Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Sci ; 13(39): 11519-11532, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36320386

RESUMO

We report an aqueous and near-infrared (NIR) light mediated photoinduced reversible addition-fragmentation chain transfer (photo-RAFT) polymerization system using tetrasulfonated zinc phthalocyanine (ZnPcS4 -) as a photocatalyst. Owing to the high catalytic efficiency and excellent oxygen tolerance of this system, well-controlled polyacrylamides, polyacrylates, and polymethacrylates were synthesized at fast rates without requiring deoxygenation. Notably, NIR wavelengths possess enhanced light penetration through non-transparent barriers compared to UV and visible light, allowing high polymerization rates through barriers. Using 6.0 mm pig skin as a barrier, the polymerization rate was only reduced from 0.36 to 0.21 h-1, indicating potential for biomedical applications. Furthermore, longer wavelengths (higher λ) can be considered an ideal light source for dispersion photopolymerization, especially for the synthesis of large diameter (d) nanoparticles, as light scattering is proportional to d 6/λ 4. Therefore, this aqueous photo-RAFT system was applied to photoinduced polymerization-induced self-assembly (photo-PISA), enabling the synthesis of polymeric nanoparticles with various morphologies, including spheres, worms, and vesicles. Taking advantage of high penetration and reduced light scattering of NIR wavelengths, we demonstrate the first syntheses of polymeric nanoparticles with consistent morphologies through thick barriers.

2.
Macromol Rapid Commun ; 42(18): e2100212, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34121259

RESUMO

A series of poly(N-isopropylacrylamide) (PNIPAm) homopolymers with narrow molecular weight distributions (MWDs) is prepared via photoinduced electron/energy transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization. The thermal transition temperature of these polymer samples is analyzed via turbidity measurements in water/N,N'-dimethylformamide mixtures, which show that the cloud point temperatures are inversely proportional to the weight average molecular weight (Mw ). Binary mixtures of the narrowly distributed PNIPAm samples are also prepared and the statistical parameters for the MWDs of these blends are determined. Very interestingly, for binary blends of the PNIPAm samples, the thermoresponsive transition is not only dependent on the Mw , which has been shown previously, but also on higher order statistical parameters of the MWDs. Specifically, at very high values of skewness and kurtosis, the polymer blends deviate from a single sharp thermoresponsive transition toward a broader thermal response, and eventually to a regime of two more distinct transitions. This work highlights the importance of in-depth characterization of polymer MWDs for thermoresponsive polymers.


Assuntos
Resinas Acrílicas , Polímeros , Peso Molecular , Polimerização , Temperatura
3.
Biomacromolecules ; 21(9): 3887-3897, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32786533

RESUMO

In this study, we report dual roles for doxorubicin (DOX), which can serve as an antitumor drug as well as a cocatalyst for a photoliving radical polymerization. DOX enhances the polymerization rates of a broad range of monomers, including acrylamide, acrylate, and methacrylates, allowing for high monomer conversion and well-defined molecular weights under irradiation with a blue light-emitting diode light (λmax = 485 nm, 2.2 mW/cm2). Utilizing this property, the photopolymerization of N,N-diethylacrylamide was performed in the presence of a poly(oligo(ethylene glycol) methyl ether acrylate) macroreversible addition-fragmentation chain transfer (macroRAFT) agent to prepare polymeric nanoparticles via aqueous polymerization-induced self-assembly (PISA). By varying the monomer:macroRAFT ratio, spherical polymeric nanoparticles of various diameters could be produced. Most notably, DOX was successfully encapsulated into the hydrophobic core of nanoparticles during the PISA process. The DOX-loaded nanoparticles were effectively uptaken into tumor cells and significantly inhibited the proliferation of tumor cells, demonstrating that the DOX bioactivity was not affected by the polymerization reaction.


Assuntos
Doxorrubicina , Nanopartículas , Doxorrubicina/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Metacrilatos , Polimerização , Polímeros
4.
Biomacromolecules ; 21(1): 262-272, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31657209

RESUMO

The development of potent strategies to counter microbial biofilm is an urgent priority in healthcare. The majority of bacterial infections in humans are biofilm related, however, effective treatments are still lacking especially for combating multidrug-resistant (MDR) strains. Herein, we report an effective antibiofilm platform based on the use of synthetic antimicrobial polymers in combination with essential oils, where the antimicrobial polymers play a secondary role as delivery vehicle for essential oils. Two ternary antimicrobial polymers consisting of cationic primary amines, low-fouling oligo(ethylene glycol) and hydrophobic ethylhexyl groups were synthesized in the form of random and block copolymers, and mixed with either carvacrol or eugenol. Coadministration of these compounds improved the efficacy against Pseudomonas aeruginosa biofilms compared to the individual compounds. We observed about a 60-75% and 70-85% biofilm inhibition effect for all tested combinations against wild-type P. aeruginosa PAO1 and MDR strain PA37, respectively, upon 6.5 h of incubation time. While both random and block copolymers demonstrated similar biofilm inhibition potencies in combination with essential oils, only the block copolymer acted synergistically with essential oils in killing biofilm. Treatment of PAO1 biofilm for 20 min with the block copolymer-oil combinations resulted in the killing of >99.99% of biofilm bacteria. This synergistic bactericidal activity is attributed to the targeted delivery of essential oils to the biofilm, driven by the electrostatic interaction between positively charged delivery vehicles, in the form of polymeric micelles, and negatively charged bacteria. This study thus highlights the advantage of combining essential oils and antimicrobial polymers as an effective avenue for antibacterial applications.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Óleos Voláteis/farmacologia , Polímeros/química , Antibacterianos/química , Anti-Infecciosos/farmacologia , Biofilmes/crescimento & desenvolvimento , Cimenos/química , Cimenos/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Combinação de Medicamentos , Sistemas de Liberação de Medicamentos/métodos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Difusão Dinâmica da Luz , Eugenol/química , Eugenol/farmacologia , Hemólise/efeitos dos fármacos , Humanos , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Óleos Voláteis/administração & dosagem , Óleos Voláteis/química , Polímeros/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Espectrofotometria Ultravioleta
5.
Macromol Rapid Commun ; 41(1): e1900493, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31709698

RESUMO

In this work, the authors report a novel single-step, one-pot process for the synthesis of self-assembled nanoparticles using a polymerization-induced self-assembly (PISA) mechanism. In contrast to conventional approaches employing a pre-formed macromolecular stabilizer, the disparate reactivities between two monomers, oligo(ethylene glycol) methyl ether methacrylate (OEGMA) and diacetone acrylamide (DAAm), are exploited instead to synthesize a gradient copolymer directly in aqueous solution. Due to the hydrophobicity of poly(DAAm), these gradient copolymers can self-assemble in situ to form spheres and worms stabilized by the OEGMA residues. A surprisingly broad range of parameters are identified in which the worm morphology can be stabilized, which is highlighted by significant gelation of the reaction mixture in situ. This single-step gradient copolymerization approach to PISA is more efficient than conventional two-step syntheses. These results demonstrate improved reproducibility owing to the production of self-assembled nanoparticles directly in a one-pot and single-step synthesis.


Assuntos
Polímeros/química , Acrilamidas/química , Concentração de Íons de Hidrogênio , Metacrilatos/química , Nanopartículas/química , Polimerização , Polímeros/síntese química
6.
ACS Macro Lett ; 7(11): 1376-1382, 2018 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-35651246

RESUMO

We report a facile benchtop process for the synthesis of cross-linked polymeric nanoparticles by exploiting wavelength-selective photochemistry to perform orthogonal photoinduced polymerization-induced self-assembly (Photo-PISA) and photo-crosslinking processes. We first established that the water-soluble photocatalyst, zinc meso-tetra(N-methyl-4-pyridyl) porphine tetrachloride (ZnTMPyP) could activate the aqueous PET-RAFT dispersion polymerization of hydroxypropyl methacrylate (HPMA). This photo-PISA process could be conducted under low energy red light (λmax = 595 nm, 10.2 mW/cm2) and without deoxygenation due to the action of the singlet oxygen quencher, biotin (vitamin B7), which allowed for the synthesis of a range of nanoparticle morphologies (spheres, worms, and vesicles) directly in 96-well plates. To perform wavelength selective nanoparticle cross-linking, we added the photoresponsive monomer, 7-[4-(trifluoromethyl)coumarin] methacrylamide (TCMAm) as a comonomer without inhibiting the evolution of the nanoparticle morphology. Importantly, under red light, exclusive activation of the photo-PISA process occurs, with no evidence of TCMAm dimerization under these conditions. Subsequent switching to a UV source (λmax = 365 nm, 10.2 mW/cm2) resulted in rapid cross-linking of the polymer chains, allowing for retention of the nanoparticle morphology in organic solvents. This facile synthesis of cross-linked spheres, worms, and vesicles demonstrates the utility of orthogonal light-mediated chemistry for performing decoupled wavelength selective chemical processes.

7.
ACS Macro Lett ; 6(11): 1237-1244, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-35650777

RESUMO

In this communication, we investigate the photoinduced electron/energy transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization of 2-(methylthio)ethyl methacrylate (MTEMA) using 5,10,15,20-tetraphenylporphine zinc (ZnTPP) as a photocatalyst under visible red light (λmax = 635 nm). Interestingly, the polymerization kinetics were not affected by the presence of air as near identical polymerization kinetics were observed for non-deoxygenated and deoxygenated systems, which is attributed to the singlet oxygen quenching ability of MTEMA. In both cases, well-defined polymers were obtained with good control over the molecular weight and molecular weight distribution (MWD). Furthermore, we have demonstrated that MTEMA can undergo the polymerization-induced self-assembly (PISA) process from a poly(oligo(ethylene glycol) methyl ether methacrylate) (POEGMA) macromolecular chain transfer agent (macro-CTA) to yield well-defined polymeric nanoparticles of various morphologies. These nanoparticles were rapidly disassembled after exposure to visible light due to the formation of singlet oxygen by the encapsulated ZnTPP and subsequent rapid oxidation of the thioether group.

8.
BMC Gastroenterol ; 9: 11, 2009 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-19196464

RESUMO

BACKGROUND: All patients with liver cirrhosis are recommended to undergo an evaluation of esophageal varices (EV) to assess their risk of bleeding. Predicting the presence of EV through non-invasive means may reduce a large number of unnecessary endoscopies. This study was designed to develop a predictive model for varices in patients with Hepatitis B virus-related cirrhosis. METHODS: The retrospective analysis was performed in 146 patients with Hepatitis B virus-related cirrhosis. The data were assessed by univariate analysis and a multivariate logistic regression analysis. In addition, the receiver operating characteristic curves were also applied to calculate and compare the accuracy of the model and other single parameters for the diagnosis of esophageal varices. RESULTS: We found the prevalence of EV in patients with Hepatitis B virus-related cirrhosis to be 74.7%. In addition, platelet count, spleen width, portal vein diameter and platelet count/spleen width ratio were significantly associated with the presence of esophageal varices on univariate analysis. A multivariate analysis revealed that only the spleen width and portal vein diameter were independent risk factors. The area under the receiver operating characteristic curve of regression function (RF) model, which was composed of the spleen width and portal vein diameter, was higher than that of the platelet count. With a cut-off value of 0.3631, the RF model had an excellent sensitivity of 87.2% and an acceptable specificity of 59.5% with an overall accuracy of 80.1%. CONCLUSION: Our data suggest that portal vein diameter and spleen width rather than platelet count may predict the presence of varices in patients with Hepatitis B virus-related cirrhosis, and that the RF model may help physicians to identify patients who would most likely benefit from screenings for EV.


Assuntos
Varizes Esofágicas e Gástricas/diagnóstico , Varizes Esofágicas e Gástricas/virologia , Hepatite B/complicações , Cirrose Hepática/virologia , Adulto , China , Estudos de Coortes , Feminino , Hepatite B/metabolismo , Hepatite B/patologia , Humanos , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Estudos Retrospectivos , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA