Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ChemMedChem ; 15(2): 188-194, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31709767

RESUMO

Hit-to-lead optimization is a critical phase in drug discovery. Herein, we report on the fragment-based discovery and optimization of 2-aminopyridine derivatives as a novel lead-like structure for the treatment of the dangerous opportunistic pathogen Pseudomonas aeruginosa. We pursue an innovative treatment strategy by interfering with the Pseudomonas quinolone signal (PQS) quorum sensing (QS) system leading to an abolishment of bacterial pathogenicity. Our compounds act on the PQS receptor (PqsR), a key transcription factor controlling the expression of various pathogenicity determinants. In this target-driven approach, we made use of biophysical screening via surface plasmon resonance (SPR) followed by isothermal titration calorimetry (ITC)-enabled enthalpic efficiency (EE) evaluation. Hit optimization then involved growth vector identification and exploitation. Astonishingly, the latter was successfully achieved by introducing flexible linkers rather than rigid motifs leading to a boost in activity on the target receptor and anti-virulence potency.


Assuntos
Aminopiridinas/farmacologia , Antibacterianos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Aminopiridinas/síntese química , Aminopiridinas/química , Antibacterianos/síntese química , Antibacterianos/química , Relação Dose-Resposta a Droga , Descoberta de Drogas , Testes de Sensibilidade Microbiana , Estrutura Molecular , Pseudomonas aeruginosa/patogenicidade , Percepção de Quorum/efeitos dos fármacos , Relação Estrutura-Atividade , Virulência/efeitos dos fármacos
2.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 8): 1403-13, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23897464

RESUMO

Phenazines are redox-active secondary metabolites that many bacteria produce and secrete into the environment. They are broad-specificity antibiotics, but also act as virulence and survival factors in infectious diseases. Phenazines are derived from chorismic acid, but important details of their biosynthesis are still unclear. For example, three two-electron oxidations seem to be necessary in the final steps of the pathway, while only one oxidase, the FMN-dependent PhzG, is conserved in the phenazine-biosynthesis phz operon. Here, crystal structures of PhzG from Pseudomonas fluorescens 2-79 and from Burkholderia lata 383 in complex with excess FMN and with the phenazine-biosynthesis intermediates hexahydrophenazine-1,6-dicarboxylate and tetrahydrophenazine-1-carboxylate generated in situ are reported. Corroborated with biochemical data, these complexes demonstrate that PhzG is the terminal enzyme in phenazine biosynthesis and that its relaxed substrate specificity lets it participate in the generation of both phenazine-1,6-dicarboxylic acid (PDC) and phenazine-1-carboxylic acid (PCA). This suggests that competition between flavin-dependent oxidations through PhzG and spontaneous oxidative decarboxylations determines the ratio of PDC, PCA and unsubstituted phenazine as the products of phenazine biosynthesis. Further, the results indicate that PhzG synthesizes phenazines in their reduced form. These reduced molecules, and not the fully aromatized derivatives, are the likely end products in vivo, explaining why only one oxidase is required in the phenazine-biosynthesis pathway.


Assuntos
Burkholderia/enzimologia , Oxirredutases/química , Oxirredutases/metabolismo , Pseudomonas fluorescens/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Mononucleotídeo de Flavina/metabolismo , Modelos Moleculares , Fenazinas/metabolismo , Conformação Proteica , Especificidade por Substrato
3.
Artigo em Inglês | MEDLINE | ID: mdl-22949189

RESUMO

The opportunistic bacterial pathogen Pseudomonas aeruginosa employs three transcriptional regulators, LasR, RhlR and PqsR, to control the transcription of a large subset of its genes in a cell-density-dependent process known as quorum sensing. Here, the recombinant production, crystallization and structure solution of the ligand-binding domain of PqsR (MvfR), the LysR-type transcription factor that responds to the Pseudomonas quinolone signal (PQS), a quinolone-based quorum-sensing signal that is unique to P. aeruginosa and possibly a small number of other bacteria, is reported. PqsR regulates the expression of many virulence genes and may therefore be an interesting drug target. The ligand-binding domain (residues 91-319) was produced as a fusion with SUMO, and hexagonal-shaped crystals of purified PqsR_91-319 were obtained using the vapour-diffusion method. Crystallization in the presence of a PQS precursor allowed data collection to 3.25 Å resolution on a synchrotron beamline, and initial phases have been obtained using single-wavelength anomalous diffraction data from seleno-L-methionine-labelled crystals, revealing the space group to be P6(5)22, with unit-cell parameters a = b = 116-120, c = 115-117 Å.


Assuntos
Proteínas de Bactérias/química , Pseudomonas aeruginosa/química , Fatores de Transcrição/química , Cristalização , Ligantes , Modelos Moleculares , Estrutura Terciária de Proteína , Percepção de Quorum
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA