Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 535
Filtrar
1.
J Environ Qual ; 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39162108

RESUMO

Major weather events contribute to the mobility and remobilization of legacy mercury (Hg) contamination and sequestration within sediments. Remediation using biochar as a soil amendment is a useful technique to immobilize and decrease Hg toxicity. This study explored whether biochar application is effective at stabilizing labile mercury (LaHg) from floodplain sediment. Controlled mesocosms simulating contamination events and flooding conditions were conducted. Floodplain sediment, which experiences annual periodic flooding, was collected. Sediment was spiked with inorganic Hg, applied with different types of biochar, and experienced simulated flooding events. Four types of biochar, pure rice husk (RH), pure peanut hull (PH), sulfur-modified rice husk (SMRH), and sulfur-modified peanut hull (SMPH), were applied at 10 and 40 g/kg rates (i.e., RH 10, RH 40; PH 10, PH 40, SMRH 10, SMRH 40, SMPH 10, SMPH 40). Total Hg, methylmercury, and LaHg concentrations were analyzed by coupling with redox potential measurements. Results indicate that SMRH 10, PH 10, PH 40, SMPH 10, and SMPH 40 successfully remediate Hg by stabilizing and reducing LaHg species from floodplain sediment. However, a high Hg methylation potential was observed with unsulfated and sulfated peanut hulls (PH 10, PH 40, SMPH 10, and SMPH 40), as they tend to create a reducing microenvironment that favors sulfate reduction reactions. Additionally, sulfur-modified biochar tends to promote Hg methylation potential at high application rates (i.e., 40 g/kg). We thus recommend using SMRH at a relatively low application rate (SMRH 10) for the remediation of Hg from floodplain sediment.

2.
Nat Commun ; 15(1): 6866, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39127734

RESUMO

Eastern Equine Encephalitis virus (EEEV) is an alphavirus that can cause severe diseases in infected humans. The very low-density lipoprotein receptor (VLDLR) was recently identified as a receptor of EEEV. Herein, we performed cryo-electron microscopy structural and biochemistry studies on the specific interactions between EEEV and VLDLR. Our results show that VLDLR binds EEEV at three different sites A, B and C through its membrane-distal LDLR class A (LA) repeats. Site A is located in the cleft in between the E1-E2 heterodimers. Site B is located near the connecting ß ribbon of E2 and is in proximity to site A, while site C is on the domain B of E2. The binding of VLDLR LAs to EEEV is in complex modes, including the LA1-2 and LA3-5 mediated two major modes. Disruption of the LA1-2 mediated binding significantly affect the cell attachment of EEEV. However, the mutation W132G of VLDLR impairs the binding of LA3, drives the switch of the binding modes, and significantly enhances the attachment of EEEV to the cell. The W132G variant of VLDLR could be identified in human genome and SNP sequences, implying that people with similar mutations in VLDLR may be highly susceptible to EEEV infection.


Assuntos
Vírus da Encefalite Equina do Leste , Ligação Proteica , Receptores de LDL , Humanos , Sítios de Ligação , Microscopia Crioeletrônica , Vírus da Encefalite Equina do Leste/genética , Vírus da Encefalite Equina do Leste/metabolismo , Células HEK293 , Modelos Moleculares , Mutação , Receptores de LDL/metabolismo , Receptores de LDL/genética , Receptores Virais/metabolismo , Ligação Viral
3.
Toxicology ; 507: 153903, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39098371

RESUMO

This study aimed to elucidate the impact of variations in liver enzyme activity, particularly CYP3A4, on the metabolism of furmonertinib. An in vitro enzyme incubation system was established for furmonertinib using liver microsomes and recombinant CYP3A4 baculosomes, with analytes detected by LC-MS/MS. The pharmacokinetic characteristics of furmonertinib were studied in vivo using Sprague-Dawley rats. It was found that telmisartan significantly inhibited the metabolism of furmonertinib, as demonstrated by a significant increase in the AUC of furmonertinib when co-administered with telmisartan, compared to the furmonertinib-alone group. Mechanistically, it was noncompetitive in rat liver microsomes, while it was mixed competitive and noncompetitive in human liver microsomes and CYP3A4. Considering the genetic polymorphism of CYP3A4, the study further investigated its effect on the kinetics of furmonertinib. The results showed that compared to CYP3A4.1, CYP3A4.29 had significantly increased activity in catalyzing furmonertinib, whereas CYP3A4.7, 9, 10, 12, 13, 14, 18, 23, 33, and 34 showed markedly decreased activity. The inhibitory activity of telmisartan varied in CYP3A4.1 and CYP3A4.18, with IC50 values of 8.56 ± 0.90 µM and 27.48 ± 3.52 µM, respectively. The key loci affecting the inhibitory effect were identified as ARG105, ILE301, ALA370, and LEU373. Collectively, these data would provide a reference for the quantitative application of furmonertinib.


Assuntos
Citocromo P-450 CYP3A , Microssomos Hepáticos , Ratos Sprague-Dawley , Animais , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/enzimologia , Humanos , Masculino , Ratos , Polimorfismo Genético , Telmisartan/farmacologia , Inibidores do Citocromo P-450 CYP3A/farmacologia , Interações Medicamentosas
4.
Bioresour Technol ; 409: 131248, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39127364

RESUMO

The combination of microalgal culture and wastewater treatment is an emerging topic. This study investigated the use of different microalgae to treat different types of dairy farm wastewater. The results showed that the removal of ammonia nitrogen and total phosphorus by mixed microalgae was over 99% and 80%, respectively. The highest production of protein in biomass and extracellular polymeric substances was observed in high-concentration wastewater. In the phycosphere, the abundance of Proteobacteria and Cyanobacteria increased, while that of Bacteroidota decreased. Phycosphere bacteria were strongly correlated with microalgal growth and the composition of extracellular polymeric substances, especially with bound extracellular polymeric substances relative to soluble extracellular polymeric substances. Genes associated with photosynthesis and respiration in phycosphere bacteria were upregulated, contributing to the material exchange capacity in the microalgal-bacterial systems. The interaction between microalgae and phycosphere bacteria thus represents the core of the binary cultivation system-based wastewater treatment and requires further investigation.


Assuntos
Bactérias , Indústria de Laticínios , Microalgas , Águas Residuárias , Purificação da Água , Microalgas/metabolismo , Microalgas/crescimento & desenvolvimento , Águas Residuárias/microbiologia , Bactérias/metabolismo , Bactérias/genética , Purificação da Água/métodos , Fósforo/metabolismo , Fazendas , Nitrogênio/metabolismo , Biomassa
5.
Am J Otolaryngol ; 45(5): 104400, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39094303

RESUMO

OBJECTIVES: The aim of this study was to present an institution's experience with cochlear reimplantation (CRI), to assess surgical challenges and post-operative outcomes and to increase the success rate of CRI. STUDY DESIGN: Retrospective single-institution study. SETTING: Tertiary medical center. METHODS: We retrospectively evaluated data from 76 reimplantation cases treated in a tertiary center between 2001 and 2022. Clinical features including etiology of hearing loss, type of failure, surgical issues, and auditory speech performance were analyzed. Categorical Auditory Performance (CAP) and Speech Intelligibility Rating (SIR) scores were used to evaluate pre- and post-CRI outcomes. RESULTS: The CRI population comprises of 7 patients from our institute,69 referred patients from other centers. Device failure was the most common reason (68/76, 89.5 %) for CRI; in addition, there were 7 medical failures and 1 had both soft device failure. Medical failures included flap rupture and device extrusion, magnet migration, auditory neuropathy, leukoencephalopathy, foreign-body residue and meningitis. In 21/76 patients, the electrode technology was upgraded. The mean time to failure was 0.58-13 years, with a mean of 4.97 years. The mean (± SD) CAP and SIR scores before and after CRI were 5.2 ± 1.2 versus 5.5 ± 1.1 and 3.4 ± 1.1 versus 3.5 ± 1.1, respectively. Performance was poor in six patients with severe cochlear malformation, auditory nerve dysplasia, leukoencephalopathy, and epilepsy. CONCLUSION: CRI surgery is a challenging but relatively safe procedure, and most reimplanted patients experience favorable postoperative outcomes. Medical complications and intracochlear damage are the main causes of poor postoperative results. Therefore, adequate preoperative preparation and atraumatic CRI should be carried out for optimal results.


Assuntos
Implante Coclear , Reimplante , Humanos , Masculino , Estudos Retrospectivos , Feminino , Implante Coclear/métodos , Resultado do Tratamento , Criança , Reimplante/métodos , Pré-Escolar , Adolescente , Adulto , Pessoa de Meia-Idade , Fatores de Tempo , Implantes Cocleares , Adulto Jovem , Lactente , Inteligibilidade da Fala
6.
Research (Wash D C) ; 7: 0448, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39109249

RESUMO

Nanomaterial-based drug delivery systems are susceptible to premature drug leakage and systemic toxicity due to lack of specific targeting, and live-cell drug delivery is also prone to be restricted by drug carrier-cell interactions. Here, a method is established to adsorb drug-loaded nanomaterials externally to the live cells, which reduces cytotoxicity caused by drug uptake and improves the bioactivity of the carrier cells and drug release at the lesion site. It was found that polyphenols act like "double-sided tape" to bridge metal-organic framework (MOF) nanoparticles with live macrophages (Mφ), attaching MOFs to the Mφ surface and minimizing intracellular uptake, with no negative effect on cell proliferation. On this basis, a "macrophage missile" with peroxymonosulfate (PMS)-loaded MOF nanoparticles on the cell surface was constructed. As a "propellant", the Mφ, in which bioactivity is preserved, can selectively identify and target tumor cells, precisely bringing nanomedicines to the lesion. MOF nanoparticles are used to load and catalyze PMS, which acts as an exogenous source of reactive oxygen species, showing higher efficacy and lower toxicity in an oxygen-independent manner. The primary study results demonstrate that this innovative combination of biology and nanomaterials remarkably enhances tumor targeting and therapeutic efficacy while reducing systemic side effects. This approach is expected to provide a more effective and safer treatment for lung cancer and holds promise for broader applications in other cancer therapies.

7.
ACS Nano ; 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39150349

RESUMO

Accurate diagnosis and classification of kidney cancer are crucial for high-quality healthcare services. However, the current diagnostic platforms remain challenges in the rapid and accurate analysis of large-scale clinical biosamples. Herein, we fabricated a bifunctional smart nanoplatform based on tannic acid-modified gold nanoflowers (TA@AuNFs), integrating nanozyme catalysis for colorimetric sensing and self-assembled nanoarray-assisted LDI-MS analysis. The TA@AuNFs presented peroxidase (POD)- and glucose oxidase-like activity owing to the abundant galloyl residues on the surface of AuNFs. Combined with the colorimetric assay, the TA@AuNF-based sensing nanoplatform was used to directly detect glucose in serum for kidney tumor diagnosis. On the other hand, TA@AuNFs could self-assemble into closely packed and homogeneous two-dimensional (2D) nanoarrays at liquid-liquid interfaces by using Fe3+ as a mediator. The self-assembled TA@AuNFs (SA-TA@AuNFs) arrays were applied to assist the LDI-MS analysis of metabolites, exhibiting high ionization efficiency and excellent MS signal reproducibility. Based on the SA-TA@AuNF array-assisted LDI-MS platform, we successfully extracted metabolic fingerprints from urine samples, achieving early-stage diagnosis of kidney tumor, subtype classification, and discrimination of benign from malignant tumors. Taken together, our developed TA@AuNF-based bifunctional smart nanoplatform showed distinguished potential in clinical disease diagnosis, point-of-care testing, and biomarker discovery.

8.
Metab Eng ; 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39181435

RESUMO

Tanshinone and phenolic acids are the two main chemical constituents in Salvia miltiorrhiza, which are used clinically for the treatment of hypertension, coronary heart disease, atherosclerosis, and many other diseases, and have broad medicinal value. The efficient synthesis of the target products of these two metabolites in isolated plant tissues cannot be achieved without the regulation and optimization of metabolic pathways, and transcription factors play an important role as common regulatory elements in plant tissue metabolic engineering. However, most of the regulatory effects are specific to one class of metabolites, or an opposing regulation of two classes of metabolites exists. In this study, an artificially modified transcription factor, SmMYB36-VP16, was constructed to enhance tanshinone and phenolic acids in Salvia miltiorrhiza hair roots simultaneously. Further in combination with the elicitor dual-screening technique, by applying the optimal elicitors screened, the tanshinone content in the transgenic hairy roots of Salvia miltiorrhiza reached 6.44 mg/g DW, which was theoretically 6.08-fold that of the controls without any treatment, and the content of phenolic acids reached 141.03 mg/g DW, which was theoretically 5.05-fold that of the controls without any treatment. The combination of artificially modified transcriptional regulatory and elicitors dual-screening techniques has facilitated the ability of plant isolated tissue cell factories to produce targeted medicinal metabolites. This strategy could be applied to other species, laying the foundation for the production of potential natural products for the medicinal industry.

9.
Front Psychol ; 15: 1384635, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38957883

RESUMO

Introduction: The development of advanced sewage technologies empowers the industry to produce high-quality recycled water, which greatly influences human's life and health. Thus, this study investigates the mechanism of individuals' adoption of recycled water from the technology adoption perspective. Methods: Employing the mixed method of structural equation modeling and artificial neural network analysis, we examined a research model developed from the extended Unified Theory of Acceptance and Use of Technology (UTAUT2) framework. To examine the research model, this study employs a leading web-survey company (Sojump) to collect 308 valid samples from the residents in mainland China. Results: The structural equation modeling results verified the associations between the six predictors (performance expectancy, effort expectancy, social influence, facilitating conditions, environmental motivation, and price value), individuals' cognitive and emotional attitudes, and acceptance intention. The artificial neural network analysis validates and complements the structural equation modeling results by unveiling the importance rank of the significant determinants of the acceptance decisions. Discussion: The study provides theoretical implications for recycled water research and useful insights for practitioners and policymakers to reduce the environmental hazards of water scarcity.

10.
J Leukoc Biol ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953166

RESUMO

Ethnopharmacological treatments have shown beneficial effects in the clinical practice of autoimmune disorders. However, the underlying mechanism of immunomodulatory effects remains challenging, given the complicate composition of herbal medicines. Here, we developed an immunological approach to interrogate the T helper cell response. Through data mining we hypothesized that Chinese medicine formula, Yu-Ping-Feng (YPF) might be a promising candidate for treating primary Sjögren's syndrome (pSS), a common autoimmune disease manifested by exocrine gland dysfunction. We took advantage of a mouse model of experimental Sjögren's syndrome (ESS) that we previously established for YPF formula treatment. YPF therapy ameliorated the ESS pathology in mice with active disease, showing improved salivary function and decreased serum levels of autoantibodies. Phenotypic analysis suggested that both effector T and B cells were significantly suppressed. Using co-culture assay and adoptive transfer models, we demonstrated that YPF formula directly restrained effector/memory T cell expansion and differentiation into Th17 and T follicular helper (Tfh) cells, the key subsets in ESS pathogenesis. Importantly, we recruited 20 pSS patients and conducted a pilot study of 8-week therapy of YPF formula. YPF treatment effectively improved fatigue symptoms, exocrine gland functions and reduced serum IgG/IgA levels, while effector T and B cell subsets were significantly decreased. There was a trend of reduction on disease activity, but not statistically significant. Together, our findings suggested a novel approach to assess the immunomodulatory effects of YPF formula, which may be favorable for patients with autoimmune disorders.

11.
bioRxiv ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38948845

RESUMO

Childhood and adolescence are associated with protracted developmental remodeling of cortico-cortical structural connectivity. However, how heterochronous development in white matter structural connectivity spatially and temporally unfolds across the macroscale human connectome remains unknown. Leveraging non-invasive diffusion MRI data from both cross-sectional (N = 590) and longitudinal (baseline: N = 3,949; two-year follow-up: N = 3,155) developmental datasets, we found that structural connectivity development diverges along a pre-defined sensorimotor-association (S-A) connectional axis from ages 8.1 to 21.9 years. Specifically, we observed a continuum of developmental profiles that spans from an early childhood increase in connectivity strength in sensorimotor-sensorimotor connections to a late adolescent increase in association-association connectional strength. The S-A connectional axis also captured spatial variations in associations between structural connectivity and both higher-order cognition and general psychopathology. Together, our findings reveal a hierarchical axis in the development of structural connectivity across the human connectome.

12.
Adv Sci (Weinh) ; : e2401919, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976567

RESUMO

Renal cell carcinoma (RCC) is a substantial pathology of the urinary system with a growing prevalence rate. However, current clinical methods have limitations for managing RCC due to the heterogeneity manifestations of the disease. Metabolic analyses are regarded as a preferred noninvasive approach in clinics, which can substantially benefit the characterization of RCC. This study constructs a nanoparticle-enhanced laser desorption ionization mass spectrometry (NELDI MS) to analyze metabolic fingerprints of renal tumors (n = 456) and healthy controls (n = 200). The classification models yielded the areas under curves (AUC) of 0.938 (95% confidence interval (CI), 0.884-0.967) for distinguishing renal tumors from healthy controls, 0.850 for differentiating malignant from benign tumors (95% CI, 0.821-0.915), and 0.925-0.932 for classifying subtypes of RCC (95% CI, 0.821-0.915). For the early stage of RCC subtypes, the averaged diagnostic sensitivity of 90.5% and specificity of 91.3% in the test set is achieved. Metabolic biomarkers are identified as the potential indicator for subtype diagnosis (p < 0.05). To validate the prognostic performance, a predictive model for RCC participants and achieve the prediction of disease (p = 0.003) is constructed. The study provides a promising prospect for applying metabolic analytical tools for RCC characterization.

13.
J Gastrointest Oncol ; 15(3): 1224-1244, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38989433

RESUMO

Background: Matrix metalloproteinase 11 (MMP11) plays a vital role in cell proliferation, apoptosis, tumor angiogenesis, migration, and other basic processes. Currently, few studies have examined the value of MMP11 in pancreatic cancer in relation to prognostic risk, diagnostic indicators, and immunotherapy. This study aims to explore the association between MMP11 and the tumor immune microenvironment in pancreatic adenocarcinoma (PAAD). Methods: We selected clinical samples and data downloaded from The Cancer Genome Atlas and Genotype-Tissue Expression, in addition, we use other online data for further analysis. Through a comprehensive bioinformatics investigation, we systematically analyzed the clinical significance and expression level of MMP11 in pancreatic cancer. Results: MMP11 was overexpressed in many cancers, and a higher expression of MMP11 was associated with a poorer prognosis in pancreatic cancer. Conversely, the hypermethylation of MMP11 was associated with better overall survival. The MMP11 expression network had widespread effects on the prognosis and immune activation of PAAD. The expression of MMP11 was significantly associated with a variety of tumor-infiltrating immune cells. An association was also found between MMP11 expression and chemokines in PAAD. High MMP11 expression might be involved in immune cell migration to the tumor microenvironment. Conclusions: MMP11 is a prognostic biomarker for patients in pancreatic cancer and may regulate the tumor immune microenvironment. The potential effects and mechanisms of MMP11 in PAAD require further exploring.

14.
Eur J Neurosci ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39044301

RESUMO

Chemerin is an adipokine that contributes to metabolism regulation. Nucleus tractus solitarius (NTS) is the first relay station in the brain for accepting various visceral afferent activities for regulating cardiovascular activity. However, the roles of chemerin in the NTS in regulating sympathetic activity and blood pressure are almost unknown. This study aimed to determine the role and potential mechanism of chemerin in the NTS in modulating sympathetic outflow and blood pressure. Bilateral NTS microinjections were performed in anaesthetized adult male Sprague-Dawley rats. Renal sympathetic nerve activity (RSNA), mean arterial pressure (MAP) and heart rate (HR) were continuously recorded. Chemerin and its receptor chemokine-like receptor 1 (CMKLR1) were highly expressed in caudal NTS (cNTS). Microinjection of chemerin-9 to the cNTS increased RSNA, MAP and HR, which were prevented by CMKLR1 antagonist α-NETA, superoxide scavenger tempol or N-acetyl cysteine, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitors diphenyleneiodonium or apocynin. Chemerin-9 increased superoxide production and NADPH oxidase activity in the cNTS. The increased superoxide production induced by chemerin-9 was inhibited by α-NETA. The effects of cNTS microinjection of chemerin-9 on the RSNA, MAP and HR were attenuated by the pretreatment with paraventricular nucleus (PVN) microinjection of NMDA receptor antagonist MK-801 rather than AMPA/kainate receptor antagonist CNQX. These results indicate that chemerin-9 in the NTS increases sympathetic outflow, blood pressure and HR via CMKLR1-mediated NADPH oxidase activation and subsequent superoxide production in anaesthetized normotensive rats. Glutamatergic inputs in the PVN are needed for the chemerin-9-induced responses.

15.
J Colloid Interface Sci ; 675: 580-591, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38986331

RESUMO

Single-atom nanozymes (SANZs) have emerged as new media for enhancing chemodynamic therapy (CDT) to achieve desirable enzyme-like effects and excellent nanoscale specificity. However, non-optimal adsorption of Fenton-like reaction intermediates prevents SANZs from exerting kinetic activity and hinders the CDT effect. Herein, we demonstrate that heteroatom-doped Co single-atom nanozymes (SACNZs) with intrinsic charge transfer exhibit peroxidase-like properties and significantly improve the ability of CDT to treat Staphylococcus aureus-infected wounds. Density functional theory calculations showed that the S-induced charge transfer effect regulated the electronic distribution of the central metal more efficiently than P, thereby lowering the energy levels for the generation of OH and increasing the catalytic effect. Polyvinylpyrrolidone-modified SACNZs showed effects consistent with this theory in both in vitro antibacterial and in vivo ward management assays. This study systematically investigated the relationship between heteroatom-doping and the catalytic activity of metal centres, opening a new perspective for the application of CDT.

16.
Adv Sci (Weinh) ; : e2400061, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39005232

RESUMO

Although white matter (WM) accounts for nearly half of adult brain, its wiring diagram is largely unknown. Here, an approach is developed to construct WM networks by estimating interregional morphological similarity based on structural magnetic resonance imaging. It is found that morphological WM networks showed nontrivial topology, presented good-to-excellent test-retest reliability, accounted for phenotypic interindividual differences in cognition, and are under genetic control. Through integration with multimodal and multiscale data, it is further showed that morphological WM networks are able to predict the patterns of hamodynamic coherence, metabolic synchronization, gene co-expression, and chemoarchitectonic covariance, and associated with structural connectivity. Moreover, the prediction followed WM functional connectomic hierarchy for the hamodynamic coherence, is related to genes enriched in the forebrain neuron development and differentiation for the gene co-expression, and is associated with serotonergic system-related receptors and transporters for the chemoarchitectonic covariance. Finally, applying this approach to multiple sclerosis and neuromyelitis optica spectrum disorders, it is found that both diseases exhibited morphological dysconnectivity, which are correlated with clinical variables of patients and are able to diagnose and differentiate the diseases. Altogether, these findings indicate that morphological WM networks provide a reliable and biologically meaningful means to explore WM architecture in health and disease.

17.
Artigo em Inglês | MEDLINE | ID: mdl-38992486

RESUMO

BACKGROUND: Morphological awareness (MA) deficit is strongly associated with Chinese developmental dyslexia (DD). However, little is known about the white matter substrates underlying the MA deficit in Chinese children with DD. METHODS: In the current study, 34 Chinese children with DD and 42 typical developmental (TD) children were recruited to complete a diffusion magnetic resonance imaging scan and cognitive tests for MA. We conducted linear regression to test the correlation between MA and DTI metrics, the structural abnormalities of the tracts related to MA, and the interaction effect of DTI metrics by group on MA. RESULTS: First, MA was significant related to the right inferior occipito-frontal fascicle (IFO) and inferior longitudinal fsciculus (ILF), the bilateral thalamo-occipital (T_OCC) and the left arcuate fasciculus (AF); second, compared to TD children, Chinese children with DD had lower axial diffusivity (AD) in the right IFO and T_OCC; third, there were significant interactions between metrics (fractional anisotropy (FA) and radial diffusivity (RD)) of the right IFO and MA in groups. The FA and RD of the right IFO were significantly associated with MA in children with DD but not in TD children. CONCLUSION: In conclusion, compared to TD children, Chinese children with DD had axonal degeneration not only in the ventral tract (the right IFO) but also the visuospatial tract (the right T_OCC) which were associated with their MA deficit. And Chinese MA involved not only the ventral tracts, but also the visuospatial pathway and dorsal tracts.


Assuntos
Imagem de Tensor de Difusão , Dislexia , Substância Branca , Humanos , Dislexia/diagnóstico por imagem , Dislexia/patologia , Masculino , Feminino , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Criança , Conscientização , China , Povo Asiático , Imagem de Difusão por Ressonância Magnética , Testes Neuropsicológicos , Anisotropia , População do Leste Asiático
18.
Nanomicro Lett ; 16(1): 254, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39052161

RESUMO

Symmetric Na-ion cells using the NASICON-structured electrodes could simplify the manufacturing process, reduce the cost, facilitate the recycling post-process, and thus attractive in the field of large-scale stationary energy storage. However, the long-term cycling performance of such batteries is usually poor. This investigation reveals the unavoidable side reactions between the NASICON-type Na3V2(PO4)3 (NVP) anode and the commercial liquid electrolyte, leading to serious capacity fading in the symmetric NVP//NVP cells. To resolve this issue, an all-solid-state composite electrolyte is used to replace the liquid electrolyte so that to overcome the side reaction and achieve high anode/electrolyte interfacial stability. The ferroelectric engineering could further improve the interfacial ion conduction, effectively reducing the electrode/electrolyte interfacial resistances. The NVP//NVP cell using the ferroelectric-engineered composite electrolyte can achieve a capacity retention of 86.4% after 650 cycles. Furthermore, the electrolyte can also be used to match the Prussian-blue cathode NaxFeyFe(CN)6-z·nH2O (NFFCN). Outstanding long-term cycling stability has been obtained in the all-solid-state NVP//NFFCN cell over 9000 cycles at a current density of 500 mA g-1, with a fading rate as low as 0.005% per cycle.

19.
Biomedicines ; 12(7)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39062086

RESUMO

BACKGROUND: The involvement of neutrophil-related genes (NRGs) in patients with osteosarcoma (OS) has not been adequately explored. In this study, we aimed to examine the association between NRGs and the prognosis as well as the tumor microenvironment of OS. METHODS: The OS data were obtained from the TARGET-OS and GEO database. Initially, we extracted NRGs by intersecting 538 NRGs from single-cell RNA sequencing (scRNA-seq) data between aneuploid and diploid groups, as well as 161 up-regulated differentially expressed genes (DEGs) from the TARGET-OS datasets. Subsequently, we conducted Least Absolute Shrinkage and Selection Operator (Lasso) analyses to identify the hub genes for constructing the NRG-score and NRG-signature. To assess the prognostic value of the NRG signatures in OS, we performed Kaplan-Meier analysis and generated time-dependent receiver operating characteristic (ROC) curves. Gene enrichment analysis (GSEA) and gene set variation analysis (GSVA) were utilized to ascertain the presence of tumor immune microenvironments (TIMEs) and immunomodulators (IMs). Additionally, the KEGG neutrophil signaling pathway was evaluated using ssGSEA. Subsequently, PCR and IHC were conducted to validate the expression of hub genes and transcription factors (TFs) in K7M2-induced OS mice. RESULTS: FCER1G and C3AR1 have been identified as prognostic biomarkers for overall survival. The findings indicate a significantly improved prognosis for OS patients. The effectiveness and precision of the NRG signature in prognosticating OS patients were validated through survival ROC curves and an external validation dataset. The results clearly demonstrate that patients with elevated NRG scores exhibit decreased levels of immunomodulators, stromal score, immune score, ESTIMATE score, and infiltrating immune cell populations. Furthermore, our findings substantiate the potential role of SPI1 as a transcription factor in the regulation of the two central genes involved in osteosarcoma development. Moreover, our analysis unveiled a significant correlation and activation of the KEGG neutrophil signaling pathway with FCER1G and C3AR1. Notably, PCR and IHC demonstrated a significantly higher expression of C3AR1, FCER1G, and SPI1 in Balb/c mice induced with K7M2. CONCLUSIONS: Our research emphasizes the significant contribution of neutrophils within the TIME of osteosarcoma. The newly developed NRG signature could serve as a good instrument for evaluating the prognosis and therapeutic approach for OS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA