Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Sci Adv ; 8(8): eabk3338, 2022 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-35196085

RESUMO

The tumor-suppressor PTPN2 is diminished in a subset of triple-negative breast cancers (TNBCs). Paradoxically, PTPN2-deficiency in tumors or T cells in mice can facilitate T cell recruitment and/or activation to promote antitumor immunity. Here, we explored the therapeutic potential of targeting PTPN2 in tumor cells and T cells. PTPN2-deficiency in TNBC associated with T cell infiltrates and PD-L1 expression, whereas low PTPN2 associated with improved survival. PTPN2 deletion in murine mammary epithelial cells TNBC models, did not promote tumorigenicity but increased STAT-1-dependent T cell recruitment and PD-L1 expression to repress tumor growth and enhance the efficacy of anti-PD-1. Furthermore, the combined deletion of PTPN2 in tumors and T cells facilitated T cell recruitment and activation and further repressed tumor growth or ablated tumors already predominated by exhausted T cells. Thus, PTPN2-targeting in tumors and/or T cells facilitates T cell recruitment and/or alleviates inhibitory constraints on T cells to combat TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Animais , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Humanos , Camundongos , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
3.
Cancer Discov ; 12(3): 752-773, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34794959

RESUMO

Immunotherapies aimed at alleviating the inhibitory constraints on T cells have revolutionized cancer management. To date, these have focused on the blockade of cell-surface checkpoints such as PD-1. Herein we identify protein tyrosine phosphatase 1B (PTP1B) as an intracellular checkpoint that is upregulated in T cells in tumors. We show that increased PTP1B limits T-cell expansion and cytotoxicity to contribute to tumor growth. T cell-specific PTP1B deletion increased STAT5 signaling, and this enhanced the antigen-induced expansion and cytotoxicity of CD8+ T cells to suppress tumor growth. The pharmacologic inhibition of PTP1B recapitulated the T cell-mediated repression of tumor growth and enhanced the response to PD-1 blockade. Furthermore, the deletion or inhibition of PTP1B enhanced the efficacy of adoptively transferred chimeric antigen receptor (CAR) T cells against solid tumors. Our findings identify PTP1B as an intracellular checkpoint whose inhibition can alleviate the inhibitory constraints on T cells and CAR T cells to combat cancer. SIGNIFICANCE: Tumors subvert antitumor immunity by engaging checkpoints that promote T-cell exhaustion. Here we identify PTP1B as an intracellular checkpoint and therapeutic target. We show that PTP1B is upregulated in intratumoral T cells and that its deletion or inhibition enhances T-cell antitumor activity and increases CAR T-cell effectiveness against solid tumors. This article is highlighted in the In This Issue feature, p. 587.


Assuntos
Neoplasias , Receptor de Morte Celular Programada 1 , Animais , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Humanos , Imunoterapia Adotiva , Camundongos , Neoplasias/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1 , Ensaios Antitumorais Modelo de Xenoenxerto
7.
J Biol Chem ; 291(20): 10602-14, 2016 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-26966177

RESUMO

N-Glycosylation is a post-translational modification common to all three domains of life. In many archaea, the oligosacharyltransferase (AglB)-dependent N-glycosylation of flagellins is required for flagella assembly. However, whether N-glycosylation is required for the assembly and/or function of the structurally related archaeal type IV pili is unknown. Here, we show that of six Haloferax volcanii adhesion pilins, PilA1 and PilA2, the most abundant pilins in pili of wild-type and ΔaglB strains, are modified under planktonic conditions in an AglB-dependent manner by the same pentasaccharide detected on H. volcanii flagellins. However, unlike wild-type cells, which have surfaces decorated with discrete pili and form a dispersed layer of cells on a plastic surface, ΔaglB cells have thick pili bundles and form microcolonies. Moreover, expressing PilA1, PilA2, or PilA6 in ΔpilA[1-6]ΔaglB stimulates microcolony formation compared with their expression in ΔpilA[1-6]. Conversely, expressing PilA3 or PilA4 in ΔpilA[1-6] cells results in strong surface adhesion, but not microcolony formation, and neither pilin stimulates surface adhesion in ΔpilA[1-6]ΔaglB cells. Although PilA4 assembles into pili in the ΔpilA[1-6]ΔaglB cells, these pili are, unlike wild-type pili, curled, perhaps rendering them non-functional. To our knowledge, this is the first demonstration of a differential effect of glycosylation on pilus assembly and function of paralogous pilins. The growth of wild-type cells in low salt media, a condition that decreases AglB glycosylation, also stimulates microcolony formation and inhibits motility, supporting our hypothesis that N-glycosylation plays an important role in regulating the transition between planktonic to sessile cell states as a response to stress.


Assuntos
Proteínas Arqueais/metabolismo , Proteínas de Fímbrias/metabolismo , Haloferax volcanii/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/genética , Adesão Celular/fisiologia , Proteínas de Fímbrias/química , Proteínas de Fímbrias/genética , Fímbrias Bacterianas/metabolismo , Fímbrias Bacterianas/ultraestrutura , Glicosilação , Haloferax volcanii/citologia , Haloferax volcanii/genética , Polissacarídeos/metabolismo , Multimerização Proteica , Processamento de Proteína Pós-Traducional , Espectrometria de Massas em Tandem
8.
J Bacteriol ; 195(17): 3808-18, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23794623

RESUMO

Type IV pili play important roles in a wide array of processes, including surface adhesion and twitching motility. Although archaeal genomes encode a diverse set of type IV pilus subunits, the functions for most remain unknown. We have now characterized six Haloferax volcanii pilins, PilA[1-6], each containing an identical 30-amino-acid N-terminal hydrophobic motif that is part of a larger highly conserved domain of unknown function (Duf1628). Deletion mutants lacking up to five of the six pilin genes display no significant adhesion defects; however, H. volcanii lacking all six pilins (ΔpilA[1-6]) does not adhere to glass or plastic. Consistent with these results, the expression of any one of these pilins in trans is sufficient to produce functional pili in the ΔpilA[1-6] strain. PilA1His and PilA2His only partially rescue this phenotype, whereas ΔpilA[1-6] strains expressing PilA3His or PilA4His adhere even more strongly than the parental strain. Most surprisingly, expressing either PilA5His or PilA6His in the ΔpilA[1-6] strain results in microcolony formation. A hybrid protein in which the conserved N terminus of the mature PilA1His is replaced with the corresponding N domain of FlgA1 is processed by the prepilin peptidase, but it does not assemble functional pili, leading us to conclude that Duf1628 can be annotated as the N terminus of archaeal PilA adhesion pilins. Finally, the pilin prediction program, FlaFind, which was trained primarily on archaeal flagellin sequences, was successfully refined to more accurately predict pilins based on the in vivo verification of PilA[1-6].


Assuntos
Proteínas Arqueais/genética , Sequência Conservada , Proteínas de Fímbrias/genética , Haloferax volcanii/genética , Motivos de Aminoácidos , Adesão Celular , Deleção de Genes , Haloferax volcanii/crescimento & desenvolvimento , Haloferax volcanii/fisiologia , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA