Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Int ; 190: 108841, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38917626

RESUMO

OBJECTIVES: Evidence on the link between long-term ambient particulate matter (PM) exposures and childhood sleep disorders were scarce. We examined the associations between long-term exposures to PM2.5 and PM1 (PM with an aerodynamic equivalent diameter <2.5 µm and <1 µm, respectively) with sleep disorders in children. METHODS: We performed a population-based cross-sectional survey in 177,263 children aged 6 to 18 years in 14 Chinese cities during 2012-2018. A satellite-based spatiotemporal model was employed to estimate four-year annual average PM2.5 and PM1 exposures at residential and school addresses. Parents or guardians completed a checklist using the Sleep Disturbance Scale for Children. We estimated the associations using generalized linear mixed models with adjustment for characteristics of children, parents, and indoor environments. RESULTS: Long-term PM2.5 and PM1 exposures were positively associated with odds of sleep disorders for almost all domains. For example, increments in PM2.5 and PM1 per 10 µg/m3 were associated with odds ratios of global sleep disorder of 1.24 (95 % confidence interval [CI]: 1.14, 1.35) and 1.31 (95 %CI: 1.18, 1.46), respectively. Similar results were observed for subtypes of sleep disorder. These associations were heterogeneous regionally, with stronger associations among children residing in southeast region than in northeast and northwest regions. Moreover, larger estimates of PM1 were found than that of PM2.5 in southeast region. CONCLUSION: Long-term PM2.5 and PM1 exposures are independently associated with higher risks of childhood sleep disorders, and these associations vary by geographical region.

2.
Front Biosci (Landmark Ed) ; 29(5): 179, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38812313

RESUMO

Nasopharyngeal carcinoma (NPC) is an aggressive head and neck tumor that is influenced by a variety of molecular factors during its pathogenesis. Among these, the phosphatase and tensin homolog (PTEN) plays a crucial role in regulatory networks. This article systematically reviews the multifaceted functions of PTEN in NPC, including its roles in inhibiting cell proliferation, regulating migration and invasion, promoting autophagy and apoptosis, and influencing resistance to radiotherapy. Molecular factors such as long non-coding RNA, microRNA (miRNA), and circular RNA can modulate PTEN through various pathways, thereby impacting the biological behavior of NPC. In addition, PTEN is involved in regulating the tumor microenvironment of NPC, and its interaction with the Epstein-Barr virus has also recently become a focus of research. A comprehensive understanding of the PTEN regulatory network provides a foundation for future personalized and targeted therapeutic strategies. This study expands our understanding of the pathogenesis of NPC and suggests new directions in the field of tumor biology and NPC treatment.


Assuntos
MicroRNAs , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , PTEN Fosfo-Hidrolase , Microambiente Tumoral , Humanos , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/genética , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/patologia , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Microambiente Tumoral/genética , Proliferação de Células/genética , Apoptose/genética , Regulação Neoplásica da Expressão Gênica , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Autofagia/genética , Movimento Celular/genética , RNA Circular/genética , RNA Circular/metabolismo , RNA Circular/fisiologia , Herpesvirus Humano 4/genética , Transdução de Sinais
3.
J Hazard Mater ; 470: 134226, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38593665

RESUMO

Contaminants may induce immune response polarization, leading to immune diseases, such as allergic diseases. Evidence concerning the effects of chlorinated paraffins (CPs), an emerging persistent organic pollutant, on immune system is scarce, particularly for epidemiological evidence. This study explores the association between CPs exposure and allergic diseases (allergic rhinitis, atopic eczema, and allergic conjunctivitis) in children and adolescents in the Pearl River Delta (PRD) in China. Herein, 131,304 children and adolescents from primary and secondary schools in the PRD were included and completed the questionnaire survey. The particulate matter (PM) samples were collected in the PRD and the PM2.5-bound CP concentrations were analyzed. In the multivarious adjustment mixed effect model (MEM), an IQR increase in ∑CPs was significantly associated with allergic diseases (rhinitis, eczema, and conjunctivitis) with the estimated odds ratios (ORs) for 1.11 (95% CI: 1.10, 1.13), 1.17 (95% CI: 1.15, 1.19), and 1.82 (95% CI: 1.76, 1.88), respectively. Interaction analysis indicated that overweight and obese individuals might have greater risk. Similar effect estimates were observed in several sensitivity analyses. This study provided epidemiological evidence on the immunotoxicity of CPs. More studies to confirm our findings and investigate mechanisms are needed.


Assuntos
Parafina , Humanos , Adolescente , Criança , Masculino , Feminino , China/epidemiologia , Parafina/toxicidade , Parafina/análise , Hipersensibilidade/epidemiologia , Exposição Ambiental/efeitos adversos , Hidrocarbonetos Clorados/toxicidade , Hidrocarbonetos Clorados/análise , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Material Particulado/toxicidade , Material Particulado/análise , Dermatite Atópica/epidemiologia , Dermatite Atópica/induzido quimicamente , Rinite Alérgica/epidemiologia , Rinite Alérgica/induzido quimicamente
4.
Sci Total Environ ; 921: 171224, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38402960

RESUMO

The emissions and exposure limits for airborne PM0.1 are lacking, with limited scientific data for toxicity. Therefore, we continuously monitored and calculated the number and mass concentrations of airborne PM0.1 in December 2017, January 2018 and March 2018 during the high pollution period in Guangzhou. We collected PM0.1 from the same period and analyzed their chemical components. A549, THP-1 and A549/THP-1 co-cultured cells were selected for exposure to PM0.1, and evaluated for toxicological responses. Our aims are to 1) measure and analyze the number and mass concentrations, and chemical components of PM0.1; 2) evaluate and compare PM0.1 toxicity to different airway cells models at different time points. Guangzhou had the highest mass concentration of PM0.1 in December 2017, while the number concentration was the lowest. Chemical components in PM0.1 vary significantly at different time periods, and the correlation between the chemical composition or source of PM0.1 and the mass and number concentration of PM0.1 was dissimilar. Exposure to PM0.1 disrupted cell membranes, impaired mitochondrial function, promoted the expression of inflammatory mediators, and interfered with DNA replication in the cell cycle. The damage caused by exposure to PM0.1 at different times exhibited variations across different types of cells. PM0.1 in March 2018 stimulated co-cultured cells to secrete more inflammatory mediators, and CMA was significantly related to the expression of them. Our study indicates that it is essential to monitor both the mass and number concentrations of PM0.1 throughout all seasons annually, as conventional toxicological experiments and the internal components of PM0.1 may not effectively reveal the health damages caused by elevated number levels of PM0.1.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Material Particulado/toxicidade , Material Particulado/análise , China , Mediadores da Inflamação , Tamanho da Partícula , Monitoramento Ambiental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA