Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Plant Physiol Biochem ; 214: 108924, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38991593

RESUMO

LBD (LATERAL ORGAN BOUNDARIES DOMAIN) transcription factors are key regulators of plant growth and development. In this study, we functionally characterized the PagLBD4 gene in Populus (Populus alba × Populus glandulosa). Overexpression of PagLBD4 (PagLBD4OE) significantly repressed secondary xylem differentiation and secondary cell wall (SCW) deposition, while CRISPR/Cas9-mediated PagLBD4 knockout (PagLBD4KO) significantly increased secondary xylem differentiation and SCW deposition. Consistent with the functional analysis, gene expression analysis revealed that SCW biosynthesis pathways were significantly down-regulated in PagLBD4OE plants but up-regulated in PagLBD4KO plants. We also performed DNA affinity purification followed by sequencing (DAP-seq) to identify genes bound by PagLBD4. Integration of RNA sequencing (RNA-seq) and DAP-seq data identified 263 putative direct target genes (DTGs) of PagLBD4, including important regulatory genes for SCW biosynthesis, such as PagMYB103 and PagIRX12. Together, our results demonstrated that PagLBD4 is a repressor of secondary xylem differentiation and SCW biosynthesis in Populus, which possibly lead to the dramatic growth repression in PagLBD4OE plants.

2.
Carbohydr Polym ; 341: 122345, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38876715

RESUMO

Sulfated fucan from sea cucumber is mainly consists of L-fucose and sulfate groups. Recent studies have confirmed that the structure of sulfated fucan mainly consists of repeating units, typically tetrasaccharides. However, there is growing evidence indicating the presence of irregular domains with heterogeneous units that have not been extensively explored. Moreover, as a key contributor to the nutritional benefits of sea cucumbers, sulfated fucan demonstrates a range of biological activities, such as anti-inflammatory, anticancer, hypolipidemic, anti-hyperglycemic, antioxidant, and anticoagulant properties. These biological activities are profoundly influenced by the structural features of sulfated fucan including molecular weight and distribution patterns of sulfate groups. The latest research indicates that sulfated fucan is dispersed in the extracellular matrix of the body wall of sea cucumbers. This article aimed to review the research progress on the in-situ distribution, structures, structural elucidation strategies, functions, and structure-activity relationships of sulfated fucan, especially in the last decade. It also provided insights into the major challenges and potential solutions in the research and development of sulfated fucan. Moreover, the fucanase and carbohydrate binding modules are anticipated to play pivotal roles in advancing this field.


Assuntos
Polissacarídeos , Pepinos-do-Mar , Pepinos-do-Mar/química , Animais , Polissacarídeos/química , Polissacarídeos/farmacologia , Relação Estrutura-Atividade , Sulfatos/química , Anticoagulantes/química , Anticoagulantes/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Humanos , Antineoplásicos/química , Antineoplásicos/farmacologia , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia
3.
J Agric Food Chem ; 72(14): 7861-7869, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38546430

RESUMO

The extracellular substance of Bacillus has antibacterial effects inhibiting multiple foodborne pathogens and plays important roles in food production. This study found one Bacillus velezensis BVQ121 strain producing antibacterial lipopeptides (BVAL). After optimization of the fermentation conditions, the BVAL yield was the highest at 1.316 ± 0.03 g/L in reality with the initial pH 6.0, temperature 31 °C, and shaker speed 238 rpm when the optimal nitrogen and carbon sources were used in Landy medium for fermentation. The antibacterial components were identified as iturin, surfactin, and fengycin by HPLC and MALDI-TOF-MS. The MIC was at 2 mg/mL and MBC was at 5 mg/mL. The 6% weight ratio of nanocellulose dosage in chitosan solution could improve the tensile length and strength of the film, and the antibacterial performance was enhanced by the addition of BVAL. The addition of BVAL had no effect on the color and ductility of the film and improved its antibacterial effect. The shelf life of pigeon eggs can be extended by more than 10 days to resist bacterial infections after coating with the chitosan-nanocellulose-BVAL film solution.


Assuntos
Bacillus , Quitosana , Quitosana/farmacologia , Bacillus/química , Antibacterianos/farmacologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Lipopeptídeos/farmacologia , Lipopeptídeos/química
4.
Langmuir ; 40(1): 1007-1015, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38117735

RESUMO

The trade-off that shorter wavelength light facilitates the efficient generation of reactive oxygen species (ROS) from photosensitizer (PS) while facing the drawback of limited penetration depth through skin tissue restricts the further development of photodynamic therapy (PDT). Here, we address this contradiction and achieve visible-light-tailored deep PDT combined with the skin optical clearing technology. With the help of the prepared skin optical clearing gel, the refractive index inhomogeneity between skin tissue components is greatly attenuated, and the light scattering effect within the skin tissue is remarkably reduced. As a consequence, the transmittance of visible light at 600 nm through in vitro porcine skin and in vivo mouse skin after treatment increases from approximately 10 and 40 to 70 and 70%, respectively. Furthermore, in the tumor cell eradication experiment, the local ROS generation efficiency in the experimental group is several times higher than that in the control group owing to improved visible transmittance, which is thus responsible for the complete eradication of tumor cells, even when shaded by skin tissue. The results suggest that this strategy may serve as a valuable supplement to the current deep PDT strategies.


Assuntos
Fotoquimioterapia , Camundongos , Animais , Suínos , Fotoquimioterapia/métodos , Espécies Reativas de Oxigênio , Luz , Pele , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico
5.
Sci Rep ; 13(1): 21367, 2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-38049438

RESUMO

Brain-computer interfaces (BCIs) allow direct communication between one's central nervous system and a computer without any muscle movement hence by-passing the peripheral nervous system. They can restore disabled people's ability to interact with their environment, e.g. communication and wheelchair control. However, to this day their performance is still hindered by the non-stationarity of electroencephalography (EEG) signals, as well as their susceptibility to noise from the users' environment and from their own physiological activity. Moreover, a non-negligible amount of users struggle to use BCI systems based on motor imagery. In this paper, a new method based on the path signature is introduced to tackle this problem by using features which are different from the usual power-based ones. The path signature is a series of iterated integrals computed from a multidimensional path. It is invariant under translation and time reparametrization, which makes it a robust feature for multichannel EEG time series. The performance can be further boosted by combining the path signature with the gold standard Riemannian classifier in the BCI field exploiting the geometric structure of symmetric positive definite (SPD) matrices. The results obtained on publicly available datasets show that the signature method is more robust to inter-user variability than classical ones, especially on noisy and low-quality data. Hence, this study paves the way towards the use of mathematical tools that until now have been neglected, in order to tackle the EEG-based BCI variability issue. It also sheds light on the lead-lag relationship captured by path signature which seems relevant to assess the underlying neural mechanisms.


Assuntos
Interfaces Cérebro-Computador , Humanos , Imagens, Psicoterapia , Movimento/fisiologia , Eletroencefalografia/métodos , Sistema Nervoso Central , Algoritmos
6.
Animals (Basel) ; 13(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38067073

RESUMO

Multiple stressors, including climate change, eutrophication, and pesticide contamination, are significant drivers of the decline in lake zoobenthos. Zoobenthos play a crucial role in aquatic ecosystems, impacting energy dynamics, nutrient cycling, and sediment degradation. However, these stressors have led to a decrease in the abundance and diversity of zoobenthos, resulting in notable changes in species composition and structure. Eutrophication typically increases zoobenthos abundance while reducing taxonomic diversity. Climate change, such as warming and heatwaves, also affects the zoobenthos community structure, with different species exhibiting varying levels of adaptability to temperature changes. Additionally, pesticides like imidacloprid have negative effects on the survival and growth of zoobenthos. However, the interactions between imidacloprid and other stressors remain understudied. Here, we used 48 mesocosms (2500 L) to simulate shallow lakes. We combined nutrient loading, sustained warming, and the imidacloprid pesticide to test how these stressors interactively influence the survival and community of zoobenthos. The experimental results demonstrate that elevated temperatures have a significant impact on aquatic benthic organisms under different treatment conditions. The increase in temperature led to a notable rise in species richness and α-diversity, primarily attributed to the stimulation of metabolic activities in zoobenthos, promoting their growth and reproduction. This finding underscores the potential influence of climate change on aquatic benthic ecosystems, particularly in terms of its promoting effect on α-diversity. However, it is essential to note that elevated temperatures also reduced ß-diversity among different sites, implying a potential trend toward homogenization in zoobenthos communities under warmer conditions. Moreover, this study revealed the interactive effects of multiple stressors on the diversity of aquatic benthic communities. Specifically, the pesticide imidacloprid's impact on zoobenthos is not isolated but demonstrates complex effects within various treatment interactions. In the presence of both temperature elevation and the addition of imidacloprid, the presence of imidacloprid appears to counteract the adverse effects of temperature elevation, resulting in increased species diversity. However, when imidacloprid coincides with nutrient input, it significantly affects α-diversity negatively. These findings highlight the complexity of zoobenthos responses to multiple stressors and how these factors influence both α-diversity and ß-diversity. They provide valuable insights for further research on the conservation and management of ecosystems.

7.
Animals (Basel) ; 13(19)2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37835762

RESUMO

The ATP-binding cassette subfamily G member 2 (ABCG2) serves crucial roles in secreting riboflavin and biotin vitamins into the milk of cattle, mice, and humans, as well as in the transportation of xenotoxic and cytostatic drugs across the plasma membrane. However, the specific role of the ABCG2 gene in water buffaloes (Bubalus bubalis), especially its effect on milk fat synthesis in buffalo mammary epithelial cells (BuMECs), remains inadequately understood. In this study, the full-length CDS of the buffalo ABCG2 gene was isolated and identified from the mammary gland in buffaloes. A bioinformatics analysis showed a high degree of similarity in the transcriptional region, motifs, and conservative domains of the buffalo ABCG2 with those observed in other Bovidae species. The functional role of buffalo ABCG2 was associated with the transportation of solutes across lipid bilayers within cell membranes. Among the 11 buffalo tissues detected, the expression levels of ABCG2 were the highest in the liver and brain, followed by the mammary gland, adipose tissue, heart, and kidney. Notably, its expression in the mammary gland was significantly higher during peak lactation than during non-lactation. The ABCG2 gene was identified with five SNPs in river buffaloes, while it was monomorphic in swamp buffaloes. Functional experiments revealed that ABCG2 increased the triglyceride (TAG) content by affecting the expression of liposynthesis-related genes in BuMECs. The results of this study underscore the pivotal role of the ABCG2 gene in influencing the milk fat synthesis in BuMECs.

8.
Int J Biol Macromol ; 253(Pt 1): 126621, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37657574

RESUMO

Soluble dietary fiber (SDF), an important prebiotic, has attracted growing attention, due to its great health effects and wide application. This study focused on the preparation of SDF from fermented okara. The yield of SDF obtained through Penicillium expansum fermentation (FSDF) reached 45.63 % (w/w) under the optimal conditions (pH 6.7, inoculum size 9.5 %, and time 29 h) by response surface methodology, which were 1.92 and 4.43 times higher than those of phosphate-citric acid treatment and untreated okara. Infrared spectra and X-ray diffraction indicated that three SDFs had similar spectral distribution and crystalline region. Moreover, FSDF displayed looser and more porous microstructures. Meanwhile, the composition ratio of monosaccharides has changed. FSDF exhibited higher water solubility (97.46 %), glucose adsorption capacity (203.73 mg/g), sodium cholate adsorption capacity (13.07 mg/g), cholesterol adsorption capacity (6.69- 7.62 mg/g) and radical (ABTS+, hydroxyl and DPPH) scavenging capacity. Additionally, three SDFs didn't degrade by upper gastrointestinal tract and could improve the proportion of beneficial intestinal flora in vitro, such as Lactobacillus and Bifidobacterium. Overall, the FSDF prepared in this study was a functional ingredient with great potential in foods.


Assuntos
Fibras na Dieta , Prebióticos , Adsorção , Solubilidade
9.
J Environ Manage ; 345: 118753, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37625285

RESUMO

Understanding the interactive effects of multiple environmental stressors on biological communities is crucial for effective environmental management and biodiversity conservation. Here, we present the results of an outdoor mesocosm experiment examining how an aquatic food web responds to the individual and combined effects of climate warming, heat waves, nutrient enrichment, and herbicide exposure. To assess ecosystem functioning, we examined energy flow, using stable isotope analysis integrated with the bioenergetics food web approach to quantify energy fluxes among trophic levels. Our results revealed that the combined effects of these stressors altered the pattern of energy fluxes within the food web. Under warming conditions, there was an increase in energy flux from producers and primary consumers to secondary consumers. However, we did not observe a significant increase in energy flux in primary consumers, potentially due to enhanced top-down control. Nutrient enrichment increased energy flux from producers to higher trophic levels while simultaneously decreasing detrital energy flux. Herbicide exposure did not significantly affect herbivory energy flux but did reduce detritivory energy flux, particularly from detritus to primary consumers. The interactive effects we observed were primarily antagonistic or additive, although we also detected reversed and synergistic effects. The responses to multiple stressors varied across different energy flow pathways, leading to an asymmetric response. Furthermore, our results also revealed significant differences in the effects of constant warming and heat waves, either alone or in combination with water pollution. The asymmetric response of energy flow pathways and the prevalence of antagonistic effects present significant challenges for ecosystem restoration. Together, our findings provide novel and clear evidence of the complex mechanisms by which the coexistence of stressors can differently affect the pathways of energy flux across trophic levels in aquatic ecosystems. Regulatory strategies for ecosystems should comprehensively consider responses at multi-trophic levels using a network perspective, especially in the face of combinations of global and local stressors.


Assuntos
Cadeia Alimentar , Herbicidas , Ecossistema , Clima , Eutrofização
10.
Chin Herb Med ; 15(2): 251-262, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37265770

RESUMO

Objective: Hypertrophic scars (HS) are a variety of skin tissue fibrosis disease that occurs in human skin, the effective therapeutic method of which is still inaccessible up to now. As a bioactive constituent of a well-known medical plant, Salvia miltiorrhiza (Danshen in Chinese), tanshinone IIA (TSA) is reported to inhibit cell proliferation in HS. Therefore, the aim of this study was to prepare TSA self-soluble microneedles to strengthen its dermal retention and break through the difficulty of significantly thickening epidermal connective tissue and stratum corneum at the HS site. The possible mechanism of action in suppressing HS was studied using human skin fibroblasts (HSF). Methods: Tanshinone IIA self-dissolving microneedles (TSA-MN) was prepared using a negative mold casting method. The prescription process of microneedle was optimized by Box-Behnken effect surface method. Different media were selected to investigate the ability of transdermal absorption and in vitro release. Furthermore, according to Cell Counting Kit-8 (CCK8) method as well as the Western blot method, the effect of TSA-MN on the biological characteristics of HSF was investigated. Results: With remarkable slow release effect and dermal retention, the release and transdermal properties of TSA-MN in vitro were better than both TSA and ordinary dosage forms. Its effect of HSF confirmed the essential decrease in cell motility during cell proliferation and cell migration in vitro, which plays a significant role in down-regulating the secretion of transforming growth factor-ß1 (TGF-ß1) in HSF and increasing the expression level of Smad7. Conclusion: The prepared TSA self-soluble microneedles is helpful in solving the problem of hypertrophic scars, with a stable dermal retention effect after process optimization.

11.
J Endod ; 49(7): 861-870, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37150293

RESUMO

INTRODUCTION: Human dentin is a natural acellular matrix with excellent reported biocompatibility. The aim was to fabricate a novel dentin matrix material from human dentin and investigate its applicative potential for vital pulp therapy. METHODS: Digested dentin matrix extract (DDME) was fabricated using controlled enzymatic digestion under acidic conditions. The surfaces and biocompatibility of DDME were then investigated, with its effects on the odontogenic differentiation of human dental pulp cells (hDPCs) also studied. The ability of DDME to induce mineralization was assessed in a nude mouse model. The performance of DDME as a pulp capping agent was evaluated in an in situ rat model. The molecular mechanism was verified by mRNA sequencing. RESULTS: A novel type of dentin matrix material with a uniform size of 8 µm was fabricated. DDME had a similar band compared with grinded dentin matrix, with a smaller size, and more uneven surface, as detected by Fourier-transform infrared spectrometer and X-ray photoelectron spectroscopy. DDME at low concentrations did not affect hDPC viability or proliferation, but enhanced runt-related transcription factor 2, dentin matrix acidic phosphoprotein 1, and COL1A1 (collagen type I alpha 1 chain) expression in hDPCs in vitro. DDME was superior to HA-TCP (hydroxyapatite-tricalcium phosphate) in dentin-like mineralized tissue formation after subcutaneous transplantation. In the rat model of pulpotomy, DDME showed visible curative effects. The underlying mechanism may be the inhibition of Hippo signaling following DDME treatment. DDME promoted Yes-associated protein (YAP) 1 nuclear influx, thereby enhancing the expression of DMP-1 (dentin matrix acidic phosphoprotein 1), which was reversed by YAP inhibitor treatment. CONCLUSIONS: Human DDME can be used as a biomaterial for dentin regeneration. The combined application of DDME and current pulp capping agents is a potential choice for vital pulp therapy.


Assuntos
Materiais Biocompatíveis , Polpa Dentária , Camundongos , Humanos , Ratos , Animais , Materiais Biocompatíveis/farmacologia , Diferenciação Celular , Dentina/metabolismo , Regeneração , Fosfoproteínas/metabolismo
12.
Chem Asian J ; 18(10): e202300108, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37010076

RESUMO

A novel layered magnesium phosphate (MgP) was synthesised from a MgO-P2 O5 -choline chloride-oxalic acid dihydrate system using an ionothermal approach. Single crystal samples of MgP were obtained following introduction of diethylamine (DEA) to the reaction system. Its structure revealed that both the layer and the sheets contained Mg octahedra. Interestingly, adding the layered material to lithium grease resulted in superior lubrication with higher load-carrying, anti-wear and friction reduction capacities compared with the typical lubricant MoS2 ; the PB value of base grease was increased from 353 to 1078 and 549 N, the wear scar diameter was decreased from 0.50 to 0.34 and 0.46 mm, and the friction coefficient was decreased from 0.082 to 0.056 and 0.075, respectively. We also discuss the lubrication mechanism of layered materials based on the crystal structure and resource endowment. The findings could assist the development of new high-efficiency solid lubricants.

13.
Aust Endod J ; 49 Suppl 1: 374-380, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36939113

RESUMO

To compare the efficiency of conventional needle irrigation, passive ultrasonic irrigation, sonic irrigation and XP-endo Finisher in removing Vitapex paste from root canals. The root canals of human single-rooted teeth were prepared and obturated with Vitapex paste. After 2 weeks, the 48 teeth were randomly allocated into four groups: conventional needle irrigation (CNI) group, passive ultrasonic irrigation (PUI) group, sonic irrigation (SI) group and XP-endo Finisher (XP) group. The specimens of four groups were scanned using a micro-computed tomography after the Vitapex pastes was removed. The results showed that more residual paste was left in the CNI group than in the other three groups (p < 0.05). There was no significant difference among the PUI, SI and XP group (p > 0.05). And, the majority of the residual Vitapex was found in the apical third, with a small amount in the middle third after using any of the three agitated irrigation techniques.


Assuntos
Preparo de Canal Radicular , Ultrassom , Humanos , Microtomografia por Raio-X , Preparo de Canal Radicular/métodos , Irrigantes do Canal Radicular/uso terapêutico , Irrigação Terapêutica , Cavidade Pulpar/diagnóstico por imagem
14.
Carbohydr Polym ; 304: 120460, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36641186

RESUMO

Fucoidans are valuable marine polysaccharides with various bioactivities and physicochemical properties. However, its digestive properties, mucoadhesive properties, and bioactivity in the gastrointestinal tract are still unclear. In this study, simulated digestion, fecal fermentation in vitro, and rheology models were utilized to investigate the chain conformation, influence on gut microbiota, and mucin adhesive properties of fucoidan from the sea cucumber Thelenota ananas (Ta-FUC). The results showed that Ta-FUC was nondigestible with a temporary decrease in molecular weight in gastric conditions, accompanied by the chain conformation becoming more flexible. Moreover, Ta-FUC exhibited strong mucin adhesive function in the simulated intestinal environment, with supramolecular disulfide, hydrogen, and hydrophobic interactions in order of intensity. During fermentation, Ta-FUC was degraded by the intestinal flora to produce various short-chain fatty acids and promoted the relative abundance of Bacteroidota and Firmicutes, reducing the proportion of Proteobacteria. Therefore, these results indicate that Ta-FUC could be a potential prebiotic and ingredient for developing targeted delivery systems in the functional food and pharmaceutical industries.


Assuntos
Microbioma Gastrointestinal , Pepinos-do-Mar , Animais , Intestinos , Pepinos-do-Mar/química , Polissacarídeos/química , Fermentação
15.
J Environ Manage ; 329: 117025, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36563445

RESUMO

Marine aquaculture is increasingly gaining importance as a source of food with high nutritional value. However, the expansion of aquaculture could be responsible for water contamination that influences the environmental quality of coastal ecosystems, and emissions of greenhouse gases (GHG) that affect global climate. China is the world's largest producer of marine aquaculture protein, which demands robust studies to assess the corresponding GHG emissions and intensity. To fill in this knowledge gap, the current study quantifies and analyzes GHG emissions and intensity (emission intensity is defined as GHG emissions per unit of production) from Chinese marine aquaculture (marine aquaculture production) over the past 30 years (1991-2020). The production of marine aquaculture comes from the China Fisheries Statistical Yearbooks. And the GHG emissions and intensity were calculated based on five sectors (commercial feed, trash fish, N2O, CH4, and energy) by Emission-Factor Approach. The results suggest that, excluding shellfish and algae, GHG emissions of ten coastal provinces (excluding Shanghai, Hong Kong, Taiwan, and Macau) increased from 2 Mt (109 kg) CO2-eq in 1991 to 25 Mt CO2-eq in 2020. In contrast, GHG emission intensity decreased in the same period from 7.33 (t CO2-eq/t production) to 6.34 (t CO2-eq/t production), indicating a progressive mitigation in GHG emissions per unit of product, hence sustainably satisfying a growing demand for food. As a result, China's marine aquaculture seems to be paving a promising way towards the neutrality of GHG emissions. In most provinces, GHG is on the rise, and only in Tianjin is on the decline in recent years. For the emissions intensity, the values of more than half provinces showed the downtrends. In addition, by considering the ratio of shellfish and algae, Chinese marine aquaculture can improve the net zero goal for GHG emissions of the sector. Finally, results also reveal for the first time the changes in taxonomic composition and spatial GHG emissions and intensity, providing new understanding and scientific bases to elaborate consistent mitigation strategies for an expanding global marine aquaculture.


Assuntos
Gases de Efeito Estufa , Animais , Humanos , Efeito Estufa , Dióxido de Carbono/análise , Ecossistema , População do Leste Asiático , China , Aquicultura
16.
Crit Rev Biotechnol ; 43(7): 1073-1091, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35997331

RESUMO

Bacillus amyloliquefaciens is one of the most characterized Gram-positive bacteria. This species has unique characteristics that are beneficial for industrial applications, including its utilization of: cheap carbon as a substrate, a transparent genetic background, and large-scale robustness in fermentation. Indeed, the productivity characteristics of B. amyloliquefaciens have been thoroughly analyzed and further optimized through systems biology and synthetic biology techniques. Following the analysis of multiple engineering design strategies, B. amyloliquefaciens is now considered an efficient cell factory capable of producing large quantities of multiple products from various raw materials. In this review, we discuss the significant potential advantages offered by B. amyloliquefaciens as a platform for metabolic engineering and industrial applications. In addition, we systematically summarize the recent laboratory research and industrial application of B. amyloliquefaciens, including: relevant advances in systems and synthetic biology, various strategies adopted to improve the cellular performances of synthetic chemicals, as well as the latest progress in the synthesis of certain important products by B. amyloliquefaciens. Finally, we propose the current challenges and essential strategies to usher in an era of broader B. amyloliquefaciens use as microbial cell factories.

17.
J Phys Chem Lett ; 13(41): 9564-9572, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36201623

RESUMO

Photothermal therapy (PTT) mediated by the second near-infrared light (NIR-II) is considered as the most promising PTT in deep tissues due to the superior penetrability of NIR-II through biological tissues. However, the effective therapeutic depth of NIR-II mediated PTT is limited to only several millimeters beneath the skin tissues. So far, deep PTT still cannot satisfy the depth requirement for most common cancers, including but not limited to lung, pancreatic, colorectal, and stomach cancers. Therefore, it is highly desirable to develop ultradeep PTT strategies to enhance the therapeutic depth with clinical availability. This Perspective highlights the latest research progress in regard to ultradeep PTT strategies, including larger laser spot PTT, skin tissue optical clearing technology enhanced PTT, and optical fiber assisted PTT, followed with pertinent evaluations and expectations. In addition, challenges and perspectives in this fast-growing area of ultradeep PTT are discussed.


Assuntos
Nanopartículas , Terapia Fototérmica , Linhagem Celular Tumoral , Raios Infravermelhos , Lasers
18.
Pediatr Surg Int ; 38(11): 1507-1515, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36053328

RESUMO

PURPOSE: To assess the safety and efficacy of laparoscopic versus open repair of congenital duodenal obstruction (CDO), we conducted a systematic review and meta-analysis (CDO). METHODS: A literature search was conducted to identify studies that compared laparoscopic surgery (LS) and open surgery (OS) for neonates with CDO. Meta-analysis was used to pool and compare variables such as operative time, time to feeding, length of hospital stay, anastomotic leak or stricture, postoperative ileus, wound infection, and overall postoperative complications. RESULTS: Among the 1348 neonatal participants with CDO in the ten studies, 304 received LS and 1044 received OS. When compared to the OS approach, the LS approach resulted in shorter hospital stays, faster time to initial and full feeding, longer operative time, and less wound infection. However, no significant difference in secondary outcomes such as anastomotic leak or stricture, postoperative ileus, and overall postoperative complications was found between LS and OS. CONCLUSIONS: LS is a safe, feasible and effective surgical procedure for neonatal CDO when compared to OS. Compared with OS, LS has a faster time to feeding, a shorter hospital stay, and less wound infection. Furthermore, in terms of anastomotic leak or stricture, postoperative ileus, and overall postoperative complications, LS is equivalent to OS. We conclude that LS should be considered an acceptable option for CDO.


Assuntos
Obstrução Duodenal , Íleus , Laparoscopia , Infecção dos Ferimentos , Fístula Anastomótica/epidemiologia , Constrição Patológica/cirurgia , Obstrução Duodenal/congênito , Humanos , Íleus/cirurgia , Recém-Nascido , Laparoscopia/métodos , Tempo de Internação , Complicações Pós-Operatórias/etiologia , Estudos Retrospectivos , Resultado do Tratamento , Infecção dos Ferimentos/complicações , Infecção dos Ferimentos/cirurgia
19.
Environ Int ; 168: 107478, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35998413

RESUMO

Submerged macrophytes are vital components in shallow aquatic ecosystems, but their abundances have declined globally. Shading by periphyton and phytoplankton/turbidity plays a major role in this decline, and the competing aquatic primary producers are subject to the complex influence of multiple stressors such as increasing temperatures, nutrient loading and herbicides. Their joint impact has rarely been tested and is difficult to predict due to potentially opposing effects on the different primary producers, their interactions and their grazers. Here, we used 48 mesocosms (2500 L) to simulate shallow lakes dominated by two typical submerged macrophytes, bottom-dwelling Vallisneria denseserrulata and canopy-forming Hydrilla verticillata, and associated food web components. We applied a combination of nutrient loading, continuous warming, heat waves and glyphosate-based herbicides to test how these stressors interactively impact the growth of submerged macrophytes, phytoplankton and periphyton as competing primary producers. Warming or heat waves alone did not affect phytoplankton and periphyton abundance, but negatively influenced the biomass of V. denseserrulata. Nutrient loading alone increased phytoplankton biomass and water turbidity and thus negatively affected submerged macrophyte biomass, particularly for V. denseserrulata, by shading. Glyphosate alone did not affect biomass of each primary producer under ambient temperatures. However, heat waves facilitated phytoplankton growth under combined nutrient loading and glyphosate treatments more than continuous warming. As a consequence, H. verticillata biomass was lowest under these conditions indicating the potential of multiple stressors for macrophyte decline. Our study demonstrated that multiple stressors interactively alter the biomass of primary producers and their interactions and can eventually lead to a loss of macrophyte communities and shift to phytoplankton dominance. These results show the risks in shallow lakes and ponds in agricultural landscapes and underline the need for multiple stressor studies as a base for their future management.


Assuntos
Herbicidas , Hydrocharitaceae , Ecossistema , Herbicidas/toxicidade , Temperatura Alta , Biomassa , Fitoplâncton , Lagos , Nutrientes , Eutrofização
20.
ACS Macro Lett ; 11(7): 868-874, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35762900

RESUMO

Polyurethane (PU) thermosets offer great favors to our daily life on account of their excellent mechanical, physical, and chemical properties as well as appreciable biocompatibility. Nevertheless, PU waste is increasingly causing environmental and health-related problems as it is mostly resistant to chemical degradation under mild conditions. Herein, we report a kind of PU thermoset with silaketal leakages in its main chains to enable polymer degradation in response to weak acids, even in edible vinegar. The degradation rate is significantly influenced by the alkyl substituents on the silicon atoms, with entire degradation in hours, days, weeks, or months. Besides controllable degradation, investigations are also provided into the recycling of PU thermosets by means of thermal reprocessing based on carbamate bond exchange or repolymerization of degradation residuals. Because of the controllable degradation and easy recycling, this particular kind of PU thermoset exhibits great potential in manufacturing green polymer products that can be decomposed by nature or reutilized after disposal.


Assuntos
Poliuretanos , Gerenciamento de Resíduos , Polímeros , Poliuretanos/química , Reciclagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA