Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microbiome ; 12(1): 101, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840214

RESUMO

BACKGROUND: Plant microbiota contributes to plant growth and health, including enhancing plant resistance to various diseases. Despite remarkable progress in understanding diseases resistance in plants, the precise role of rhizosphere microbiota in enhancing watermelon resistance against soil-borne diseases remains unclear. Here, we constructed a synthetic community (SynCom) of 16 core bacterial strains obtained from the rhizosphere of grafted watermelon plants. We further simplified SynCom and investigated the role of bacteria with synergistic interactions in promoting plant growth through a simple synthetic community. RESULTS: Our results demonstrated that the SynCom significantly enhanced the growth and disease resistance of ungrafted watermelon grown in non-sterile soil. Furthermore, analysis of the amplicon and metagenome data revealed the pivotal role of Pseudomonas in enhancing plant health, as evidenced by a significant increase in the relative abundance and biofilm-forming pathways of Pseudomonas post-SynCom inoculation. Based on in vitro co-culture experiments and bacterial metabolomic analysis, we selected Pseudomonas along with seven other members of the SynCom that exhibited synergistic effects with Pseudomonas. It enabled us to further refine the initially constructed SynCom into a simplified SynCom comprising the eight selected bacterial species. Notably, the plant-promoting effects of simplified SynCom were similar to those of the initial SynCom. Furthermore, the simplified SynCom protected plants through synergistic effects of bacteria. CONCLUSIONS: Our findings suggest that the SynCom proliferate in the rhizosphere and mitigate soil-borne diseases through microbial synergistic interactions, highlighting the potential of synergistic effects between microorganisms in enhancing plant health. This study provides a novel insight into using the functional SynCom as a promising solution for sustainable agriculture. Video Abstract.


Assuntos
Citrullus , Fusarium , Microbiota , Doenças das Plantas , Pseudomonas , Rizosfera , Microbiologia do Solo , Citrullus/microbiologia , Fusarium/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Pseudomonas/genética , Resistência à Doença , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Raízes de Plantas/microbiologia
2.
Proc Natl Acad Sci U S A ; 121(16): e2318160121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38598339

RESUMO

Organic carbon availability in soil is crucial for shaping microbial communities, yet, uncertainties persist concerning microbial adaptations to carbon levels and the ensuing ecological and evolutionary consequences. We investigated organic carbon metabolism, antibiotic resistance, and virus-host interactions in soils subjected to 40 y of chemical and organic fertilization that led to contrasting carbon availability: carbon-poor and carbon-rich soils, respectively. Carbon-poor soils drove the enrichment of putative genes involved in organic matter decomposition and exhibited specialization in utilizing complex organic compounds, reflecting scramble competition. This specialization confers a competitive advantage of microbial communities in carbon-poor soils but reduces their buffering capacity in terms of organic carbon metabolisms, making them more vulnerable to environmental fluctuations. Additionally, in carbon-poor soils, viral auxiliary metabolic genes linked to organic carbon metabolism increased host competitiveness and environmental adaptability through a strategy akin to "piggyback the winner." Furthermore, putative antibiotic resistance genes, particularly in low-abundance drug categories, were enriched in carbon-poor soils as an evolutionary consequence of chemical warfare (i.e., interference competition). This raises concerns about the potential dissemination of antibiotic resistance from conventional agriculture that relies on chemical-only fertilization. Consequently, carbon starvation resulting from long-term chemical-only fertilization increases microbial adaptations to competition, underscoring the importance of implementing sustainable agricultural practices to mitigate the emergence and spread of antimicrobial resistance and to increase soil carbon storage.


Assuntos
Carbono , Solo , Solo/química , Carbono/metabolismo , Agricultura/métodos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Microbiologia do Solo
3.
mBio ; 15(3): e0273323, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38319112

RESUMO

The soil-root interface harbors complex fungal communities that play vital roles in the fitness of host plants. However, little is known about the assembly rules and potential functions of rhizospheric and endospheric mycobiota. A greenhouse experiment was conducted to explore the fungal communities inhabiting the rhizosphere and roots of 87 rice cultivars at the tillering stage via amplicon sequencing of the fungal internal transcribed spacer 1 region. The potential relationships between these communities and host plant functional traits were also investigated using Procrustes analysis, generalized additive model fitting, and correlation analysis. The fungal microbiota exhibited greater richness, higher diversity, and lower structural variability in the rhizosphere than in the root endosphere. Compared with the root endosphere, the rhizosphere supported a larger coabundance network, with greater connectivity and stronger cohesion. Null model-based analyses revealed that dispersal limitation was primarily responsible for rhizosphere fungal community assembly, while ecological drift was the dominant process in the root endosphere. The community composition of fungi in the rhizosphere was shown to be more related to plant functional traits, such as the root/whole plant biomass, root:shoot biomass ratio, root/shoot nitrogen (N) content, and root/shoot/whole plant N accumulation, than to that in the root endosphere. Overall, at the early stage of rice growth, diverse and complex rhizospheric fungal communities are shaped by stochastic-based processes and exhibit stronger associations with plant functional traits. IMPORTANCE: The assembly processes and functions of root-associated mycobiota are among the most fascinating yet elusive topics in microbial ecology. Our results revealed that stochastic forces (dispersal limitation or ecological drift) act on fungal community assembly in both the rice rhizosphere and root endosphere at the early stage of plant growth. In addition, high covariations between the rhizosphere fungal community compositions and plant functional trait profiles were clearly demonstrated in the present study. This work provides empirical evidence of the root-associated fungal assembly principles and ecological relationships of plant functional traits with rhizospheric and root endospheric mycobiota, thereby potentially providing novel perspectives for enhancing plant performance.


Assuntos
Microbiota , Oryza , Bactérias , Fungos , Raízes de Plantas/microbiologia , Microbiologia do Solo , Rizosfera , Solo/química
4.
mBio ; 15(3): e0017724, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38376207

RESUMO

Microbial carbon use efficiency (CUE) is a critical parameter that controls carbon storage in soil, but many uncertainties remain concerning adaptations of microbial communities to long-term fertilization that impact CUE. Based on H218O quantitative stable isotope probing coupled with metagenomic sequencing, we disentangled the roles of active microbial population dynamics and life strategies for CUE in soils after a long-term (35 years) mineral or organic fertilization. We found that the soils rich in organic matter supported high microbial CUE, indicating a more efficient microbial biomass formation and a greater carbon sequestration potential. Organic fertilizers supported active microbial communities characterized by high diversity and a relative increase in net growth rate, as well as an anabolic-biased carbon cycling, which likely explains the observed enhanced CUE. Overall, these results highlight the role of population dynamics and life strategies in understanding and predicting microbial CUE and sequestration in soil.IMPORTANCEMicrobial CUE is a major determinant of global soil organic carbon storage. Understanding the microbial processes underlying CUE can help to maintain soil sustainable productivity and mitigate climate change. Our findings indicated that active microbial communities, adapted to long-term organic fertilization, exhibited a relative increase in net growth rate and a preference for anabolic carbon cycling when compared to those subjected to chemical fertilization. These shifts in population dynamics and life strategies led the active microbes to allocate more carbon to biomass production rather than cellular respiration. Consequently, the more fertile soils may harbor a greater microbially mediated carbon sequestration potential. This finding is of great importance for manipulating microorganisms to increase soil C sequestration.


Assuntos
Carbono , Microbiota , Carbono/química , Solo/química , Microbiologia do Solo , Mudança Climática
5.
Innovation (Camb) ; 5(1): 100543, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38111463

RESUMO

Plastic offers a new niche for microorganisms, the plastisphere. The ever-increasing emission of plastic waste makes it critical to understand the microbial ecology of the plastisphere and associated effects. Here, we present a global fingerprint of the plastisphere, analyzing samples collected from freshwater, seawater, and terrestrial ecosystems. The plastisphere assembles a distinct microbial community that has a clearly higher heterogeneity and a more deterministically dominated assembly compared to natural habitats. New coexistence patterns-loose and fragile networks with mostly specialist linkages among microorganisms that are rarely found in natural habitats-are seen in the plastisphere. Plastisphere microbiomes generally have a great potential to metabolize organic compounds, which could accelerate carbon turnover. Microorganisms involved in the nitrogen cycle are also altered in the plastisphere, especially in freshwater plastispheres, where a high abundance of denitrifiers may increase the release of nitrite (aquatic toxicant) and nitrous oxide (greenhouse gas). Enrichment of animal, plant, and human pathogens means that the plastisphere could become an increasingly mobile reservoir of harmful microorganisms. Our findings highlight that if the trajectory of plastic emissions is not reversed, the expanding plastisphere could pose critical planetary health challenges.

6.
Appl Environ Microbiol ; 90(1): e0156623, 2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38126758

RESUMO

Microbial interactions affect community stability and niche spaces in all ecosystems. However, it is not clear what factors influence these interactions, leading to changes in species fitness and ecological niches. Here, we utilized 16 monocultures and their corresponding pairwise co-cultures to measure niche changes among 16 cultivable bacterial species in a wide range of carbon sources, and we used resource availability as a parameter to alter the interactions of the synthetic bacterial community. Our results suggest that metabolic similarity drives niche deformation between bacterial species. We further found that resource limitation resulted in increased microbial inhibition and more negative interactions. At high resource availability, bacteria exhibited little inhibitory potential and stronger facilitation (in 71% of cases), promoting niche expansion. Overall, our results show that metabolic similarity induces different degrees of resource competition, altering pairwise interactions within the synthetic community and potentially modulating bacterial niches. This framework may lay the basis for understanding complex niche deformation and microbial interactions as modulated by metabolic similarity and resource availability.IMPORTANCEUnderstanding the intricate dynamics of microbial interactions is crucial for unraveling the stability and ecological roles of diverse ecosystems. However, the factors driving these interactions, leading to shifts in species fitness and ecological niches, remain inadequately explored. We demonstrate that metabolic similarity serves as a key driver of niche deformation between bacterial species. Resource availability emerges as a pivotal parameter, affecting interactions within the community. Our findings reveal heightened microbial inhibition and more negative interactions under resource-limited conditions. The prevalent facilitation is observed under conditions of high resource availability, underscoring the potential for niche expansion in such contexts. These findings emphasize that metabolic similarity induces varying degrees of resource competition, thereby altering pairwise interactions within the synthetic community and potentially modulating bacterial niches. Our workflow has broad implications for understanding the roles of metabolic similarity and resource availability in microbial interactions and for designing synthetic microbial communities.


Assuntos
Bactérias , Microbiota , Interações Microbianas , Carbono
7.
iScience ; 26(2): 106031, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36824281

RESUMO

The hologenome concept considers the entity formed by a host and its microbiota, the holobiont, as new level of hierarchical organization subject to neutral and selective forces. We used grafted plants to formally evaluate the hologenome concept. We analyzed the root-endosphere microbiota of two independent watermelon and grapevine plant systems, including ungrafted and reciprocal-grafting combinations. Grafted and ungrafted hosts harbor markedly different microbiota compositions. Furthermore, the results indicate a non-random assembly of bacterial communities inhabiting the root endosphere of chimeric plants with interactive effect of both the rootstock and scion on the recruitment of microorganisms. Because chimeric plants did not have a random microbiota, the null hypothesis that holobionts assemble randomly and hologenome concept is an intellectual construction only can be rejected. The study supports the relevance of hologenome as biological level of organization and opens new avenues for a better fundamental understanding of plants as holobionts.

8.
Nat Commun ; 14(1): 391, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36693873

RESUMO

The trait-based strategies of microorganisms appear to be phylogenetically conserved, but acclimation to climate change may complicate the scenario. To study the roles of phylogeny and environment on bacterial responses to sudden moisture increases, we determine bacterial population-specific growth rates by 18O-DNA quantitative stable isotope probing (18O-qSIP) in soils subjected to a free-air CO2 enrichment (FACE) combined with warming. We find that three growth strategies of bacterial taxa - rapid, intermediate and slow responders, defined by the timing of the peak growth rates - are phylogenetically conserved, even at the sub-phylum level. For example, members of class Bacilli and Sphingobacteriia are mainly rapid responders. Climate regimes, however, modify the growth strategies of over 90% of species, partly confounding the initial phylogenetic pattern. The growth of rapid bacterial responders is more influenced by phylogeny, whereas the variance for slow responders is primarily explained by environmental conditions. Overall, these results highlight the role of phylogenetic and environmental constraints in understanding and predicting the growth strategies of soil microorganisms under global change scenarios.


Assuntos
Dióxido de Carbono , Solo , Dióxido de Carbono/análise , Temperatura , Filogenia , Bactérias/genética , Microbiologia do Solo
9.
J Adv Res ; 40: 17-27, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36100325

RESUMO

INTRODUCTION: Microbial generalists and specialists are thought to have distinct impacts on community dynamics, while there have been limited efforts to estimate their contribution to microbial diversity. OBJECTIVES: We aimed to resolve this research gap in microbial ecology to strengthen our understanding of the biogeography of microbial diversity, with implications for global-scale biodiversity mapping. METHODS: Herein, we identified the ecological characteristics of microbial generalists and specialists across over 3,000 farmland soil samples from eleven countries that encompassed seven climate types. RESULTS: Considering the distinct distributions of generalists and specialists in degree of connexions, betweenness and as key species in network topology, both generalists and specialists contributed to species interactions, though through different modalities. A stronger signature of deterministic processes in specialists indicated their lower tolerance to environment fluctuations. Generalists, in contrast, were more characterized by stochastic processes with higher diversification and transition rates that suggested more important roles in maintaining community stability when exposed to environmental disturbances. The relationship between latitude and diversity combining with distance-decay effects showed that generalists dampened microbial biogeographical patterns, with contrasting impacts by specialists. CONCLUSION: By demonstrating the ecological characteristics of microbial generalists and specialists, this study deepens our understanding of microbial diversity and highlights the need to impart systematic distinctions among different categories of species when modelling and predicting the fate of ecosystems in the face of global climate change, rather than assuming that species are functionally equivalent.


Assuntos
Ecossistema , Solo , Bactérias , Fazendas , Microbiologia do Solo
10.
J Hazard Mater ; 436: 129163, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35739703

RESUMO

Although the enrichment of antibiotic resistance genes (ARGs) in diverse organic soils have been explored, understanding of the ecological processes governing the composition of ARGs in long-term organically fertilized soils still remains limited across typical agricultural regions. Thus, the distribution and assembly of ARG profile in three typical agricultural soils (black soil, fluvo-aquic soil, and red soil) under long-term contrasting fertilization regimes (chemical-only vs organic-only) were investigated using high-throughput qPCR (HT-qPCR). The application of organic manure significantly increased the abundance and number of ARGs across soils, as compared to those with chemical fertilizer. Organic manure application enriched the abundance of mobile genetic elements (MGEs), which were positively associated with ARGs. In addition, it is long-term organic fertilizer that enriched the number and abundance of opportunist and specialist ARGs in the fluvo-aquic and red soils, but not black soils. The number and abundance of most generalist ARGs did not change significantly among different fertilization or soil types. The assembly process of the ARG profiles tends to be more deterministic in organically fertilized soils than in chemically fertilized soils. These results suggest that long-term organic fertilizer application may contribute to the persistence and health risk of the soil antibiotic resistomes (especially specialist ARGs).


Assuntos
Esterco , Solo , Antibacterianos/farmacologia , Fertilizantes/análise , Genes Bacterianos , Esterco/análise , Solo/química , Microbiologia do Solo
11.
Environ Microbiol ; 24(4): 2013-2028, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35362656

RESUMO

Biological nitrogen fixation performed by diazotrophs forms a cornerstone of Earth's terrestrial ecosystem productivity. However, the composition, diversity and distribution of soil diazotrophs are poorly understood across different soil ecosystems. Furthermore, the biological potential of the key diazotroph species in relation to key environmental parameters is unknown. To address this, we used meta-analysis approach to merge together 39 independent diazotroph amplicon sequencing (nifH gene) datasets consisting of 1988 independent soil samples. We then employed multiple statistical analyses and machine-learning approaches to compare diazotroph community differences and indicator species between terrestrial ecosystems on a global scale. The distribution, composition and structure of diazotroph communities varied across seven different terrestrial ecosystems, with community composition exhibiting an especially clear effect. The Cyanobacteria were the most abundant taxa in crust ecosystems (accounting for ~45% of diazotrophs), while other terrestrial ecosystems were dominated by Proteobacteria, including Alpha-, Beta- and Gamma-Proteobacteria (accounting for ~70% of diazotrophs). Farmland ecosystems harboured the highest and crust ecosystems the lowest alpha and phylogenetic diversities. Azospirillum zeae, Skermanella aerolata and four Bradyrhizobium species were identified as key indicator species of potential diazotroph activity. Overall, diazotroph abundances and distribution were affected by multiple environmental parameters, including soil pH, nitrogen, organic carbon, C:N ratio and annual mean precipitation and temperature. Together, our findings suggest that based on the relative abundance and diversity of nifH marker gene, diazotrophs have adapted to a range of environmental niches globally.


Assuntos
Ecossistema , Microbiologia do Solo , Fixação de Nitrogênio , Filogenia , Solo/química
12.
Microb Ecol ; 83(1): 137-150, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33792742

RESUMO

Rare species are crucial components of the highly diverse soil microbial pool and over-proportionally contribute to the soil functions. However, much remains unknown about their assembling rules. The biogeographic patterns and species aggregations of the rare bacterial biosphere were assessed using 140 soil samples from a gradient of 2000 km across the main tea-producing areas in China. About 96% OTUs with ~40% sequences were classified as rare taxa. The rare bacterial communities were significantly affected by geographical regions and showed distance-decay effects, indicating that the rare bacteria are not cosmopolitan, they displayed a pattern of limited dispersal and were restricted to certain sites. Variation partitioning analysis (VPA) revealed that environmental variation and spatial factors explained 12.5% and 6.4%, respectively, of the variance in rare bacterial community. The Mantel and partial Mantel tests also showed that the environmental factors had stronger (~3 times) impacts than spatial factors. The null model showed that deterministic processes contributed more than stochastic processes in rare bacterial assembly (75% vs. 25%). There is likely an enrichment in ecological functions within the rare biosphere, considering this high contribution of deterministic processes in the assembly. In addition, the assembly of rare taxa was found to be mainly driven by soil pH. Overall, this study revealed that rare bacteria were not cosmopolitan, and their assembly was more driven by deterministic processes. These findings provided a new comprehensive understanding of rare bacterial biogeographic patterns and assembly rules.


Assuntos
Microbiologia do Solo , Solo , Bactérias/genética , China
13.
Mol Ecol ; 31(1): 161-173, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34626522

RESUMO

Microbial generalists and specialists coexist in the soil environment while having distinctive impacts on microbial community dynamics. In microbial ecology, the underlying mechanisms as to why a species is a generalist or a specialist remain ambiguous. Herein, we collected soils across a national scale and identified bacterial generalists and specialists according to niche breadth at the species level (OTU level), and the single-nucleotide differences in each species were measured to investigate intraspecific variation (at zero-radius OTU level). Compared with that of the specialists, the intraspecific variation of the generalists was much higher, which ensured their wider niche breadth and lower variability. The higher asynchrony and different niche preferences of conspecific individuals and the higher dormancy potential within the generalists further contributed to their stability in varying environments. Besides, generalists were less controlled by environmental filtering, which was indicated by the stronger signature of stochastic processes in their assembly, and had higher diversification and transition rates that allowed them to adapt to environmental changes to a greater extent than specialists. Overall, this study provides a new comprehensive understanding of the rules of assembly and the evolutionary roles of bacterial generalists and specialists. It also highlights the importance of intraspecific variation and the dormancy potential in the stability of species.


Assuntos
Evolução Biológica , Microbiota , Adaptação Fisiológica , Bactérias/genética , Humanos , Solo
14.
mSystems ; 5(4)2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32665327

RESUMO

Fertilization regimes are known to drive succession of the soil microbial community, whereas the assembly rules involved remain elusive. Moreover, the ecological roles of microbial "generalists" and "specialists" in soils with contrasting fertilization regimes have not been characterized. We explored how long-term fertilization regimes (i.e., treatments conducted for at least 30 years) impact the soil bacteria by modifying species richness, diversity, bacterial assembly, and niche breadth. Compared with long-term organic fertilizer input, the soils having undergone chemical-only fertilization contained smaller amounts of carbon resources and had a more acidic environment. This strong environmental constraint lowered the soil bacterial reservoir and resulted in a detectable ecoevolutionary transformation, with both a higher proportion of specialists and a stronger signature of deterministic processes. Overall, this study provided a new comprehensive understanding of the assembly rules of bacterial generalists and specialists under long-term fertilization regimes. This study also highlighted that chemical-only fertilization, a ubiquitous agricultural practice of current conventional agriculture, induced a strong and similar environmental force that transformed the soil microbiota from 28°N to 46°N included in this study.IMPORTANCE Chemical-only fertilization is ubiquitous in contemporary conventional agriculture despite the fact that sustainability of this agricultural practice is increasingly being questioned because of the current observed soil degradation. We explored how long-term chemical-only versus organic-only fertilizations impacted the soil microbiota reservoir in terms of both diversity and induced assembly processes. The results showed that long-term chemical-only fertilization resulted in deep selection pressure on the soil microbial community reservoir, with both a higher proportion of specialists and a stronger signature of deterministic processes. The soil microbiota has clearly changed as a consequence of the fertilization regime. The diagnoses of the functional consequences of these ecoevolutionary changes in relation to agricultural practices are key to imagining agriculture in the time ahead and especially regarding future efforts for the conservation, restoration, and management of the soil microbiota reservoir which is key to the fertility of the ecosystem.

15.
Appl Microbiol Biotechnol ; 102(23): 10273-10284, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30269215

RESUMO

Transgenic Bacillus thuringiensis (Bt) rice extends significant protection against insect pests and meets the increasing demands for food and energy. Many studies have been conducted investigating the impacts of Bt rice to the agricultural ecosystem, but much less attention has been given to efforts attempting to determine how the presence of Bt rice influences and shapes the microbial community, especially the active microbes. Stable isotope probing and high-throughput sequencing were employed to explore the active microbes involved in Bt-containing straw decomposition. Compared to its near isoline, the Bt straw contained higher contents of total N, total P, total K, lignin, cellulose, and Cry1Ab toxin protein. These chemical differences did not affect the decomposition rate but significantly changed the active microbial decomposer communities. During the decomposition of Bt-containing straw, fungi were more affected than bacteria. Agromyces, Terrabacter, Microbacterium, Glycomyces, and Kribbella were the most representative unique (existed only in the Bt treatments and appeared at the early stage) bacterial genera, and Trichoderma was the most representative unique fungal genus in the Bt straw decomposition. By using similarity index calculation and function prediction, the significant differences between Bt straw and non-Bt straw treatments were found to be transient for both microbial taxa and functional traits. These results suggested that Bt rice has a significant but transient impact on soil microbes in terms of microbial straw decomposition.


Assuntos
Bacillus thuringiensis/genética , Biodegradação Ambiental , Produtos Agrícolas/microbiologia , Oryza/microbiologia , Plantas Geneticamente Modificadas/microbiologia , Microbiologia do Solo , Bactérias/classificação , Bactérias/metabolismo , Agentes de Controle Biológico , Fungos/classificação , Fungos/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Lignina/metabolismo , Nitrogênio/metabolismo , Fósforo/metabolismo , Caules de Planta/microbiologia , Potássio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA