical features of these two diseases. Mutation analysis (or muscle biopsy) and karyotype analysis can finally diagnose the syndrome.


Assuntos
Deficiência Intelectual , Síndrome de Klinefelter/complicações , Distrofia Muscular de Duchenne/complicações , Criança , Creatina Quinase/sangue , Análise Mutacional de DNA , Distrofina/genética , Distrofina/metabolismo , Éxons/genética , Deleção de Genes , Heterozigoto , Humanos , Síndrome de Klinefelter/diagnóstico , Síndrome de Klinefelter/genética , Masculino , Debilidade Muscular/etiologia , Distrofia Muscular de Duchenne/diagnóstico , Distrofia Muscular de Duchenne/genética , Mutação , Linhagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA