Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Sci Total Environ ; 926: 172009, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38547972

RESUMO

Algal blooms have been increasingly prevalent in recent years, especially in lakes and reservoirs; their accurate prediction is essential for preserving water quality. In this study, the observed chlorophyll a (chl-a) levels were assimilated into the Environmental Fluid Dynamics Code (EFDC) of algal bloom dynamics by using a particle filter (PF), and the state variables of water quality and model parameters were simultaneously updated to achieve enhanced algal bloom predictive performance. The developed data assimilation system for algal blooms was applied to Xiangxi Bay (XXB) in the Three Gorges Reservoir (TGR). The results show that the ensemble mean accuracy and reliability of the confidence intervals of the predicted state variables, including chl-a and indirectly updated phosphate (PO4), ammonium (NH4), and nitrate (NO3) levels, were considerably improved after PF assimilation. Thus, PF assimilation is an effective tool for the dynamic correction of parameters to represent their inherent variations. Increased assimilation frequency can effectively suppress the accumulation of model errors; therefore, the use of high-frequency water quality data for assimilation is recommended to ensure more accurate and reliable algal bloom prediction.


Assuntos
Eutrofização , Rios , Clorofila A , Reprodutibilidade dos Testes , Qualidade da Água , China , Monitoramento Ambiental
2.
Artigo em Inglês | MEDLINE | ID: mdl-36908173

RESUMO

Cohesin is a heteropentameric protein complex that contributes to various aspects of chromosome structure and function, such as sister chromatid cohesion, genome compaction, and DNA damage response. Previous studies have provided abundant information on architecture and regional structures of the cohesin complex, but the configuration and structural dynamics of the whole cohesin complex are still largely unknown, partly due to flexibility of its coiled coils. We studied cohesin organization and dynamics using in vivo functional mutation compensation. Specifically, we developed and applied genetic suppressor screening methods to identify second mutations in cohesin complex genes that rescue lethality caused by various site-specific abnormalities in the cohesin complex. Functional analysis of these missense suppressor mutations revealed novel features of cohesin. Here, we summarize recent genetic suppressor screening results and insights into: 1) cohesin's structural organization when holding chromosomal DNAs; 2) interaction between cohesin head-kleisin and hinge; 3) ATP-driven cohesin conformational changes for genome packaging.


Assuntos
Proteínas de Ciclo Celular , Proteínas Cromossômicas não Histona , Proteínas Cromossômicas não Histona/genética , Proteínas de Ciclo Celular/genética , DNA/química , Mutação , Coesinas
3.
Proc Natl Acad Sci U S A ; 119(33): e2208004119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35939705

RESUMO

The cohesin complex is required for sister chromatid cohesion and genome compaction. Cohesin coiled coils (CCs) can fold at break sites near midpoints to bring head and hinge domains, located at opposite ends of coiled coils, into proximity. Whether ATPase activities in the head play a role in this conformational change is yet to be known. Here, we dissected functions of cohesin ATPase activities in cohesin dynamics in Schizosaccharomyces pombe. Isolation and characterization of cohesin ATPase temperature-sensitive (ts) mutants indicate that both ATPase domains are required for proper chromosome segregation. Unbiased screening of spontaneous suppressor mutations rescuing the temperature lethality of cohesin ATPase mutants identified several suppressor hotspots in cohesin that located outside of ATPase domains. Then, we performed comprehensive saturation mutagenesis targeted to these suppressor hotspots. Large numbers of the identified suppressor mutations indicated several different ways to compensate for the ATPase mutants: 1) Substitutions to amino acids with smaller side chains in coiled coils at break sites around midpoints may enable folding and extension of coiled coils more easily; 2) substitutions to arginine in the DNA binding region of the head may enhance DNA binding; or 3) substitutions to hydrophobic amino acids in coiled coils, connecting the head and interacting with other subunits, may alter conformation of coiled coils close to the head. These results reflect serial structural changes in cohesin driven by its ATPase activities potentially for packaging DNAs.


Assuntos
Adenosina Trifosfatases , Proteínas de Ciclo Celular , Proteínas Cromossômicas não Histona , Segregação de Cromossomos , Schizosaccharomyces , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Substituição de Aminoácidos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , DNA/metabolismo , Mutação , Domínios Proteicos , Schizosaccharomyces/enzimologia , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Coesinas
4.
Open Biol ; 12(4): 210275, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35472286

RESUMO

Cohesin holds sister chromatids together and is cleaved by separase/Cut1 to release DNA during the transition from mitotic metaphase to anaphase. The cohesin complex consists of heterodimeric structural maintenance of chromosomes (SMC) subunits (Psm1 and Psm3), which possess a head and a hinge, separated by long coiled coils. Non-SMC subunits (Rad21, Psc3 and Mis4) bind to the SMC heads. Kleisin/Rad21's N-terminal domain (Rad21-NTD) interacts with Psm3's head-coiled coil junction (Psm3-HCJ). Spontaneous mutations that rescued the cleavage defects in temperature-sensitive (ts) separase mutants were identified in the interaction interface, but the underlying mechanism is yet to be understood. Here, we performed site-directed random mutagenesis to introduce single amino acid substitutions in Psm3-HCJ and Rad21-NTD, and then identified 300 mutations that rescued the cohesin-releasing defects in a separase ts mutant. Mutational analysis indicated that the amino acids involved in hydrophobic cores (which may be in close contact) in Psm3-HCJ and Rad21-NTD are hotspots, since 80 mutations (approx. 27%) were mapped in these locations. Properties of these substitutions indicate that they destabilize the interaction between the Psm3 head and Rad21-NTD. Thus, they may facilitate sister chromatid separation in a cleavage-independent way through cohesin structural re-arrangement.


Assuntos
Anáfase , Proteínas de Schizosaccharomyces pombe , Substituição de Aminoácidos , Proteínas de Ciclo Celular , Proteínas Cromossômicas não Histona , DNA , Proteínas de Schizosaccharomyces pombe/genética , Separase/genética , Coesinas
5.
Opt Express ; 29(17): 27600-27611, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34615173

RESUMO

Dual-comb spectroscopy (DCS) is a powerful spectroscopic technique, which is developing for the detection of transient species in reaction kinetics on a short time scale. Conventionally, the simultaneous determination of multiple species is limited to the requirement of broadband spectral measurement at the cost of the measurement speed and spectral resolution owing to the inherent trade-off among these characteristics in DCS. In this study, a high-speed multi-molecular sensing is demonstrated and achieved through using a programmable spectrum-encoded DCS technique, where multiple narrow encoding spectral bands are reserved selectively and other comb lines are filtered out. As a dual-comb spectrometer with a repetition rate of 108 MHz is encoded spectrally over a spectral coverage range of 1520 to 1580 nm, the measurement speed is increased 6.15 times and single-shot absorption spectra of multiple molecules (C2H2, HCN, CO, CO2) at a time scale of 208 µs are obtained. Compared to conventional single-shot dual-comb spectra, encoded dual-comb spectra have improved short-term signal-to-noise ratios (SNRs) by factors of 3.65 with four encoding bands and 5.68 with two encoding bands. Furthermore, a fiber-Bragg-grating-based encoded DCS is demonstrated, which reaches 17.1 times higher average SNR than that of the unencoded DCS. This spectrum-encoded technique can largely improve the DCS measurement speed, and thus is promising for use in studies on multi-species reaction kinetics.

6.
G3 (Bethesda) ; 9(8): 2667-2676, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31201205

RESUMO

Genetically controlled mechanisms of cell division and quiescence are vital for responding to changes in the nutritional environment and for cell survival. Previously, we have characterized temperature-sensitive (ts) mutants of the cwh43 gene in fission yeast, Schizosaccharomyces pombe, which is required for both cell proliferation and nitrogen starvation-induced G0 quiescence. Cwh43 encodes an evolutionarily conserved transmembrane protein that localizes in endoplasmic reticulum (ER). Defects in this protein fail to divide in low glucose and lose mitotic competence under nitrogen starvation, and also affect lipid metabolism. Here, we identified mutations of the pmr1 gene, which encodes an evolutionarily conserved Ca2+/Mn2+-transporting P-type ATPase, as potent extragenic suppressors of ts mutants of the cwh43 gene. Intriguingly, these pmr1 mutations specifically suppressed the ts phenotype of cwh43 mutants, among five P-type Ca2+- and/or Mn2+-ATPases reported in this organism. Cwh43 and Pmr1 co-localized in the ER. In cwh43 mutant cells, addition of excessive manganese to culture media enhanced the severe defect in cell morphology, and caused abnormal accumulation of a cell wall component, 1, 3-ß-glucan. In contrast, these abnormal phenotypes were abolished by deletion of the pmr1+ gene, as well as by removal of Mn2+ from the culture medium. Furthermore, nutrition-related phenotypes of cwh43 mutant cells were rescued in the absence of Pmr1. Our findings indicate that the cellular processes regulated by Cwh43 are appropriately balanced with Pmr1-mediated Mn2+ transport into the ER.


Assuntos
Ceramidas/química , Compostos de Manganês/química , Proteínas de Membrana/química , ATPases do Tipo-P/química , Proteínas de Schizosaccharomyces pombe/química , Schizosaccharomyces/enzimologia , Modelos Biológicos , Mutação , Fenótipo , Schizosaccharomyces/genética
7.
Proc Natl Acad Sci U S A ; 116(22): 10889-10898, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31072933

RESUMO

Cohesin and condensin play fundamental roles in sister chromatid cohesion and chromosome segregation, respectively. Both consist of heterodimeric structural maintenance of chromosomes (SMC) subunits, which possess a head (containing ATPase) and a hinge, intervened by long coiled coils. Non-SMC subunits (Cnd1, Cnd2, and Cnd3 for condensin; Rad21, Psc3, and Mis4 for cohesin) bind to the SMC heads. Here, we report a large number of spontaneous extragenic suppressors for fission yeast condensin and cohesin mutants, and their sites were determined by whole-genome sequencing. Mutants of condensin's non-SMC subunits were rescued by impairing the SUMOylation pathway. Indeed, SUMOylation of Cnd2, Cnd3, and Cut3 occurs in midmitosis, and Cnd3 K870 SUMOylation functionally opposes Cnd subunits. In contrast, cohesin mutants rad21 and psc3 were rescued by loss of the RNA elimination pathway (Erh1, Mmi1, and Red1), and loader mutant mis4 was rescued by loss of Hrp1-mediated chromatin remodeling. In addition, distinct regulations were discovered for condensin and cohesin hinge mutants. Mutations in the N-terminal helix bundle [containing a helix-turn-helix (HTH) motif] of kleisin subunits (Cnd2 and Rad21) rescue virtually identical hinge interface mutations in cohesin and condensin, respectively. These mutations may regulate kleisin's interaction with the coiled coil at the SMC head, thereby revealing a common, but previously unknown, suppression mechanism between the hinge and the kleisin N domain, which is required for successful chromosome segregation. We propose that in both condensin and cohesin, the head (or kleisin) and hinge may interact and collaboratively regulate the resulting coiled coils to hold and release chromosomal DNAs.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Complexos Multiproteicos/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , Segregação de Cromossomos , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Mutação/genética , Subunidades Proteicas/metabolismo , RNA/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Sumoilação , Coesinas
8.
G3 (Bethesda) ; 9(6): 1815-1823, 2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-30967422

RESUMO

The mitotic kinetochore forms at the centromere for proper chromosome segregation. Deposition of the centromere-specific histone H3 variant, spCENP-A/Cnp1, is vital for the formation of centromere-specific chromatin and the Mis17-Mis6 complex of the fission yeast Schizosaccharomyces pombe is required for this deposition. Here we identified extragenic suppressors for a Mis17-Mis6 complex temperature-sensitive (ts) mutant, mis17-S353P, using whole-genome sequencing. The large and small daughter nuclei phenotype observed in mis17-S353P was greatly rescued by these suppressors. Suppressor mutations in two ribonuclease genes involved in the mRNA decay pathway, exo2 and pan2, may affect Mis17 protein level, as mis17 mutant protein level was recovered in mis17-S353P exo2 double mutant cells. Suppressor mutations in EKC/KEOPS complex genes may not regulate Mis17 protein level, but restored centromeric localization of spCENP-A/Cnp1, Mis6 and Mis15 in mis17-S353P Therefore, the EKC/KEOPS complex may inhibit Mis17-Mis6 complex formation or centromeric localization. Mutational analysis in protein structure indicated that suppressor mutations in the EKC/KEOPS complex may interfere with its kinase activity or complex formation. Our results suggest that the mRNA decay pathway and the EKC/KEOPS complex negatively regulate Mis17-Mis6 complex-mediated centromere formation by distinct and unexpected mechanisms.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Centrômero/genética , Centrômero/metabolismo , Estabilidade de RNA , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Regulação Fúngica da Expressão Gênica , Genes Reporter , Complexos Multiproteicos/metabolismo , Mutação , Fenótipo
9.
G3 (Bethesda) ; 9(5): 1777-1783, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30914423

RESUMO

Essential genes cannot be deleted from the genome; therefore, temperature-sensitive (ts) mutants and cold-sensitive (cs) mutants are very useful to discover functions of essential genes in model organisms such as Schizosaccharomyces pombe and Saccharomyces cerevisiae To isolate ts/cs mutants for essential genes of interest, error-prone mutagenesis (or random mutagenesis) coupled with in vitro selection has been widely used. However, this method often introduces multiple silent mutations, in addition to the mutation responsible for ts/cs, with the result that one cannot discern which mutation is responsible for the ts/cs phenotype. In addition, the location of the responsible mutation introduced is random, whereas it is preferable to isolate ts/cs mutants with single amino acid substitutions, located in a targeted motif or domain of the protein of interest. To solve these problems, we have developed a method to isolate ts/cs mutants with single amino acid substitutions in targeted regions using site-directed mutagenesis. This method takes advantage of the empirical fact that single amino acid substitutions (L/S -> P or G/A -> E/D) often cause ts or cs. Application of the method to condensin and cohesin hinge domains was successful: ∼20% of the selected single amino acid substitutions turned out to be ts or cs. This method is versatile in fission yeast and is expected to be broadly applicable to isolate ts/cs mutants with single amino acid substitutions in targeted regions of essential genes. 11 condensin hinge ts mutants were isolated using the method and their responsible mutations are broadly distributed in hinge domain. Characterization of these mutants will be very helpful to understand the function of hinge domain.


Assuntos
Adenosina Trifosfatases/genética , Substituição de Aminoácidos , Proteínas de Ligação a DNA/genética , Complexos Multiproteicos/genética , Mutação , Domínios e Motivos de Interação entre Proteínas , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Sequência de Aminoácidos , Sequência Conservada , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Relação Estrutura-Atividade , Temperatura
10.
Proc Natl Acad Sci U S A ; 115(21): E4833-E4842, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29735656

RESUMO

Cohesin is a fundamental protein complex that holds sister chromatids together. Separase protease cleaves a cohesin subunit Rad21/SCC1, causing the release of cohesin from DNA to allow chromosome segregation. To understand the functional organization of cohesin, we employed next-generation whole-genome sequencing and identified numerous extragenic suppressors that overcome either inactive separase/Cut1 or defective cohesin in the fission yeast Schizosaccharomyces pombe Unexpectedly, Cut1 is dispensable if suppressor mutations cause disorders of interfaces among essential cohesin subunits Psm1/SMC1, Psm3/SMC3, Rad21/SCC1, and Mis4/SCC2, the crystal structures of which suggest physical and functional impairment at the interfaces of Psm1/3 hinge, Psm1 head-Rad21, or Psm3 coiled coil-Rad21. Molecular-dynamics analysis indicates that the intermolecular ß-sheets in the cohesin hinge of cut1 suppressor mutants remain intact, but a large mobility change occurs at the coiled coil bound to the hinge. In contrast, suppressors of rad21-K1 occur in either the head ATPase domains or the Psm3 coiled coil that interacts with Rad21. Suppressors of mis4-G1326E reside in the head of Psm3/1 or the intragenic domain of Mis4. These may restore the binding of cohesin to DNA. Evidence is provided that the head and hinge of SMC subunits are proximal, and that they coordinate to form arched coils that can hold or release DNA by altering the angles made by the arched coiled coils. By combining molecular modeling with suppressor sequence analysis, we propose a cohesin structure designated the "hold-and-release" model, which may be considered as an alternative to the prevailing "ring" model.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , DNA Fúngico/metabolismo , Mutação , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Proteínas de Ciclo Celular/genética , Cromátides/fisiologia , Proteínas Cromossômicas não Histona/genética , Segregação de Cromossomos , DNA Fúngico/genética , Modelos Moleculares , Proteínas Nucleares/genética , Fosfoproteínas/genética , Fosforilação , Conformação Proteica , Subunidades Proteicas , Schizosaccharomyces/crescimento & desenvolvimento , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Supressão Genética , Coesinas
11.
G3 (Bethesda) ; 8(3): 1031-1038, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29352077

RESUMO

Suppressor screening is a powerful method to identify genes that, when mutated, rescue the temperature sensitivity of the original mutation. Previously, however, identification of suppressor mutations has been technically difficult. Due to the small genome size of Schizosaccharomyces pombe, we developed a spontaneous suppressor screening technique, followed by a cost-effective sequencing method. Genomic DNAs of 10 revertants that survived at the restrictive temperature of the original temperature sensitive (ts) mutant were mixed together as one sample before constructing a library for sequencing. Responsible suppressor mutations were identified bioinformatically based on allele frequency. Then, we isolated a large number of spontaneous extragenic suppressors for three ts mutants that exhibited defects in chromosome segregation at their restrictive temperature. Screening provided new insight into mechanisms of chromosome segregation: loss of Ufd2 E4 multi-ubiquitination activity suppresses defects of an AAA ATPase, Cdc48. Loss of Wpl1, a releaser of cohesin, compensates for the Eso1 mutation, which may destabilize sister chromatid cohesion. The segregation defect of a ts histone H2B mutant is rescued if it fails to be deubiquitinated by the SAGA complex, because H2B is stabilized by monoubiquitination.


Assuntos
Segregação de Cromossomos/genética , Genoma Fúngico , Estudo de Associação Genômica Ampla , Genômica , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Sequência de Aminoácidos , Genômica/métodos , Mutação , Estrutura Secundária de Proteína , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Sequenciamento Completo do Genoma
12.
Sci Total Environ ; 592: 649-661, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28318698

RESUMO

Phosphorus (P) fate and transport plays a crucial role in the ecology of rivers and reservoirs in which eutrophication is limited by P. A key uncertainty in models used to help manage P in such systems is the partitioning of P to suspended and bed sediments. By analyzing data from field and laboratory experiments, we stochastically characterize the variability of the partition coefficient (Kd) and derive spatio-temporal solutions for P transport in the Three Gorges Reservoir (TGR). We formulate a set of stochastic partial different equations (SPDEs) to simulate P transport by randomly sampling Kd from the measured distributions, to obtain statistical descriptions of the P concentration and retention in the TGR. The correspondence between predicted and observed P concentrations and P retention in the TGR combined with the ability to effectively characterize uncertainty suggests that a model that incorporates the observed variability can better describe P dynamics and more effectively serve as a tool for P management in the system. This study highlights the importance of considering parametric uncertainty in estimating uncertainty/variability associated with simulated P transport.

13.
Sci Total Environ ; 554-555: 266-75, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26956174

RESUMO

Carbon cycling in inland waters has been identified as an important, but poorly constrained component of the global carbon cycle. In this study, we compile and analyze particulate organic carbon (POC) concentration data from 1145 U.S. Geological Survey (USGS) gauge stations to investigate the spatial variability and environmental controls of POC concentration. We observe substantial spatial variability in POC concentration (1.43 ± 2.56 mg C/L, mean ± one standard deviation), with the Upper Mississippi River basin and the Piedmont region in the eastern U.S. having the highest POC concentration. Further, we employ generalized linear models (GLMs) to analyze the impacts of sediment transport and algae growth as well as twenty-one other environmental factors on the POC variability. Suspended sediment and chlorophyll-a explain 26% and 17% of the variability in POC concentration, respectively. At the national level, the twenty-one environmental factors combined can explain ca. 40% of the spatial variance in POC concentration. At the national scale, urban area and soil clay content show significant negative correlations with POC concentration, whereas soil water content and soil bulk density correlate positively with POC. In addition, total phosphorus concentration and dam density correlate positively with POC concentration. Furthermore, regional scale analyses reveal substantial variation in environmental controls of POC concentration across eighteen major water resource regions in the U.S. The POC concentration and associated environmental controls also vary non-monotonically from headwaters to large rivers. These findings indicate complex interactions among multiple factors in regulating POC concentration over different spatial scales and across various sections of the river networks. This complexity, together with the large unexplained uncertainty, highlights the need for considering non-linear interplays of multiple environmental factors and developing appropriate methodologies to track the transformation and transport of POC along the terrestrial-aquatic interfaces.


Assuntos
Ciclo do Carbono , Carbono/análise , Água Doce/química , Poluentes da Água/análise , Monitoramento Ambiental , Substâncias Húmicas/análise , Estados Unidos
14.
Genes Cells ; 20(6): 481-99, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25847133

RESUMO

Condensin plays fundamental roles in chromosome dynamics. In this study, we determined the binding sites of condensin on fission yeast (Schizosaccharomyces pombe) chromosomes at the level of nucleotide sequences using chromatin immunoprecipitation (ChIP) and ChIP sequencing (ChIP-seq). We found that condensin binds to RNA polymerase I-, II- and III-transcribed genes during both mitosis and interphase, and we focused on pol II constitutive and inducible genes. Accumulation sites for condensin are distinct from those of cohesin and DNA topoisomerase II. Using cell cycle stage and heat-shock-inducible genes, we show that pol II-mediated transcripts cause condensin accumulation. First, condensin's enrichment on mitotically activated genes was abolished by deleting the sep1(+) gene that encodes an M-phase-specific forkhead transcription factor. Second, by raising the temperature, condensin accumulation was rapidly induced at heat-shock protein genes in interphase and even during mid-mitosis. In interphase, condensin accumulates preferentially during the postreplicative phase. Pol II-mediated transcription was neither repressed nor activated by condensin, as levels of transcripts per se did not change when mutant condensin failed to associate with chromosomal DNA. However, massive chromosome missegregation occurred, suggesting that abundant pol II transcription may require active condensin before proper chromosome segregation.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Choque Térmico/genética , Complexos Multiproteicos/metabolismo , RNA Polimerase II/metabolismo , RNA Mensageiro/metabolismo , Schizosaccharomyces/metabolismo , Imunoprecipitação da Cromatina , Segregação de Cromossomos , Fatores de Transcrição Forkhead/metabolismo , Pontos de Checagem da Fase G2 do Ciclo Celular , Mitose , Dados de Sequência Molecular , Schizosaccharomyces/citologia , Schizosaccharomyces/enzimologia , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Regulação para Cima
15.
PLoS One ; 10(3): e0119347, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25764183

RESUMO

Condensin, a central player in eukaryotic chromosomal dynamics, contains five evolutionarily-conserved subunits. Two SMC (structural maintenance of chromosomes) subunits contain ATPase, hinge, and coiled-coil domains. One non-SMC subunit is similar to bacterial kleisin, and two other non-SMC subunits contain HEAT (similar to armadillo) repeats. Here we report isolation and characterization of 21 fission yeast (Schizosaccharomyces pombe) mutants for three non-SMC subunits, created using error-prone mutagenesis that resulted in single-amino acid substitutions. Beside condensation, segregation, and DNA repair defects, similar to those observed in previously isolated SMC and cnd2 mutants, novel phenotypes were observed for mutants of HEAT-repeats containing Cnd1 and Cnd3 subunits. cnd3-L269P is hypersensitive to the microtubule poison, thiabendazole, revealing defects in kinetochore/centromere and spindle assembly checkpoints. Three cnd1 and three cnd3 mutants increased cell size and doubled DNA content, thereby eliminating the haploid state. Five of these mutations reside in helix B of HEAT repeats. Two non-SMC condensin subunits, Cnd1 and Cnd3, are thus implicated in ploidy maintenance.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Centrômero/metabolismo , Reparo do DNA , DNA Fúngico/metabolismo , Ploidias , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Centrômero/efeitos dos fármacos , Cromossomos Fúngicos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Mutação , Estrutura Terciária de Proteína , Schizosaccharomyces/metabolismo , Tiabendazol/farmacologia
16.
Genome Res ; 23(4): 705-15, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23249883

RESUMO

Spontaneous DNA damage may occur nonrandomly in the genome, especially when genome maintenance mechanisms are undermined. We developed single-strand DNA (ssDNA)-associated protein immunoprecipitation followed by sequencing (SPI-seq) to map genomic hotspots of DNA damage. We demonstrated this method with Rad52, a homologous recombination repair protein, which binds to ssDNA formed at DNA lesions. SPI-seq faithfully detected, in fission yeast, Rad52 enrichment at artificially induced double-strand breaks (DSBs) as well as endogenously programmed DSBs for mating-type switching. Applying Rad52 SPI-seq to fission yeast mutants defective in DNA helicase Pfh1 or histone H3K56 deacetylase Hst4, led to global views of DNA lesion hotspots emerging in these mutants. We also found serendipitously that histone dosage aberration can activate retrotransposon Tf2 and cause the accumulation of a Tf2 cDNA species bound by Rad52. SPI-seq should be widely applicable for mapping sites of DNA damage and uncovering the causes of genome instability.


Assuntos
Imunoprecipitação da Cromatina , Mapeamento Cromossômico , Dano ao DNA , DNA de Cadeia Simples , Sequenciamento de Nucleotídeos em Larga Escala , Imunoprecipitação da Cromatina/métodos , Quebras de DNA de Cadeia Dupla , DNA Helicases/genética , Replicação do DNA , Genômica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Histona Desacetilases/genética , Histonas/genética , Histonas/metabolismo , Ligação Proteica , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
17.
Genome Biol ; 11(6): R60, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20537132

RESUMO

A genome-wide deletion library is a powerful tool for probing gene functions and one has recently become available for the fission yeast Schizosaccharomyces pombe. Here we use deep sequencing to accurately characterize the barcode sequences in the deletion library, thus enabling the quantitative measurement of the fitness of fission yeast deletion strains by barcode sequencing.


Assuntos
Deleção de Genes , Aptidão Genética , Schizosaccharomyces/genética , Análise de Sequência de DNA/métodos , Sequência de Bases , Camptotecina/farmacologia , Análise por Conglomerados , Meios de Cultura/farmacologia , Processamento Eletrônico de Dados , Inativação Gênica/efeitos dos fármacos , Aptidão Genética/efeitos dos fármacos , Haploidia , Hidroxiureia/farmacologia , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Mutagênicos/farmacologia , Reprodutibilidade dos Testes , Schizosaccharomyces/efeitos dos fármacos , Schizosaccharomyces/crescimento & desenvolvimento , Tiabendazol/farmacologia
18.
Sci China C Life Sci ; 52(5): 483-91, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19471873

RESUMO

To meet the needs of large-scale genomic/genetic studies, the next-generation massively parallelized sequencing technologies provide high throughput, low cost and low labor-intensive sequencing service, with subsequent bioinformatic software and laboratory methods developed to expand their applications in various types of research. PCR-based genomic/genetic studies, which have significant usage in association studies like cancer research, haven't benefited much from those next-generation sequencing technologies, because the shortgun re-sequencing strategy used by such sequencing machines as the Illumina/Solexa Genome Analyzer may not be applied to direct re-sequencing of short-length target regions like those in PCR-based genomic/genetic studies. Although several methods have been proposed to solve this problem, including microarray-based genomic selections and selector-based technologies, they require advanced equipment and procedures which limit their applications in many laboratories. By contrast, we overcame such potential drawbacks by utilizing a ligation by amplification (LBA) protocol, a method using a pair of Universal Adapters to randomly ligate target regions in a two-step-PCR procedure, whose Long LBA products were easily fragmented and sequenced on the next-generation sequencing machine. In this concept-proven study, we chose the consensus coding sequences of two human cancer genes: BRCA1 and BRCA2 as target regions, specifically designed LBA primer pairs to amplify and randomly ligate them. 70 target sequences were successfully amplified and ligated into Long LBA products, which were then fragmented to construct DNA libraries for sequencing on both a conventional Sanger sequencer ABI 3730xl DNA Analyzer and the next-generation 'synthesis by sequencing technology' Illumina/Solexa Genome Analyzer. Bioinformatic analysis demonstrated the utility and efficiency (including the coverage and depth of each target sequence and the SNPs detection effectiveness) of using the LBA protocol in facilitating PCR-based re-sequencing and genetic-variant-detection studies on the next-generation sequencing machine, raising the prospect of various PCR-based genomic/genetic studies using this strategy.


Assuntos
Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias/genética , Reação em Cadeia da Polimerase/métodos , Análise de Sequência de DNA/métodos , Biologia Computacional/métodos , Primers do DNA/genética , Predisposição Genética para Doença/genética , Genômica/métodos , Humanos , Polimorfismo de Nucleotídeo Único , Reprodutibilidade dos Testes , Análise de Sequência de DNA/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA