RESUMO
Organic pollutants (OPs) have caused severe environmental contaminations in the world and aroused wide public concern. Autochthonous bioaugmentation (ABA) is considered a reliable bioremediation approach for OPs contamination. However, the rapid screening of indigenous degrading strains from in-situ environments remains a primary challenge for the practical application of ABA. In this study, 3,5,6-Trichloro-2-pyridinol (TCP, an important intermediate in the synthesis of various pesticides) was selected as the target OPs, and DNA stable isotope probing (DNA-SIP) combined with high-throughput sequencing was employed to explore the rapid screening of indigenous degrading microorganisms. The results of DNA-SIP revealed a significant enrichment of OTU557 (Cupriavidus sp.) in the 13C-TCP-labeled heavy DNA fractions, indicating that it is the key strain involved in TCP metabolism. Subsequently, an indigenous TCP degrader, Cupriavidus sp. JL-1, was rapidly isolated from native soil based on the analysis of the metabolic substrate spectrum of Cupriavidus sp. Furthermore, ABA of strain JL-1 demonstrated higher remediation efficacy and stable survival compared to the exogenous TCP-degrading strain Cupriavidus sp. P2 in in-situ TCP-contaminated soil. This study presents a successful case for the rapid acquisition of indigenous TCP-degrading microorganisms to support ABA as a promising strategy for the in-situ bioremediation of TCP-contaminated soil.
RESUMO
A high cell-surface hydrophobic bacterium, strain A18T, was isolated from a waste digestion system in Chaozhou, China. Cells of strain A18T were Gram-stain-positive, aerobic, non-spore-forming, non-motile, and rod-shaped. Phylogenetic analyses based on the 16S rRNA gene showed that strain A18T shared less than 94.2% sequence similarity to all validated species in the family Chitinophagaceae, and formed a distinct lineage close to genera Niabella and Terrimonas in the neighbor-joining tree, indicating that strain A18T is a novel species. Genome-based phylogenetic analyses revealed that strain A18T is affiliated to the genus Niabella. The cellular components, including iso-C15:0 and iso-C15:1 G as the major fatty acids, menaquinone-7 as the respiratory quinone and a DNA G + C content of 40.54% supported strain A18T as a member of the genus Niabella. However, the physiological and biochemical properties, such as enzyme activities, carbon source utilization and C18:0 3-OH as another major fatty acids, distinguished strain A18T from its close related species. Therefore, the name Niabella digestorum sp. nov. is proposed for this novel species. The type strain is A18T (= GDMCC 1.3242 T = KCTC 92386 T).
Assuntos
Composição de Bases , DNA Bacteriano , Ácidos Graxos , Filogenia , RNA Ribossômico 16S , RNA Ribossômico 16S/genética , Ácidos Graxos/metabolismo , DNA Bacteriano/genética , China , Técnicas de Tipagem Bacteriana , Interações Hidrofóbicas e Hidrofílicas , Bacteroidetes/genética , Bacteroidetes/classificação , Bacteroidetes/isolamento & purificação , Bacteroidetes/metabolismo , Análise de Sequência de DNA , Vitamina K 2/metabolismo , Vitamina K 2/análise , Vitamina K 2/análogos & derivadosRESUMO
Extracellular polymeric substances (EPS) are tightly related to the horizontal gene transfer (HGT) of antibiotic resistance genes (ARGs), but often neglected in soil. In this study, nanoscale zero-valent iron (nZVI) was utilized for attenuation of ARGs in contaminated soil, with an emphasis on its effects on EPS secretion and HGT. Results showed during soil microbe cultivation exposed to tetracycline, more EPS was secreted and significant increase of tet was observed due to facilitated HGT. Notably, copies of EPS-tet accounted for 71.39 % of the total tet, implying vital effects of EPS on ARGs proliferation. When co-exposed to nZVI, EPS secretion was decreased by 38.36-71.46 %, for that nZVI could alleviate the microbial oxidative stress exerted by tetracycline resulting in downregulation of genes expression related to the c-di-GMP signaling system. Meanwhile, the abundance of EPS-tet was obviously reduced from 7.04 to 5.12-6.47 log unit, directly causing decrease of total tet from 7.19 to 5.68-6.69 log unit. For the reduced tet, it was mainly due to decreased EPS secretion induced by nZVI resulting in inhibition of HGT especially transformation of the EPS-tet. This work gives an inspiration for attenuation of ARGs dissemination in soil through an EPS regulation strategy.
RESUMO
A novel Gram-stain-positive, aerobic, catalase-positive, oxidase-negative, non-motile, and rod-shaped bacterium with ibuprofen-degrading capacity, designated DM4T, was isolated from the sewage of a wastewater treatment plant (WWTP) in Guangzhou city, China. Strain DM4T grew optimally at 0% (w/v) NaCl, pH 5.0-7.0, and 30 °C, forming white colonies on trypticase soy agar. C18:1ω9c, C18:2ω9.12c and C15:1ω10c were the predominant fatty acids. Results of 16S rRNA gene alignment and phylogenetic analysis indicated that strain DM4T belonged to the genus Patulibacter, was closely related to Patulibacter medicamentivorans DSM 25692T (98.5%) and P. brassicae KCTC 39817T (98.1%). Strain DM4T had a genome size of 5.33Mbp, and the DNA G + C content was 75.0%. The average nucleotide identity (ANI), average amino acid identity (AAI), and digital DNA-DNA hybridisation (dDDH) values between strain DM4T and P. medicamentivorans were 85.2%, 83.9%, and 29.0% respectively, while those between strain DM4T and P. brassicae were 78.5%, 71.3%, and 22.2%, respectively. Strain DM4T could significantly degrade ibuprofen by almost 80% after 84 h of incubation, and the degradation kinetics was well fitted with the first-order kinetics. Evidence from phenotypic, phylogenetic and chemotaxonomic analyses support that strain DM4T (= GDMCC 1.4574T = KCTC 59145T) represents a new species of the genus Patulibacter, for which the name Patulibacter defluvii sp. nov. is proposed.
Assuntos
Composição de Bases , DNA Bacteriano , Ácidos Graxos , Filogenia , RNA Ribossômico 16S , Águas Residuárias , China , Águas Residuárias/microbiologia , RNA Ribossômico 16S/genética , Ácidos Graxos/análise , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Esgotos/microbiologia , Análise de Sequência de DNA , IbuprofenoRESUMO
Microbial metabolism in landfill leachate systems is critically important in driving the degradation reactions of organic pollutants, including the emerging pollutant bisphenol A (BPA). However, little research has addressed the microbial degradation of BPA in landfill leachate and its interactions with nitrogen (N), sulfur (S), and methane (CH4) metabolism on a global scale. To this end, in this study on a global scale, an extremely high concentration of BPA was detected throughout the global landfill leachates. Subsequent reconstructive analyses of metagenomic datasets from 113 sites worldwide revealed that the predominant BPA-degrading microflora included Proteobacteria, Firmicutes, and Bacteroidota. Further metabolic analyses revealed that all four biochemical pathways involved in the degradation of BPA were achieved through biochemical cooperation between different bacterial members of the community. In addition, BPA degraders have also been found to actively collaborate synergistically with non-BPA degraders in the N and S removal as well as CH4 catabolism in landfill leachates. Collectively, this study not only provides insights into the dominant microbial communities and specific types of BPA-degrading microbial members in the community of landfill leachates worldwide, but also reveals the synergistic interactions between BPA mineralization and N, S, and CH4 metabolism. These findings offer valuable and important insights for future comprehensive and in-depth investigations into BPA metabolism in different environments.
Assuntos
Compostos Benzidrílicos , Biodegradação Ambiental , Metagenômica , Metano , Nitrogênio , Fenóis , Enxofre , Poluentes Químicos da Água , Fenóis/metabolismo , Poluentes Químicos da Água/metabolismo , Compostos Benzidrílicos/metabolismo , Metano/metabolismo , Enxofre/metabolismo , Enxofre/química , Nitrogênio/metabolismo , Instalações de Eliminação de Resíduos , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificaçãoRESUMO
Electroactive microorganisms (EAMs) play a vital role in biogeochemical cycles by facilitating extracellular electron transfer. They demonstrate remarkable adaptability to river sediments that are characterized by pollution and poor water quality, significantly contributing to the sustainability of river ecosystems. However, the distribution and diversity of EAMs remain poorly understood. In this study, 16S rRNA gene high-throughput sequencing and real-time fluorescence quantitative PCR were used to assess EAMs in 160 samples collected from eight rivers within the Pearl River Delta of Southern China. The results indicated that specialized EAMs communities in polluted sediments exhibited variations in response to water quality and sediment depth. Compared to clean sediment, polluted sediments showed a 4.5% increase in the relative abundances of EAMs communities (59 genera), with 45- and 17-times higher abundances of Geobacter and cable bacteria. Additionally, the abundance of cable bacteria decreased with increasing sediment depth in polluted sediments, while the abundance of L. varians GY32 exhibited an opposite trend. Finally, the abundances of Geobacter, cable bacteria, and L. varians GY32 were positively correlated with the abundance of filamentous microorganisms (FMs) across all samples, with stronger interactions in polluted sediments. These findings suggest that EAMs demonstrate heightened sensitivity to polluted environments, particularly at the genus (species) level, and exhibit strong adaptability to conditions characterized by high levels of acid volatile sulfide, low dissolved oxygen, and elevated nitrate nitrogen. Therefore, environmental factors could be manipulated to optimize the growth and efficiency of EAMs for environmental engineering and natural restoration applications.
RESUMO
Periodic oxygen permeation is critical for pollutant removal within intertidal sediments. However, tidal effects on the vertical redox profile associated with cable bacterial activity is not well understood. In this study, we simulated and quantified the effects of tidal flooding, exposing, and their periodic alternation on vertical redox reactions and phenanthrene removal driven by cable bacteria in the riverbank sediment. Results show that electrogenic sulfur oxidation (e-SOx) mediated by cable bacteria during exposing process drove the vertical permeation of oxidation potential characterized by a decrease in Fe(II) and sulfide concentrations. The sulfate produced was observed in deep sediment (5-10 mm) and served as an electron acceptor for anaerobic oxidation, thereby triggering the functional succession of microbial community. About 78.2 % and 80.8 % of phenanthrene was degraded in deep sediment where cable bacteria grew well under exposing and tidal conditions. Anaerobic processes during tidal flood were also found to be important for the survival of cable bacteria. Higher cable bacteria abundance (up to 1.5 %) was observed under tidal conditions compared to that under continuous exposing conditions and flooding conditions. This might be attributed to lower oxidation stress and sulfide replenishment via sulfate reduction while flooding. Under tidal conditions, the cable bacteria interacted with sulfate reduction bacteria (e.g. Desulfobacca spp. and Desulfatiglans spp.) and maintained the dynamic balance of HS- and SO42- in sediment profiles. This HS--SO42- cycle could serve as a "redox connector" that continuously delivers oxidation potential to deep sediments, resulting in the removal of organic pollutants. The findings provide preliminary evidence of the self-purification mechanisms within intertidal sediments and suggest a potential strategy for sediment remediation.
Assuntos
Bactérias , Biodegradação Ambiental , Sedimentos Geológicos , Oxirredução , Fenantrenos , Fenantrenos/metabolismo , Sedimentos Geológicos/microbiologia , Sedimentos Geológicos/química , Bactérias/metabolismo , Ondas de MaréRESUMO
Microplastics (MPs) with different physical-chemical properties are considered as vectors for the propagation of microbes in aquatic environments. It remains unclear how plastic types impact on the plastisphere and whether different MPs spread microbes more rapidly than natural materials in microbes across distinct water bodies as proposed previously. We used in-situ incubation to investigate the microbes attached on MPs of polyethylene (PE), polypropylene (PP), and polyvinyl chloride (PVC), versus that on two natural microcarriers (quartz sands and bamboo) during the travel from aquaculture ponds with impacted by fish farming to adjacent freshwater stream. The results showed that the microbial communities on the carriers were shaped not only by environmental conditions, which were primary determinants but also by carrier types. All the tested plastics did not carry more microbes than the natural carriers during the journey. The biofilm community composition on PVC is distinct from that on PE and PP MPs and natural carriers. The plastisphere of PE and PP kept microbial proportions as natural materials did but PVC retained less than nature materials. Bamboo carried more potential pathogens than plastic polymers and quartz. The results indicated that the communities of plastisphere is polymer-type dependent, and, compared with the natural materials, MPs did not show enhanced propagation of microbes, including pathogens, cross distinct environments.
Assuntos
Aquicultura , Microbiota , Microplásticos , Lagoas , Lagoas/microbiologia , Rios/microbiologia , Rios/química , Biofilmes , Poluentes Químicos da Água , Polietileno/química , Cloreto de Polivinila/química , Areia/microbiologia , Bactérias , Microbiologia da ÁguaRESUMO
Increasing nitrogen (N) input to coastal ecosystems poses a serious environmental threat. It is important to understand the responses and feedback of N removal microbial communities, particularly nitrifiers including the newly recognized complete ammonia-oxidizers (comammox), to improve aquaculture sustainability. In this study, we conducted a holistic evaluation of the functional communities responsible for nitrification by quantifying and sequencing the key functional genes of comammox Nitrospira-amoA, AOA-amoA, AOB-amoA and Nitrospira-nxrB in fish ponds with different fish feeding levels and evaluated the contribution of nitrifiers in the nitrification process through experiments of mixing pure cultures. We found that higher fish feeding dramatically increased N-related concentration, affecting the nitrifying communities. Compared to AOA and AOB, comammox Nitrospira and NOB were more sensitive to environmental changes. Unexpectedly, we detected an equivalent abundance of comammox Nitrospira and AOB and observed an increase in the proportion of clade A in comammox Nitrospira with the increase in fish feeding. Furthermore, a simplified network and shift of keystone species from NOB to comammox Nitrospira were observed in higher fish-feeding ponds. Random forest analysis suggested that the comammox Nitrospira community played a critical role in the nitrification of eutrophic aquaculture ponds (40-70 µM). Through the additional experiment of mixing nitrifying pure cultures, we found that comammox Nitrospira is the primary contributor to the nitrification process at 200 µM ammonium. These results advance our understanding of nitrifying communities and highlight the importance of comammox Nitrospira in driving nitrification in eutrophic aquaculture systems.
RESUMO
Manganese dioxide (MnO2), as a catalyst in composting processes, can accumulate in soil over multiple fertilizations. However, its impact on crop growth remains to be explored. In this study, a pot experiment was conducted to investigate the impacts of MnO2 on the tomato plant performance across various growth stages. Results showed that MnO2 reduced the plant height, leaf number and length by 35.53 %, 27.61 %, and 37.00 %, respectively, and decreased the fruit weight (23.16 %) and sugar-acid ratio (29.7 %) of fruits compared to the MnO2-free control. The adverse impacts of MnO2 on plant growth might be attributed to the inhibition of microbial activity in soil reflected by the reduction of soil urease (9.30 %) and acid phosphatase (12.52 %) activities, which decreased the efficiency of nutrients conversion and uptake. The decrease of nutrient elements in roots resulted in oxidative stress in the plant, inhibiting the plasma membrane H+-ATPase activity thereby reducing the translocation of nutrients (e.g., calcium, magnesium, and phosphorus) translocation from roots to leaves. Furthermore, the phytohormones indolebutyric acid, gibberellin, and jasmonic acid of leaves were disturbed. This study reveals the risks associated with the application of MnO2-containing organic fertilizers.
Assuntos
Fertilizantes , Compostos de Manganês , Óxidos , Solanum lycopersicum , Solanum lycopersicum/crescimento & desenvolvimento , Solo/químicaRESUMO
The microbial reduction of selenite to elemental selenium nanoparticles (SeNPs) is thought to be an effective detoxification process of selenite for many bacteria. In this study, Metasolibacillus sp. ES129 and Oceanobacillus sp. ES111 with high selenite reduction efficiency or tolerance were selected for systematic and comparative studies on their performance in selenite removal and valuable SeNPs recovery. The kinetic monitoring of selenite reduction showed that the highest transformation efficiency of selenite to SeNPs was achieved at a concentration of 4.24 mM for ES129 and 4.88 mM for ES111. Ultramicroscopic analysis suggested that the SeNPs produced by ES111 and ES129 had been formed in cytoplasm and subsequently released to extracellular space through cell lysis process. Furthermore, the transcriptome analysis indicated that the expression of genes involved in bacillithiol biosynthesis, selenocompound metabolism and proline metabolism were significantly up-regulated during selenite reduction, suggesting that the transformation of selenite to Se0 may involve multiple pathways. Besides, the up-regulation of genes associated with nucleotide excision repair and antioxidation-related enzymes may enhance the tolerance of bacteria to selenite. Generally, the exploration of selenite reduction and tolerance mechanisms of the highly selenite-tolerant bacteria is of great significance for the effective utilization of microorganisms for environmental remediation.
Assuntos
Ácido Selenioso , Selênio , Microbiologia do Solo , Ácido Selenioso/metabolismo , Selênio/metabolismo , Selênio/química , Oxirredução , Nanopartículas/química , Biodegradação Ambiental , Poluentes do Solo/metabolismo , Bactérias/metabolismo , Bactérias/genéticaRESUMO
Psychotropic medications are one of the most prescribed pharmaceuticals in the world. Given their frequent detection and ecotoxicity to the no-target organism, the emission of these medications into environments has gradually draw attention. The study developed a sensitive and reliable analytic method to simultaneously investigate 47 psychotropic medications in four matrices: wastewater, surface water, activated sludge, and sediment by ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS). These 47 target analytes include 24 antidepressants, 17 antianxiety drugs, 5 anticonvulsants, and 1 relevant hormone. Solid phase extraction (SPE) was employed to extract analytes from water-phase samples. Ultrasonic Solvent Extraction method with Enhanced Matrix Removal clean-up (USE-EMR) was utilized to extract target compounds from solid-phase samples, which requires more straightforward and convenient procedures than previous methods. The extraction recoveries of all analytes ranged from 80 % to 120 % in these four sample matrices. In this study, The limit of quantitation for 47 psychotropic medications were 0.15 ng/L (estazolam) to 2.27 ng/L (lorazepam), 0.08 ng/L (desvenlafaxine) to 2 ng/L (mianserin), 0.22 ng/g (dry weight, dw) (nordiazepam) to 3.65 ng/g (dw) (lorazepam), and 0.07 ng/g (dw) (carbamazepine) to 2.85 ng/g (lorazepam), in wastewater, surface water, sludge, and sediment, respectively. In addition, the developed method was employed to analyse actual samples in two wastewater treatment plants and their receiving rivers. Carbamazepine, escitalopram, clozapine, desvenlafaxine, diazepam, lamotrigine, sertraline, temazepam, and venlafaxine were nearly ubiquitous in all matrices. Moreover, this study indicated that the inadequate removal efficiencies of psychotropic medications in wastewater treatment plants (WWTPs) had resulted in a persistent discharge of these contaminants from human sources into environments.
Assuntos
Espectrometria de Massas em Tandem , Poluentes Químicos da Água , Humanos , Espectrometria de Massas em Tandem/métodos , Águas Residuárias , Cromatografia Líquida/métodos , Esgotos/química , Espectrometria de Massa com Cromatografia Líquida , Lorazepam/análise , Succinato de Desvenlafaxina/análise , Água/análise , Psicotrópicos/análise , Extração em Fase Sólida/métodos , Poluentes Químicos da Água/análise , Carbamazepina/análise , Cromatografia Líquida de Alta Pressão/métodosRESUMO
Cable bacteria have been identified and detected worldwide since their discovery in marine sediments in Aarhus Bay, Denmark. Their activity can account for the majority of oxygen consumption and sulfide depletion in sediments, and they induce sulfate accumulation, pH excursions, and the generation of electric fields. In addition, they can affect the fluxes of other elements such as calcium, iron, manganese, nitrogen, and phosphorous. Recent developments in our understanding of the impact of cable bacteria on element cycling have revealed their positive contributions to mitigating environmental problems, such as recovering self-purification capacity, enhancing petroleum hydrocarbon degradation, alleviating phosphorus eutrophication, delaying euxinia, and reducing methane emission. We highlight recent research outcomes on their distribution, state-of-the-art findings on their physiological characteristics, and ecological contributions.
Assuntos
Bactérias , Sedimentos Geológicos , Bactérias/metabolismo , Sedimentos Geológicos/microbiologia , Fósforo/metabolismo , Sulfetos/metabolismo , Biodegradação Ambiental , Sulfatos/metabolismo , Nitrogênio/metabolismoRESUMO
The current cross-sectional study aimed to investigate the extent to which demographic characteristics, stigma, and social support impact the self-management abilities of individuals with bipolar disorder in remission. Participants (N = 114) completed a demographic questionnaire, Self-Stigma Scale-Short Form, Social Support Rating Scale, and Self-Management Scale for Patients With Bipolar Disorder. Mean scores were 60.65 (SD = 10.42) for self-management, 35.76 (SD = 7.14) for social support, and 21.38 (SD = 5.06) for stigma. In the univariate analysis, age, educational level, method of payment for care, illness duration, and number of hospitalizations demonstrated significant associations with self-management (p < 0.05). Correlation analysis revealed a positive correlation between self-management and social support (r = 0.574, p < 0.01) and negative correlations between self-management and stigma (r = -0.489, p < 0.01) and stigma and social support (r = -0.476, p < 0.01). Multiple linear regression analysis included number of hospitalizations (ß = -3.818), social support (ß = 0.436), literacy (ß = 2.132), and stigma (ß = -0.397). Individuals in remission from bipolar disorder exhibit moderate levels of self-management. Follow-up interventions should prioritize enhancing social support and addressing stigma to promote improved self-management and overall well-being. [Journal of Psychosocial Nursing and Mental Health Services, xx(xx), xx-xx.].
RESUMO
IMPORTANCE: Microbial cell surface hydrophobicity (CSH) reflects nonspecific adhesion ability and affects various physiological processes, such as biofilm formation and pollutant biodegradation. Understanding the regulation mechanisms of CSH will contribute to illuminating microbial adaptation strategies and provide guidance for controlling CSH artificially to benefit humans. Sphingomonads, a common bacterial group with great xenobiotic-degrading ability, generally show higher CSH than typical Gram-negative bacteria, which plays a positive role in organic pollutant capture and cell colonization. This study verified that the variations of two native plasmids involved in synthesizing outer membrane proteins and polysaccharides greatly affected the CSH of sphingomonads. It is feasible to control their CSH by changing the plasmid copy number and sequences. Additionally, considering that plasmids are likely to evolve faster than chromosomes, the CSH of sphingomonads may evolve quickly to respond to environmental changes. Our results provide valuable insights into the CSH regulation and evolution of sphingomonads.
Assuntos
Bactérias , Poluentes Ambientais , Humanos , Plasmídeos/genética , Interações Hidrofóbicas e HidrofílicasRESUMO
Anthropogenic activities greatly impact nitrogen (N) biogeochemical cycling in aquatic ecosystems. High N concentrations in coastal aquaculture waters threaten fishery production and aquaculture ecosystems and have become an urgent problem to be solved. Existing microbial flora and metabolic potential significantly regulate N turnover in aquatic ecosystems. To clarify the contribution of microorganisms to N turnover in sediment and water, we investigated three types of aquaculture ecosystems in coastal areas of Guangdong, China. Nitrate nitrogen (NO3--N) was the dominant component of total nitrogen in the sediment (interstitial water, 90.4%) and water (61.6%). This finding indicates that NO3--N (1.67-2.86 mg/L and 2.98-7.89 mg/L in the sediment and water) is a major pollutant in aquaculture ecosystems. In water, the relative abundances of assimilation nitrogen reduction and aerobic denitrifying bacteria, as well as the metabolic potentials of nitrogen fixation and dissimilated nitrogen in fish monoculture, were only 61.0%, 31.5%, 47.5%, and 27.2% of fish and shrimp polyculture, respectively. In addition, fish-shrimp polyculture reduced NO3--N content (2.86 mg/L) compared to fish monoculture (7.89 mg/L), which was consistent with changes in aerobic denitrification and nitrate assimilation, suggesting that polyculture could reduce TN concentrations in water bodies and alleviate nitrogen pollution risks. Further analysis via structural equation modeling (SEM) revealed that functional pathways (36% and 31%) explained TN changes better than microbial groups in sediment and water (13% and 11%), suggesting that microbial functional capabilities explain TN better than microbial community composition and other factors (pH, O2, and aquaculture type). This study enhances our understanding of nitrogen pollution characteristics and microbial community and functional capabilities related to sediment-water nitrogen turnover in three types of aquaculture ecosystems, which can contribute to the preservation of healthy coastal ecosystems.
Assuntos
Microbiota , Nitrogênio , Animais , Nitrogênio/análise , Nitratos/análise , Água/química , Sedimentos Geológicos/químicaRESUMO
IMPORTANCE: Understanding the processes and mechanisms governing microbial community assembly and their linkages to ecosystem functioning has long been a core issue in microbial ecology. An in-depth insight still requires combining with analyses of species' functional traits and microbial interactions. Our study showed how species' functional traits and interactions determined microbial community structure and functions by a well-controlled laboratory experiment with nitrate-mediated sulfur oxidation systems using high-throughput sequencing and culture-dependent technologies. The results provided solid evidences that species' functional traits and interactions were the intrinsic factors determining community structure and function. More importantly, our study established quantitative links between community structure and function based on species' functional traits and interactions, which would have important implications for the design and synthesis of microbiomes with expected functions.
Assuntos
Ecossistema , Microbiota , Nitratos , Enxofre , Fenótipo , OxirreduçãoRESUMO
Ozone and chlorine are the most widely used disinfectants for water and wastewater disinfection. They play important role in microbial inactivation but could also pose a considerable selection effect on the microbial community of reclaimed water. Classical culture-based methods that rely on the assessment of conventional bacterial indicators (e.g., coliform bacteria) could hardly reflect the survival of disinfection residual bacteria (DRB) and hidden microbial risks in disinfected effluents. Hence, this study investigated the shifts of live bacterial community during ozone and chlorine disinfection in three reclaimed waters (i.e., two secondary effluents and one tertiary effluent), adopting Illumina Miseq sequencing technology in combination with a viability assay, propidium monoazide (PMA) pretreatment. Notably, statistical analyses of Wilcoxon rank-sum test confirmed the existance of distinct differences in bacterial community structure between samples with or without PMA pretreatment. On the phylum level, Proteobacteria commonly dominated in three undisinfected reclaimed waters, while ozone and chlorine disinfection posed varied effects on its relative abundance among different influents. On the genus level, ozone and chlorine disinfection significantly changed the bacterial composition and dominant species in reclaimed waters. Specifically, the typical DRB identified in ozone disinfected effluents were Pseudomonas, Nitrospira and Dechloromonas, while for chlorine disinfected effluents, Pseudomonas, Legionella, Clostridium, Mycobacterium and Romboutsia were recognized as typical DRB, which call for much attention. The Alpha and Beta diversity analysis results also suggested that different influent compositions greatly affected the bacterial community structure during disinfection processes. Since the experiments in present study were conducted in a short period and the dataset was relatively limited, prolonged experiment under different operational conditions are needed in future to illustrate the potential long-term effects of disinfection on the microbial community structure. The findings of this study could provide insights into microbial safety concern and control after disinfection for sustainable water reclamation and reuse.
Assuntos
Desinfetantes , Ozônio , Purificação da Água , Desinfecção/métodos , Cloro/farmacologia , Ozônio/farmacologia , Desinfetantes/farmacologia , Bactérias , Água , Cloretos , Purificação da Água/métodosRESUMO
OBJECTIVE: Prophylactic pharmacological conversion agents could reduce the incidence of postoperative atrial fibrillation (AF) in patients undergoing thoracic operations. The current study examined whether the use of pharmacological conversion agents could help to restore sinus rhythm in patients with AF newly developed during thoracic operations. METHODS: Medical records of 18,605 patients from January 1, 2015 to December 31, 2019, at the Shanghai Chest Hospital were reviewed. Patients with non-sinus rhythm prior to the surgery (n = 128) were excluded from data analysis. The final analysis included 18,477 patients (n = 16,292 undergoing lung operations; n = 2,185 undergoing esophageal operations). RESULTS: Intraoperative AF (defined as AF lasting for at least 5 min) occurred in 646 out of a total of 18,477 subjects (3.49%). Within the 646 subjects, 258 received pharmacological conversion agents during the surgery. sinus rhythm was restored in 20.15% (52/248) of patients treated with pharmacological cardioversion and in 20.87% (81/399) patients not receiving pharmacological intervention. In a subgroup analysis of the 258 patients receiving pharmacological conversion agents, recovery of sinus rhythm was highest in beta-blocker group (35.59%, 21/59 vs. 15.78%, 15/95 in amiodarone group, p = 0.008, 5.55%, and 1/18 in amiodarone plus beta-blockers group, p = 0.016). The incidence of hypotension was higher in pharmacological conversion (27.5% vs. 9.3% in patients not receiving pharmacological intervention, p < 0.001). In subjects not recovering to sinus rhythm during the surgery (n = 513), electrical cardioversion in post-anesthesia care unit (PACU) restored sinus rhythm in > 98% of the cases (155/158 vs. 63/355 in subjects not receiving cardioversion; p < 0.001). CONCLUSIONS: Our experience shows that pharmacological conversion, in general, failed to show better treatment effectiveness on intraoperative new-onset AF within period of surgery except for beta-blockers. Patients with AF persisting beyond the surgery could be effectively managed with electrical cardioversion.
Assuntos
Amiodarona , Fibrilação Atrial , Cirurgia Torácica , Humanos , Antiarrítmicos/uso terapêutico , Fibrilação Atrial/tratamento farmacológico , Fibrilação Atrial/etiologia , Cardioversão Elétrica , China , Amiodarona/uso terapêutico , Amiodarona/efeitos adversos , Resultado do TratamentoRESUMO
Quorum sensing (QS) is an ideal strategy for boosting the operating performance of electroactive biofilms (EABs), but its potential effects on the protection of electroactive biofilms against environmental shocks (e.g., hypersaline shock) have been rarely revealed. In this study, a QS signaling molecule, the N-(3-oxo-dodecanoyl)-L-homoserine lactone, was employed to promote the anti-shock property of the EABs against extreme saline shock. The maximum current density of the QS-regulated biofilm recovered to 0.17 mA/cm2 after 10% salinity exposure, which was much higher than those of its counterparts. The laser scanning confocal microscope confirmed a thicker and more compact biofilm with the presence of the QS signaling molecule. The extracellular polymeric substances (EPS) might play a crucial role in the anti-shocking behaviors, as the polysaccharides in EPS of QS-biofilm had doubled compared to the groups with acylase (the QS quencher). The microbial community analysis indicated that the QS molecule enriched the relative abundance of key species including Pseudomonas sp. and Geobacter sp., which were both beneficial to the stability and electroactivity of the biofilms. The functional genes related to the bacterial community were also up-regulated with the presence of the QS molecule. These results highlight the importance of QS effects in protecting electroactive biofilm under extreme environmental shock, which provides effective and feasible strategies for the future development of microbial electrochemical technologies.