Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Yi Chuan ; 44(9): 756-771, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36384953

RESUMO

Hematopoiesis plays an important role(s) in maintenance and physiology of life. Hematopoiesis in vertebrates mainly includes self-renewal of the hematopoietic stem cells, proliferation and differentiation of the hematopoietic progenitor cells, and maturation of the blood cells. The regulation of hematogenesis involves a variety of transcription factors, membrane receptors, hematopoietic growth factors, and microRNAs, which interact with each other and form a variety of signaling pathways and signal networks. MicroRNAs are a class of non-coding RNAs widely distributed in eukaryotic cells and play important roles in the hematopoietic process. The expression of microRNAs is regulated by transcription factors involved in hematopoietic signaling pathways. In turn, their expression can inhibit or down-regulate those of transcription factors involved in hematopoietic related signaling pathways and other related regulatory factors, thereby affecting the signaling pathways related to hematopoiesis and ultimately the hematopoietic process. In this review, we introduce the hematopoiesis processes and related signal pathways in vertebrates, focusing on the relationships between microRNAs and hematopoietic transcription factors and signal pathways, and summarizing the recent research progress of microRNAs in hematopoiesis.


Assuntos
MicroRNAs , Animais , MicroRNAs/metabolismo , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Diferenciação Celular , Fatores de Transcrição/metabolismo
2.
BMC Biol ; 20(1): 231, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36224580

RESUMO

BACKGROUND: Antarctica harbors the bulk of the species diversity of the dominant teleost fish suborder-Notothenioidei. However, the forces that shape their evolution are still under debate. RESULTS: We sequenced the genome of an icefish, Chionodraco hamatus, and used population genomics and demographic modelling of sequenced genomes of 52 C. hamatus individuals collected mainly from two East Antarctic regions to investigate the factors driving speciation. Results revealed four icefish populations with clear reproduction separation were established 15 to 50 kya (kilo years ago) during the last glacial maxima (LGM). Selection sweeps in genes involving immune responses, cardiovascular development, and photoperception occurred differentially among the populations and were correlated with population-specific microbial communities and acquisition of distinct morphological features in the icefish taxa. Population and species-specific antifreeze glycoprotein gene expansion and glacial cycle-paced duplication/degeneration of the zona pellucida protein gene families indicated fluctuating thermal environments and periodic influence of glacial cycles on notothenioid divergence. CONCLUSIONS: We revealed a series of genomic evidence indicating differential adaptation of C. hamatus populations and notothenioid species divergence in the extreme and unique marine environment. We conclude that geographic separation and adaptation to heterogeneous pathogen, oxygen, and light conditions of local habitats, periodically shaped by the glacial cycles, were the key drivers propelling species diversity in Antarctica.


Assuntos
Camada de Gelo , Perciformes , Animais , Regiões Antárticas , Peixes/genética , Genoma , Metagenômica , Oxigênio , Filogenia
3.
Front Cell Dev Biol ; 10: 987409, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36172273

RESUMO

Hadal zones are unique habitats characterized by high hydrostatic pressure (HHP) and scarce food supplies. The ability of eggs of species dwelling in hadal zones to develop into normal embryo under high hydrostatic pressure is an important evolutionary and developmental trait. However, the mechanisms underlying the development of eggs of hadal-dwelling species remain unknown due to the difficulty of sampling ovigerous females. Here, morphological and transcriptome analyses of eggs of the "supergiant" amphipod Alicella gigantea collected from the New Britain Trench were conducted. The morphology of A. gigantea eggs, including size, was assessed and the ultrastructure of the eggshell was investigated by scanning electron microscopy. Transcriptome sequencing and molecular adaptive evolution analysis of A. gigantea eggs showed that, as compared with shallow-water Gammarus species, genes exhibiting accelerated evolution and the positively selected genes were mostly related to pathways associated with "mitosis" and "chitin-based embryonic cuticle biosynthetic process", suggesting that "normal mitosis maintenance" and "cuticle development and protection" are the two main adaptation strategies for survival of eggs in hadal environments. In addition, the concentration of trimethylamine oxide (TMAO), an important osmotic regulator, was significantly higher in the eggs of hadal amphipods as compared to those of shallow-water species, which might promote the eggs' adaptation abilities. Morphological identification, evolutionary analysis, and the trimethylamine oxide concentration of A. gigantea eggs will facilitate a comprehensive overview of the piezophilic adaptation of embryos in hadal environments and provide a strategy to analyze embryogenesis under high hydrostatic pressure.

4.
Front Physiol ; 13: 925752, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091397

RESUMO

Acute hypoxia in water has always been a thorny problem in aquaculture. Oxygen and iron play important roles and are interdependent in fish. Iron is essential for oxygen transport and its concentration tightly controlled to maintain the cellular redox homeostasis. However, it is still unclear the role and mechanism of iron in hypoxic stress of fish. In this study, we investigated the role of iron in hypoxic responses of two zebrafish-derived cell lines. We found hypoxia exposed zebrafish liver cells (ZFL) demonstrated reduced expression of Ferritin and the gene fth31 for mitochondrial iron storage, corresponding to reduction of both intracellular and mitochondrial free iron and significant decrease of ROS levels in multiple cellular components, including mitochondrial ROS and lipid peroxidation level. In parallel, the mitochondrial integrity was severely damaged. Addition of exogenous iron restored the iron and ROS levels in cellular and mitochondria, reduced mitochondrial damage through enhancing mitophagy leading to higher cell viability, while treated the cells with iron chelator (DFO) or ferroptosis inhibitor (Fer-1) showed no improvements of the cellular conditions. In contrast, in hypoxia insensitive zebrafish embryonic fibroblasts cells (ZF4), the expression of genes related to iron metabolism showed opposite trends of change and higher mitochondrial ROS level compared with the ZFL cells. These results suggest that iron homeostasis is important for zebrafish cells to maintain mitochondrial integrity in hypoxic stress, which is cell type dependent. Our study enriched the hypoxia regulation mechanism of fish, which helped to reduce the hypoxia loss in fish farming.

5.
Front Cell Dev Biol ; 10: 897826, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36003151

RESUMO

Developmental growth is an intricate process involving the coordinated regulation of the expression of various genes, and microRNAs (miRNAs) play crucial roles in diverse processes throughout animal development. The mid-blastula transition (MBT) is a developmental milestone when maternal RNAs are cleared and the zygotic genome programmed asynchronous cell division begins to drive embryogenesis. While mechanisms underlying MBT have been intensively revealed, factors regulating cell proliferation at the transition remain largely unknown. We report here a microRNA, miR-202-3p to be a key factor that determines embryonic fate during MBT in zebrafish. A miR-202-3p antagomir specifically terminated embryo development at the mid-blastula stage. In vivo deletion of the miR-202 locus recapitulated the fatal phenotypes, which were rescued only by miR-202-3p or its precursor. Transcriptome comparison revealed >250 RNAs including both maternal and zygotic origins were dysregulated at MBT in the miR-202-/- embryos, corresponding with arrays of homeostatic disorders leading to massive apoptosis. A trio of genes: nfkbiaa, perp and mgll, known to be intimately involved with cell proliferation and survival, were identified as direct targets of miR-202-3p. Importantly, over- or under-expression of any of the trio led to developmental delay or termination at the blastula or gastrula stages. Furthermore, nfkbiaa and perp were shown to inter-regulate each other. Thus, miR-202-3p mediates a regulatory network whose components interact closely during MBT to determine embryonic viability and development.

6.
Fish Physiol Biochem ; 48(3): 723-733, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35553293

RESUMO

Erythropoietin (EPO) is a glycoprotein hormone involved in proerythropoiesis, antioxidation, and antiapoptosis. It also contributes to cellular immune function in high-altitude species, such as the schizothoracine fish Gymnocypris dobula. Six mutation sites previously identified in EPO from G. dobula (GD-EPO) were injected into zebrafish embryos, and their effects were compared with EPO from the low-altitude schizothoracine Schizothorax prenanti. The key mutation site in GD-EPO was identified as H131S. Under hypoxic conditions, the levels of superoxide dismutase and malondialdehyde were decreased, whereas that of nitric oxide was increased in zebrafish injected with GD-EPO compared with those injected with S. prenanti-EPO (SP-EPO). The results suggest that EPO in high-altitude schizothoracine species is both antioxidative and antiapoptotic, driven by the H131S mutation site. Thus, this enhanced the ability of this species to adapt to the high-altitude hypoxic environment. These results provide a basis for investigating further the hypoxia adaptation mechanisms of teleosts.


Assuntos
Cyprinidae , Eritropoetina , Animais , Cyprinidae/genética , Eritropoetina/genética , Hipóxia/genética , Mutação , Peixe-Zebra
7.
Front Microbiol ; 13: 834477, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35495646

RESUMO

Hepcidin is a small peptide composed of signal peptide, propeptide, and the bioactive mature peptide from N terminal to C terminal. Mature hepcidin is an antibacterial peptide and iron regulator with eight highly conserved cysteines forming four intramolecular disulfide bonds, giving it a ß sheet hairpin-like structure. Hepcidin homologs are found in a variety of vertebrates, especially fish, and their diversity may be associated with different habitats and different levels of pathogens. Dissostichus mawsoni, an Antarctic notothenioid fish that lives in the coldest water unlike most places of the world, with at least two hepcidin variants with eight cysteines. We confirmed the formation process of activated mature hepcidins from D. mawsoni in Chinese hamster ovary (CHO) cell line, obtained recombinant hepcidin protein from prokaryotes, and characterized its binding ability and antibacterial activity against varying bacteria. The expression of hepcidin in CHO cell line showed that the prepropeptide of Dmhep_8cysV1 and Dmhep_8cysV2 cleavage into smaller mature peptide. The antibacterial assay and flow cytometry showed that Dmhep_8cysV1, Dmhep_8cysV2, and Drhep bound to different bacteria and killed them with different minimum inhibitory concentration. These data suggest that hepcidin plays an important role in the innate immunity of D. mawsoni and is of great value in improving resistance to pathogens.

8.
Biol Trace Elem Res ; 200(3): 1395-1407, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34018124

RESUMO

Hadal trenches are the deepest areas worldwide. Amphipods are considered a key factor in hadal ecosystems because of their important impacts on the hadal environment. Amphipods have benthic habits, and therefore, serve as good metal biomonitors. However, little is known about the hadal amphipod metal accumulations. In the present study, Alicella gigantea, Hirondellea gigas, and Scopelocheirus schellenbergi were sampled from the New Britain Trench (8824m, 7.02S 149.16E), Mariana Trench (10,839m, 11.38N 142.42E), and Marceau Trench (6690m, 1.42N 148.74E) in the West Pacific Ocean, respectively. The elemental concentrations of the three hadal amphipods were subsequently investigated. Nine trace elements (V, Cr, Mn, Co, Ni, Se, Mo, Ag, and Cd) of three tissues (exoskeleton, leg muscle, and gut) of the hadal amphipods were detected by using inductively coupled plasma mass spectrometry (ICP-MS) method. The concentrations of Cr, Cd, and Mn were comparably higher among those nine examined elements. The greatest accumulations of the elements Cr, Ag, and V in the exoskeleton and leg muscle were observed in H. gigas, and elements Mn, Co, and Se showed the highest accumulations in the gut in H. gigas among the three hadal amphipods. In addition, comparisons of the leg muscle trace element accumulation between the hadal amphipods and non-abyssal and shallow water decapoda and amphipoda species showed that the hadal amphipods possessed comparably higher concentrations of the trace elements Cd, Co, Mo, Ag, and V. This finding suggested a bottom-up effect of food availability and indicated the effects of human activities within the hadal environments. This study reveals the trace element bio-accumulation of three hadal amphipods, and suggests that deep-sea amphipods are potential indicator species for trace element bioavailability in the deep-sea environment.


Assuntos
Anfípodes , Exoesqueleto Energizado , Oligoelementos , Animais , Ecossistema , Humanos , Músculos
9.
Microb Ecol ; 84(2): 627-637, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34545412

RESUMO

Amphipods are the dominant scavenging metazoan species in the hadal trenches at water depths below 6,000 m. The gut microbiota have been considered to be contribution to the adaptation of deep-sea organisms; however, few comparative analyses of animal gut microbiota between different isolated hadal environments have been done so far. Here, we employed high-throughput 16S rRNA sequencing to compare the gut microbial taxonomic composition and functional potential diversity of three hadal amphipod species, Hirondellea gigas, Bathycallisoma schellenbergi, and Alicella gigantea, collected from the Mariana Trench, Marceau Trench, and New Britain Trench in the Pacific Ocean, respectively. Results showed that different community compositions were detected across all the amphipod specimens based on the analyses of alpha-diversity, hierarchical cluster tree, and PCoA (principal coordinate analysis). Moreover, almost no correlation was observed between genera overrepresented in different amphipods by microbe-microbe correlations analysis, which suggested that the colonization of symbionts were host-specific. At genus level, Psychromonas was dominant in H. gigas, and Candidatus Hepatoplasma was overall dominant in A. gigantea and B. schellenbergi. Comparison of the functional potential showed that, though three hadal amphipod species shared the same predominant functional pathways, the abundances of those most shared pathways showed distinct differences across all the specimens. These findings pointed to the enrichment of particular functional pathways in the gut microbiota of the different isolated trench amphipods. Moreover, in terms of species relative abundance, alpha-diversity and beta-diversity, there was high similarity of gut microbiota between the two A. gigantea populations, which dwelled in two different localities of the same hadal trench. Altogether, this study provides an initial investigation into the gut-microbial interactions and evolution at the hadal depths within amphipod. Each of these three amphipod species would be a model taxa for future studies investigating the influence habitat difference and geography on gut-microbial communities.


Assuntos
Anfípodes , Microbioma Gastrointestinal , Microbiota , Anfípodes/genética , Animais , Oceano Pacífico , RNA Ribossômico 16S/genética
10.
Exp Ther Med ; 23(1): 28, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34824636

RESUMO

Glioma, which originates in the brain, is the most aggressive tumor of the central nervous system. It has been shown that microRNA (miRNA) controls the proliferation, migration and apoptosis of glioma cells. The objective of the present study was to measure microRNA-3148 (miR-3148) expression and investigate its impact on the pathogenetic mechanism of glioma. In the present study, reverse transcription-quantitative real-time PCR was employed to detect miR-3148 expression levels in glioma tissues and cell lines. Cell Counting Kit-8 assay, 5-ethynyl-2'-deoxyuridine assay, and Transwell migration assay were performed to assess the influence of miR-3148 on the malignant biological behavior of glioma cells. The biological functions of miR-3148 in glioma were examined via a xenograft tumor growth assay. Furthermore, the association between miR-3148 and DCUN1D1 was investigated via immunohistochemistry, dual-luciferase reporter assay and western blotting. It was observed that miR-3148 was expressed at low levels in glioma cells, and this represented a poor survival rate. In addition, an increased level of miR-3148 in cells and animal models inhibited glioma cell migration and proliferation. Moreover, miR-3148 decreased DCUN1D1 and curbed the nuclear factor κ enhancer binding protein (NF-κB) signaling pathway, thus decreasing the growth of glioma. Thus, miR-3148 is expressed within glioma tissues at low levels where it suppresses glioma by curbing the NF-κB pathway and lowering DCUN1D1.

11.
Neuroreport ; 32(17): 1341-1348, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34718248

RESUMO

OBJECTIVES: Neuroinflammation and apoptosis are two key factors contributing to early brain injury (EBI) after subarachnoid hemorrhage (SAH) and are strongly associated with a poor prognosis. Recently, equilibrative nucleoside transporter 1 (ENT1) was emerged to accelerate the severity of inflammation and cell apoptosis in several nervous system diseases, including cerebral ischemia, neurodegeneration and epilepsy. However, no study has yet elaborated the expression levels and effects of ENT1 in EBI after SAH. METHODS: Sprague-Dawley rats were subjected to SAH by endovascular perforation. Nitrobenzylthioinosine (NBTI) was intranasally administered at 0.5 h after SAH. The protein expression levels of ENT1, NLRP3, Bcl2, Bax, ACS, Caspase-1, IL-1 were detected by western blot. The modified Garcia score and beam balance score were employed to evaluate the neurologic function of rats following SAH. In addition, hematoxylin-eosin, fluoro-jade C and TdT-mediated dUTP nick-end labeling staining were then used to evaluate brain tissue damage and neuronal apoptosis. RESULTS: Analysis indicated that endogenous levels of ENT1 were significantly upregulated at 24-hour post-SAH, accompanied by NLRP3 inflammasome activation and Bcl2 decline. The administration of NBTI, an inhibitor of ENT1, at a dose of 15 mg/kg, ameliorated neurologic deficits and morphologic lesions at both 24 and 72 h after SAH. Moreover, ENT1 inhibition efficiently mitigated neuronal degeneration and cell apoptosis. In addition, NBTI at 15 mg/kg observably increased Bcl2 content and decreased Bax level. Furthermore, suppression of ENT1 notably reduced the expression levels of NLRP3, apoptosis associated speck like protein containing CARD, caspase-1 and IL-1ß. CONCLUSIONS: NBTI relieved SAH-induced EBI partly through ENT1/NLRP3/Bcl2 pathway.


Assuntos
Apoptose/efeitos dos fármacos , Transportador Equilibrativo 1 de Nucleosídeo/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/efeitos dos fármacos , Doenças Neuroinflamatórias/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/efeitos dos fármacos , Hemorragia Subaracnóidea/metabolismo , Tioinosina/análogos & derivados , Animais , Modelos Animais de Doenças , Transportador Equilibrativo 1 de Nucleosídeo/efeitos dos fármacos , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Inflamassomos/efeitos dos fármacos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Tioinosina/farmacologia
12.
J Fish Biol ; 99(6): 1998-2007, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34520045

RESUMO

The white-blooded Antarctic icefish is the only known vertebrate lacking oxygen-transporting haemoglobins. Fish skin mucus, as the first line of defence against pathogens, can reflect fish welfare. In this study, we analysed the skin mucus proteome profiles of the two Antarctic fish species, the white-blooded Antarctic icefish, Chionodraco hamatus, and the red-blooded Antarctic fish, Notothenia coriiceps, unfolding the different proteins by liquid chromatography coupled with tandem mass spectrometry isobaric tags for relative and absolute quantitation (iTRAQ) technology. Of the 4444 totally identified proteins, 227 differentially expressed proteins (DEPs) were found in the comparison between C. hamatus and N. coriiceps, of which 121 were upregulated and 106 were downregulated in the icefish. In the Kyoto Encyclopedia of Genes and Genomes pathway annotation, we found two pathways "Legionellosis" and "Complement and coagulation cascades" were significantly enriched, among of which innate immune candidate proteins such as C3, CASP1, ASC, F3 and C9 were significantly upregulated, suggesting their important roles in C. hamatus immune system. Additionally, the DEP protein-protein interaction network analysis and "Response to stress" GO category provided candidate biomarkers for deep understanding of the distinct immune response of the two Antarctic fish underlying the cold adaptation.


Assuntos
Perciformes , Proteômica , Animais , Regiões Antárticas , Peixes , Imunidade , Muco , Perciformes/genética
13.
Front Microbiol ; 12: 668989, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34163447

RESUMO

Hadal trenches are the deepest known areas of the ocean. Amphipods are considered to be the dominant scavengers in the hadal food webs. The studies on the structure and function of the hadal intestinal microbiotas are largely lacking. Here, the intestinal microbiotas of three hadal amphipods, Hirondellea gigas, Scopelocheirus schellenbergi, and Alicella gigantea, from Mariana Trench, Marceau Trench, and New Britain Trench, respectively, were investigated. The taxonomic analysis identified 358 microbial genera commonly shared within the three amphipods. Different amphipod species possessed their own characteristic dominant microbial component, Psychromonas in H. gigas and Candidatus Hepatoplasma in A. gigantea and S. schellenbergi. Functional composition analysis showed that "Carbohydrate Metabolism," "Lipid Metabolism," "Cell Motility," "Replication and Repair," and "Membrane Transport" were among the most represented Gene Ontology (GO) Categories in the gut microbiotas. To test the possible functions of "Bacterial Chemotaxis" within the "Cell Motility" category, the methyl-accepting chemotaxis protein (MCP) gene involved in the "Bacterial Chemotaxis" pathway was obtained and used for swarming motility assays. Results showed that bacteria transformed with the gut bacterial MCP gene showed significantly faster growths compared with the control group, suggesting MCP promoted the bacterial swimming capability and nutrient utilization ability. This result suggested that hadal gut microbes could promote their survival in poor nutrient conditions by enhancing chemotaxis and motility. In addition, large quantities of probiotic genera were detected in the hadal amphipod gut microbiotas, which indicated that those probiotics would be possible contributors for promoting the host's growth and development, which could facilitate adaptation of hadal amphipods to the extreme environment.

14.
Biochem Genet ; 58(1): 157-170, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31410625

RESUMO

Amphipods of the superfamily Lysianassoidea that inhabit the hadal zone ( > 6000 m) have large bathymetric ranges and play a key role in deep ocean ecosystems. The endemism of these amphipod species makes them a good model for investigating potent natural selection and restricted dispersal in deep ocean trenches. Here, we describe genetic diversity and intraspecific population differentiation among three amphipod species from four Pacific trenches based on a mtDNA concatenated dataset (CO Ι and 16S rRNA genes) from 150 amphipod individuals. All amphipod populations had low genetic diversity, as indicated by haplotype and nucleotide diversity values. Population geographic relationship analysis of two Alicella gigantea populations revealed no genetic differentiation between these two localities (pairwise genetic differentiation coefficient = 0.00032, gene flow = 784.58), and the major variation (99.97%) was derived from variation within the populations. Historical demographic events were investigated using Tajima's D and Fu's F neutrality tests and analysis of mismatch distribution. Consistent results provided strong evidence to support the premise that demographic expansion occurred only for the Mariana population of Hirondellea gigas, possibly within the last 2.1-3.4 million years. These findings suggest that the formation of amphipod population structure might be the result of multiple factors including high hydrostatic pressure, food distribution, trench topographic forcing and potential ecological interactions.


Assuntos
Anfípodes/classificação , Anfípodes/genética , DNA Mitocondrial/genética , Variação Genética/genética , RNA Ribossômico 16S/genética , Animais , Ecossistema , Fluxo Gênico , Oceano Pacífico , População/genética
15.
Fish Physiol Biochem ; 46(1): 39-49, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31595407

RESUMO

Hypoxia-inducible factors (HIFs) are master transcription factor regulating hypoxic responses in vertebrates. Species of Schizothoracine, a sub-family of cyprinidae, are highly endemic to the hypoxic Qinghai-Tibetan Plateau (QTP). What roles the HIFs play in hypoxic adaptation in the Schizothoracine fish is little known. In this study, the HIF-1α/B gene from Gymnocypris dobula (Gd) was characterized. The predicted protein for Gd-HIF-1α/B contains the main domains (bHLH, PAS, PAC, ODD, N-TAD, and C-TAD). Moreover, a specific mutation that the proline hydroxylation motif (LXXLAP) mutated into PxxLAP was observed in Gd-HIF-1α/B CODD domain, which may lead to changes in the function. To clarify whether HIF-1α/B of G. dobula possesses hypoxic adaptive features, Gd-HIF1α/B and Schizothorax prenanti-HIF1α/B (Sp-HIF1α/B) were cloned into an expression vector and transfected into 293T cells. Cell viability was found to be significantly higher in cells transfected with Gd-HIF-1α/B than those transfected with Sp-HIF-1α/B under hypoxic conditions. In addition, G. dobula HIF-1α/B showed stronger activity in transactivating the expression of nitric oxide (NO)-synthesizing enzyme, NOS2B under hypoxia stresses than the orthologous gene from S. prenanti, which were accompanied with upregulated expressions of NOS2B in heart of G. dobula, which may attribute to elevated NO levels detected in G. dobula than the lower land species. These results indicated that the HIF-1α plays an important role in mediating the iNOS signaling system in the process of evolutionary adaptation of the Schizothoracine to the highland environment.


Assuntos
Aclimatação/fisiologia , Cyprinidae/fisiologia , Citoproteção/fisiologia , Peixes/fisiologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Óxido Nítrico/metabolismo , Adaptação Fisiológica , Altitude , Animais , Evolução Biológica , Hipóxia
16.
Gigascience ; 8(4)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30715292

RESUMO

BACKGROUND: The Southern Ocean is the coldest ocean on Earth but a hot spot of evolution. The bottom-dwelling Eocene ancestor of Antarctic notothenioid fishes survived polar marine glaciation and underwent adaptive radiation, forming >120 species that fill all water column niches today. Genome-wide changes enabling physiological adaptations and the rapid expansion of the Antarctic notothenioids remain poorly understood. RESULTS: We sequenced and compared 2 notothenioid genomes-the cold-adapted and neutrally buoyant Antarctic toothfish Dissostichus mawsoni and the basal Patagonian robalo Eleginops maclovinus, representing the temperate ancestor. We detected >200 protein gene families that had expanded and thousands of genes that had evolved faster in the toothfish, with diverse cold-relevant functions including stress response, lipid metabolism, protein homeostasis, and freeze resistance. Besides antifreeze glycoprotein, an eggshell protein had functionally diversified to aid in cellular freezing resistance. Genomic and transcriptomic comparisons revealed proliferation of selcys-transfer RNA genes and broad transcriptional upregulation across anti-oxidative selenoproteins, signifying their prominent role in mitigating oxidative stress in the oxygen-rich Southern Ocean. We found expansion of transposable elements, temporally correlated to Antarctic notothenioid diversification. Additionally, the toothfish exhibited remarkable shifts in genetic programs towards enhanced fat cell differentiation and lipid storage, and promotion of chondrogenesis while inhibiting osteogenesis in bone development, collectively contributing to the achievement of neutral buoyancy and pelagicism. CONCLUSIONS: Our study revealed a comprehensive landscape of evolutionary changes essential for Antarctic notothenioid cold adaptation and ecological expansion. The 2 genomes are valuable resources for further exploration of mechanisms underlying the spectacular notothenioid radiation in the coldest marine environment.


Assuntos
Peixes/genética , Genoma , Genômica , Adaptação Fisiológica , Animais , Regiões Antárticas , Evolução Biológica , Biologia Computacional/métodos , Curadoria de Dados , Meio Ambiente , Peixes/classificação , Congelamento , Perfilação da Expressão Gênica , Genômica/métodos , Anotação de Sequência Molecular , Osteogênese , Filogenia , Transcriptoma , Vertebrados , Sequenciamento Completo do Genoma
17.
Sheng Li Xue Bao ; 70(5): 548-556, 2018 Oct 25.
Artigo em Chinês | MEDLINE | ID: mdl-30377694

RESUMO

The vertebrate vascular system development is a very important and complicated process. MicroRNAs regulate gene expression at transcriptional and post-transcriptional levels and play important roles in many physiological and pathological processes. MicroRNAs mainly participate in the regulation of vascular smooth muscle cell and vascular endothelial cell development. In this paper, we summarize the recent progress regarding the microRNAs involved in the vascular development. In particular, we focus on the microRNAs including miR-126, miR-17/92 family in endothelial cell's regulation, and miR-143/145 family, miR-21 in vascular smooth muscle cell's regulation. The future research on the role of microRNAs in vascular development is also prospected.


Assuntos
Células Endoteliais/citologia , Regulação da Expressão Gênica , MicroRNAs/genética , Músculo Liso Vascular/crescimento & desenvolvimento , Miócitos de Músculo Liso/citologia , Animais , Diferenciação Celular , Humanos , Músculo Liso Vascular/citologia
18.
Biochem Biophys Res Commun ; 501(3): 711-717, 2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29753742

RESUMO

Chionodraco hamatus is a teleost within the suborder Notothenioidei, the members of which are known to lack functional erythrocytes with modified hematopoiesis. Hematopoiesis is an essential process during the development of animals, where it is tightly regulated by many different transcription factors, signaling proteins, chromatin modifications, and microRNAs (miRNAs). The miRNAs are known to regulate the expression of their target genes at the post-transcriptional level. However, little is known about the miRNA-mediated regulation of hematopoiesis. In this study, we confirmed that miR-152 plays a crucial role in hematopoiesis during the development of C. hamatus. The overexpression of miR-152 reduced hematopoiesis according to the decreased expression of GATA1 and reduced o-dianisidine staining of hemoglobin. Mechanistically, reduced hematopoiesis was regulated by the miR-152-mediated down-regulated expression of GATA1. Bioinformatics analysis was used to predict the target gene of miR-152. Western blotting as well as dual luciferase and EGFP reporter assays were employed to investigate the expression of GATA1 mediated by miR-152. Finally, verification experiments in the zebrafish autologous model strongly supported the effect of miR-152 on hematopoiesis. In conclusion, we suggest that miR-152 is a novel molecular factor that regulates hematopoiesis during the development of C. hamatus by down-regulating the expression of GATA1.


Assuntos
Eritropoese , Proteínas de Peixes/genética , Fator de Transcrição GATA1/genética , Regulação da Expressão Gênica , MicroRNAs/genética , Perciformes/fisiologia , Animais , Perciformes/genética
19.
BMC Genomics ; 19(1): 315, 2018 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-29720106

RESUMO

BACKGROUND: Temperature adaptation of biological molecules is fundamental in evolutionary studies but remains unsolved. Fishes living in cold water are adapted to low temperatures through adaptive modification of their biological molecules, which enables their functioning in extreme cold. To study nucleotide and amino acid preference in cold-water fishes, we investigated the substitution asymmetry of codons and amino acids in protein-coding DNA sequences between cold-water fishes and tropical fishes., The former includes two Antarctic fishes, Dissostichus mawsoni (Antarctic toothfish), Gymnodraco acuticeps (Antarctic dragonfish), and two temperate fishes, Gadus morhua (Atlantic cod) and Gasterosteus aculeatus (stickleback), and the latter includes three tropical fishes, including Danio rerio (zebrafish), Oreochromis niloticus (Nile tilapia) and Xiphophorus maculatus (Platyfish). RESULTS: Cold-water fishes showed preference for Guanines and cytosines (GCs) in both synonymous and nonsynonymous codon substitution when compared with tropical fishes. Amino acids coded by GC-rich codons are favored in the temperate fishes, while those coded by AT-rich codons are disfavored. Similar trends were discovered in Antarctic fishes but were statistically weaker. The preference of GC rich codons in nonsynonymous substitution tends to increase ratio of small amino acid in proteins, which was demonstrated by biased small amino acid substitutions in the cold-water species when compared with the tropical species, especially in the temperate species. Prediction and comparison of secondary structure of the proteomes showed that frequency of random coils are significantly larger in the cold-water fish proteomes than those of the tropical fishes. CONCLUSIONS: Our results suggested that natural selection in cold temperature might favor biased GC content in the coding DNA sequences, which lead to increased frequency of small amino acids and consequently increased random coils in the proteomes of cold-water fishes.


Assuntos
Temperatura Baixa , Proteínas de Peixes/química , Proteínas de Peixes/genética , Peixes/genética , Sequência Rica em GC , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Estrutura Secundária de Proteína/genética , Alinhamento de Sequência , Análise de Sequência de RNA
20.
G3 (Bethesda) ; 7(4): 1267-1276, 2017 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-28209761

RESUMO

Many species of Schizothoracine, a subfamily of Cyprinidae, are highly endemic to the Qinghai-Tibetan Plateau (QTP). To characterize the adaptive changes associated with the Schizothoracine expansion at high altitudes, we sequenced tissue transcriptomes of two highland and two subhighland Schizothoracines and analyzed gene evolution patterns by comparing with lowland cyprinids. Phylogenetic tree reconstruction and divergence time estimation indicated that the common ancestor of Schizothoracine fish lived ∼32.7 million years ago (MYA), coinciding with the timing of the first phase of QTP uplifting. Both high- and subhigh-Schizothoracines demonstrated elevated dN/dS ratios in the protein-coding genes compared to lowland cyprinids, from which some biological processes implicated in altitude adaptation were commonly identified. On the other hand, the highland and subhighland lineages presented drastically divergent landscapes of positively selected genes (PSGs), enriched with very different gene ontology (GO) profiles, including those in "sensory organ morphogenesis," "regulation of protein ubiquitination," "blood circulation," and "blood vessel development." These results indicated different selection pressures imposed on the highland and subhighland lineages of the Schizothoracine subfamily, with a higher number of genes in the high-altitude species involved in adaptations such as sensory perception, blood circulation, and protein metabolism. Our study indicated divergent genetic adaptations in the aquatic species facing the phased uplifting of QTP.


Assuntos
Adaptação Fisiológica/genética , Cyprinidae/genética , Cyprinidae/fisiologia , Ecossistema , Altitude , Animais , Variação Genética , Anotação de Sequência Molecular , Filogenia , Mapas de Interação de Proteínas/genética , Seleção Genética , Análise de Sequência de DNA , Especificidade da Espécie , Tibet , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA