Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neural Regen Res ; 19(10): 2259-2269, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38488560

RESUMO

JOURNAL/nrgr/04.03/01300535-202410000-00027/figure1/v/2024-02-06T055622Z/r/image-tiff Spinal cord injury is a disabling condition with limited treatment options. Multiple studies have provided evidence suggesting that small extracellular vesicles (SEVs) secreted by bone marrow mesenchymal stem cells (MSCs) help mediate the beneficial effects conferred by MSC transplantation following spinal cord injury. Strikingly, hypoxia-preconditioned bone marrow mesenchymal stem cell-derived SEVs (HSEVs) exhibit increased therapeutic potency. We thus explored the role of HSEVs in macrophage immune regulation after spinal cord injury in rats and their significance in spinal cord repair. SEVs or HSEVs were isolated from bone marrow MSC supernatants by density gradient ultracentrifugation. HSEV administration to rats via tail vein injection after spinal cord injury reduced the lesion area and attenuated spinal cord inflammation. HSEVs regulate macrophage polarization towards the M2 phenotype in vivo and in vitro. MicroRNA sequencing and bioinformatics analyses of SEVs and HSEVs revealed that miR-146a-5p is a potent mediator of macrophage polarization that targets interleukin-1 receptor-associated kinase 1. Reducing miR-146a-5p expression in HSEVs partially attenuated macrophage polarization. Our data suggest that HSEVs attenuate spinal cord inflammation and injury in rats by transporting miR-146a-5p, which alters macrophage polarization. This study provides new insights into the application of HSEVs as a therapeutic tool for spinal cord injury.

2.
CNS Neurosci Ther ; 30(3): e14428, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37641874

RESUMO

BACKGROUND: Secondary injury after spinal cord injury (SCI) is a major obstacle to their neurological recovery. Among them, changes in astrocyte phenotype regulate secondary injury dominated by neuroinflammation. Hypoxia-preconditioned mesenchymal stem cells (MSCs)-derived extracellular vesicle (H-EV) plays a multifaceted role in secondary injury by interacting with cellular components and signaling pathways. They possess anti-inflammatory properties, regulate oxidative stress, and modulate apoptotic pathways, promoting cell survival and reducing neuronal loss. Given the unique aspects of secondary injury, H-EV shows promise as a therapeutic approach to mitigate its devastating consequences. Our study aimed to determine whether H-EV could promote SCI repair by altering the phenotype of astrocytes. METHODS: Rat bone marrow MSCs (BMSCs) and EVs secreted by them were extracted and characterized. After the SCI model was successfully constructed, EV and H-EV were administered into the tail vein of the rats, respectively, and then their motor function was evaluated by the Basso-Beattie-Bresnahan (BBB) score, Catwalk footprint analysis, and electrophysiological monitoring. The lesion size of the spinal cord was evaluated by hematoxylin-eosin (HE) staining. The key point was to use glial fibrillary acidic protein (GFAP) as a marker of reactive astrocytes to co-localize with A1-type marker complement C3 and A2-type marker S100A10, respectively, to observe phenotypic changes in astrocytes within tissues. The western blot (WB) of the spinal cord was also used to verify the results. We also compared the efficacy differences in apoptosis and inflammatory responses using terminal deoxynucleotidyl transferase dUTP terminal labeling (TUNEL) assay, WB, and enzyme-linked immunosorbent assay (ELISA). Experiments in vitro were also performed to verify the results. Subsequently, we performed microRNA (miRNA) sequencing analysis of EV and H-EV and carried out a series of knockdown and overexpression experiments to further validate the mechanism by which miRNA in H-EV plays a role in promoting astrocyte phenotypic changes, as well as the regulated signaling pathways, using WB both in vivo and in vitro. RESULTS: Our findings suggest that H-EV is more effective than EV in the recovery of motor function, anti-apoptosis, and anti-inflammatory effects after SCI, both in vivo and in vitro. More importantly, H-EV promoted the conversion of A1 astrocytes into A2 astrocytes more than EV. Moreover, miR-21, which was found to be highly expressed in H-EV by miRNA sequencing results, was also demonstrated to influence changes in astrocyte phenotype through a series of knockdown and overexpression experiments. At the same time, we also found that H-EV might affect astrocyte phenotypic alterations by delivering miR-21 targeting the JAK2/STAT3 signaling pathway. CONCLUSION: H-EV exerts neuroprotective effects by delivering miR-21 to promote astrocyte transformation from the A1 phenotype to the A2 phenotype, providing new targets and ideas for the treatment of SCI.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , MicroRNAs , Traumatismos da Medula Espinal , Animais , Ratos , Anti-Inflamatórios , Astrócitos/metabolismo , Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , Ratos Sprague-Dawley , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia
3.
Neural Regen Res ; 18(11): 2406-2412, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37282470

RESUMO

Although there are challenges in treating traumatic central nervous system diseases, mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have recently proven to be a promising non-cellular therapy. We comprehensively evaluated the efficacy of mesenchymal stem cell-derived extracellular vesicles in traumatic central nervous system diseases in this meta-analysis based on preclinical studies. Our meta-analysis was registered at PROSPERO (CRD42022327904, May 24, 2022). To fully retrieve the most relevant articles, the following databases were thoroughly searched: PubMed, Web of Science, The Cochrane Library, and Ovid-Embase (up to April 1, 2022). The included studies were preclinical studies of mesenchymal stem cell-derived extracellular vesicles for traumatic central nervous system diseases. The Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE)'s risk of bias tool was used to examine the risk of publication bias in animal studies. After screening 2347 studies, 60 studies were included in this study. A meta-analysis was conducted for spinal cord injury (n = 52) and traumatic brain injury (n = 8). The results indicated that mesenchymal stem cell-derived extracellular vesicles treatment prominently promoted motor function recovery in spinal cord injury animals, including rat Basso, Beattie and Bresnahan locomotor rating scale scores (standardized mean difference [SMD]: 2.36, 95% confidence interval [CI]: 1.96-2.76, P < 0.01, I2 = 71%) and mouse Basso Mouse Scale scores (SMD = 2.31, 95% CI: 1.57-3.04, P = 0.01, I2 = 60%) compared with controls. Further, mesenchymal stem cell-derived extracellular vesicles treatment significantly promoted neurological recovery in traumatic brain injury animals, including the modified Neurological Severity Score (SMD = -4.48, 95% CI: -6.12 to -2.84, P < 0.01, I2 = 79%) and Foot Fault Test (SMD = -3.26, 95% CI: -4.09 to -2.42, P = 0.28, I2 = 21%) compared with controls. Subgroup analyses showed that characteristics may be related to the therapeutic effect of mesenchymal stem cell-derived extracellular vesicles. For Basso, Beattie and Bresnahan locomotor rating scale scores, the efficacy of allogeneic mesenchymal stem cell-derived extracellular vesicles was higher than that of xenogeneic mesenchymal stem cell-derived extracellular vesicles (allogeneic: SMD = 2.54, 95% CI: 2.05-3.02, P = 0.0116, I2 = 65.5%; xenogeneic: SMD: 1.78, 95%CI: 1.1-2.45, P = 0.0116, I2 = 74.6%). Mesenchymal stem cell-derived extracellular vesicles separated by ultrafiltration centrifugation combined with density gradient ultracentrifugation (SMD = 3.58, 95% CI: 2.62-4.53, P < 0.0001, I2 = 31%) may be more effective than other EV isolation methods. For mouse Basso Mouse Scale scores, placenta-derived mesenchymal stem cell-derived extracellular vesicles worked better than bone mesenchymal stem cell-derived extracellular vesicles (placenta: SMD = 5.25, 95% CI: 2.45-8.06, P = 0.0421, I2 = 0%; bone marrow: SMD = 1.82, 95% CI: 1.23-2.41, P = 0.0421, I2 = 0%). For modified Neurological Severity Score, bone marrow-derived MSC-EVs worked better than adipose-derived MSC-EVs (bone marrow: SMD = -4.86, 95% CI: -6.66 to -3.06, P = 0.0306, I2 = 81%; adipose: SMD = -2.37, 95% CI: -3.73 to -1.01, P = 0.0306, I2 = 0%). Intravenous administration (SMD = -5.47, 95% CI: -6.98 to -3.97, P = 0.0002, I2 = 53.3%) and dose of administration equal to 100 µg (SMD = -5.47, 95% CI: -6.98 to -3.97, P < 0.0001, I2 = 53.3%) showed better results than other administration routes and doses. The heterogeneity of studies was small, and sensitivity analysis also indicated stable results. Last, the methodological quality of all trials was mostly satisfactory. In conclusion, in the treatment of traumatic central nervous system diseases, mesenchymal stem cell-derived extracellular vesicles may play a crucial role in promoting motor function recovery.

4.
Front Neurosci ; 17: 1147194, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37065922

RESUMO

Background: There was still no effective treatment for traumatic brain injury (TBI). Recently, many preclinical studies had shown promising efficacy of extracellular vesicles (EVs) from various cell sources. Our aim was to compare which cell-derived EVs were most effective in treating TBI through a network meta-analysis. Methods: We searched four databases and screened various cell-derived EVs for use in preclinical studies of TBI treatment. A systematic review and network meta-analysis were conducted for two outcome indicators, modified Neurological Severity Score (mNSS) and Morris Water Maze (MWM), and they were ranked by the surface under the cumulative ranking curves (SUCRA). Bias risk assessment was performed with SYRCLE. R software (version 4.1.3, Boston, MA, USA) was used for data analysis. Results: A total of 20 studies were included in this study, involving 383 animals. Astrocyte-derived extracellular vesicles (AEVs) ranked first in response to mNSS at day 1 (SUCRA: 0.26%), day 3 (SUCRA: 16.32%), and day 7 (SUCRA: 9.64%) post-TBI. Extracellular vesicles derived from mesenchymal stem cells (MSCEVs) were most effective in mNSS assessment on day 14 (SUCRA: 21.94%) and day 28 (SUCRA: 6.26%), as well as MWM's escape latency (SUCRA: 6.16%) and time spent in the target quadrant (SUCRA: 86.52%). The result of mNSS analysis on day 21 showed that neural stem cell-derived extracellular vesicles (NSCEVs) had the best curative effect (SUCRA: 6.76%). Conclusion: AEVs may be the best choice to improve early mNSS recovery after TBI. The efficacy of MSCEVs may be the best in the late mNSS and MWM after TBI. Systematic review registration: https://www.crd.york.ac.uk/prospero/, identifier CRD42023377350.

5.
Front Surg ; 10: 1024302, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37021092

RESUMO

Objective: The purpose of this study was to retrospectively collect the relevant clinical data of lumbar disc herniation (LDH) patients treated with the tubular microdiscectomy (TMD) technique, and to develop and validate a prediction model for predicting the treatment improvement rate of TMD in LDH patients at 1 year after surgery. Methods: Relevant clinical data of LDH patients treated with the TMD technology were retrospectively collected. The follow-up period was 1 year after surgery. A total of 43 possible predictors were included, and the treatment improvement rate of the Japanese Orthopedic Association (JOA) score of the lumbar spine at 1 year after TMD was used as an outcome measure. The least absolute shrinkage and selection operator (LASSO) method was used to screen out the most important predictors affecting the outcome indicators. In addition, logistic regression was used to construct the model, and a nomogram of the prediction model was drawn. Results: A total of 273 patients with LDH were included in this study. Age, occupational factors, osteoporosis, Pfirrmann classification of intervertebral disc degeneration, and preoperative Oswestry Disability Index (ODI) were screened out from the 43 possible predictors based on LASSO regression. A total of 5 predictors were included while drawing a nomogram of the model. The area under the ROC curve (AUC) value of the model was 0.795. Conclusions: In this study, we successfully developed a good clinical prediction model that can predict the effect of TMD for LDH. A web calculator was designed on the basis of the model (https://fabinlin.shinyapps.io/DynNomapp/).

6.
Br J Neurosurg ; 37(2): 193-198, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35379043

RESUMO

PURPOSE: Complete removal of paraspinal schwannomas is generally required for full patient recovery. However, traditional open approaches to surgery are often extensive and may lead to more postoperative complications. Herein, we present our preliminary experience with tubular minimally invasive resection of McCormick type II paraspinal schwannomas and describe the technique by specifically reviewing two patient cases. MATERIALS AND METHODS: Type of study: Retrospective: Level of evidence: Level III: A total of 15 patients (six men; nine women; median age, 45 years) who underwent minimally invasive resection of McCormick type II paraspinal schwannomas were retrospectively analysed. Preoperative characteristics, including age, location of tumour, Visual Analog Scale score, Modified McCormick Scale score, and intraoperative findings and complications were analysed. Furthermore, postoperative outcomes using imaging, such as magnetic resonance imaging (MRI) and thin-slice computed tomography, and postoperative neural status using the Modified McCormick and Visual Analog Scales were also assessed. RESULTS: The mean operation time was 134.72 ± 34.21 min. The estimated mean blood loss and mean hospital stay were 25.33 ± 17.27 ml and 7.67 ± 1.88 days, respectively. Regarding complications, one of the patients had a local wound infection, which improved after antibiotic treatment. The total resection in all cases was verified using postoperative MRI. CONCLUSION: The tubular minimally invasive approach is a feasible technique for the total resection of McCormick type II paraspinal schwannomas. Using this technique, surgeons can resect paraspinal schwannomas while maintaining spinal stability.


Assuntos
Imageamento por Ressonância Magnética , Neurilemoma , Masculino , Humanos , Feminino , Pessoa de Meia-Idade , Estudos Retrospectivos , Laminectomia/métodos , Procedimentos Cirúrgicos Minimamente Invasivos/métodos , Neurilemoma/diagnóstico por imagem , Neurilemoma/cirurgia , Resultado do Tratamento
7.
Front Oncol ; 12: 1024877, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36419884

RESUMO

Objective: Minimally invasive surgical resection of lumbar dumbbell-shaped tumors is rarely reported. We retrospectively collected clinical data of lumbar dumbbell-shaped tumors treated with the spinal microtubular technique to evaluate the feasibility, complications and efficacy of the surgical methods. Methods: From September 2013 to August 2021, clinical data of patients with lumbar dumbbell-shaped tumors that underwent paravertebral approach and micro-tubular tumorectomy (PAMT) were collected; neurological function was assessed using the pain visual analog scale (VAS) and the Japanese Orthopaedic Association (JOA) score. Results: A total of 46 patients that underwent PAMT were included in this study. In all patients, total resection of the tumor was performed at one stage (100%). The median follow-up period was 27.5 months (P25, P75: 16.5- 57 months). Symptoms such as pain or lower extremity weakness were significantly relieved in 46 patients. The postoperative VAS score and JOA score were significantly higher compared with preoperative scores (p <0.001), and the patients had no tumor recurrence or spinal instability. According to the Eden classification, there were 7 cases of type I, 8 cases of type II, 15 cases of type III, and 16 cases of type IV. In the comparison of the improvement of VAS score at 12 months after PAMT, there were significant differences among different types of tumors (H =15.756, p =0.001); type I was better than type III (Z =2.768, p =0.029) and type IV (Z =2.763, p =0.029), and type II was also better than type III (Z =2.679, p =0.037) and type IV (Z =2.708, p =0.034). With respect to estimated blood loss (Z =-3.041, p =0.013) and postoperative hospital stays (Z =-3.003, p =0.014), type IV was less than type III; and type IV was also less than type II about operation time (Z =-2.653, p =0.040). Conclusion: In small lumbar dumbbell-shaped tumors, PAMT is indicated for Eden types I-IV and different pathological types of tumors, and can achieve complete resection of the tumor (GTR) in one stage with a good prognosis.

8.
Front Neurosci ; 16: 989295, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36278023

RESUMO

Background: Although some previous studies have indicated that extracellular vesicles (EVs) secreted from miRNA-modified mesenchymal stem cells (MSCs) may be more effective as compared with control EVs in the treatment of rats with spinal cord injuries (SCI), the efficacy of this treatment modality remains controversial. Objectives: The current study comprehensively evaluated the efficacy of different administered doses of EVs, including miRNA-overexpressing MSCs-derived EVs, among SCI rats. The efficacy of EVs' treatment was evaluated in different SCI models to provide evidence for preclinical trials. Methods: We extensively searched the following databases to identify relevant studies: PubMed, Embase, Scopus, The Cochrane Library, and Web of Science (from inception to July 20, 2022). Two trained investigators independently screened literature, extracted the data, and evaluated literature quality. Results: Thirteen studies were included in this network meta-analysis. The results demonstrated that miRNA-overexpressing MSCs-derived EVs (100 and 200 µg of total protein of EVs) significantly improved hind limb motor function in rats at early stages of SCI (i.e., at 3 days after injury) as compared with EVs (100 and 200 µg of total protein of EVs, respectively). However, in the middle and late stages (14 and 28 days), there were no statistically significant differences between EVs with 200 µg dosages and miRNA-loaded EVs with 100 µg dosages. In the late stages (28 days), there were no statistically significant differences between EVs with 100 µg dosages and miRNA-loaded EVs with 200 µg dosages. We found that miRNA-overexpressing MSCs-derived EVs significantly improved motor function among early-stage SCI rats in a compression and contusion model (3 days) as compared with MSCs-derived EVs and miRNA-overexpressing MSCs-derived EVs likewise significantly improved motor function among SCI rats in a contusion model at middle and late stages (14 and 28 days). Conclusion: Our results suggest that miRNA-overexpressing MSCs-derived EVs (200 µg of total protein of EVs) may be the best choice for the effective treatment of SCI, and miRNA-overexpressing MSCs-derived EVs may likewise be the best choice for treating contusions. However, there are some risks of bias in our included studies, and the mechanisms underlying the efficacy of EVs remain unclear.Systematic review registration: https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=282051, identifier: CRD42021282051.

9.
Front Mol Neurosci ; 15: 926928, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35903172

RESUMO

Spinal cord injury (SCI) is an enormous public health concern affecting approximately 250,000-500,000 people worldwide each year. It is mostly irreversible considering the limitations of currently available treatments, and its prevention and management have been the prime focus of many studies. Mesenchymal stem cell (MSC) transplantation is one of the most promising treatments for SCI. The role of MSCs in SCI has been studied extensively, and MSCs have been shown to have many limitations. Moreover, the therapeutic effects of MSCs are more likely related to paracrine effects. In SCIs, macrophages from peripheral sources differentiate into M1 macrophages, promoting inflammation and aggravating neuronal damage; however, studies have shown that MSC-derived exosomes can induce the polarization of macrophages from the M1 to the M2 phenotype, thereby promoting nerve function recovery in patients with SCI. In this review, we discussed the research progress of MSC-derived exosomal miRNAs in promoting M2 macrophage differentiation in the SCI, and introduced some exosomal miRNAs that can regulate the differentiation of M2 macrophages in non-SCI; it is hoped that the regulatory role of these exosome-derived miRNAs can be confirmed in SCI.

10.
Front Surg ; 9: 906289, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35620194

RESUMO

Objective: To investigate the clinical outcome data and difference in efficacy between paraspinal mini-tubular lumbar decompression (PMTD) and minimally invasive transforaminal lumbar interbody fusion (MIS TLIF) in the treatment of degenerative lumbar spondylolisthesis grade I with lumbar spinal stenosis (DLS-I-LSS). Methods: Patients with DLS-I-LSS, who underwent PMTD or MIS TLIF from September 2017 to March 2020, were included retrospectively. The follow-up period was 24 months after surgery. Outcome measurements included the Oswestry disability index (ODI) score, visual analog scale (VAS) low back pain score, VAS leg pain score, surgical data, and adverse events. Results: A total of 104 patients with DLS-I-LSS were included in this study. The average improvement in ODI at 12 months (2.0%, 95% CI, -5.7% to 1.8%; p = 0.30) and 24 months (1.7%, 95% CI, -2.7% to 6.1%; p = 0.45) after surgery between the two groups were not statistically significant. The improvement in VAS low back pain score after 24 months and improvement in VAS leg pain score were not significantly different between the two groups. Compared with the PMTD group, the MIS TLIF group had more estimated blood loss and longer hospital stays. The cumulative reoperation rates were 5.66% and 1.96% in the MIS TLIF and PMTD groups, respectively (p = 0.68). The results of multivariate analysis showed that BMI, diabetes, and baseline ODI score were the main factors influencing the improvement in ODI in patients with DLS-I-LSS after minimally invasive surgery, accounting for 50.5% of the total variance. Conclusions: The clinical effectiveness of PMTD was non-inferior to that of MIS TLIF for DLS-I-LSS; however, there was a reduced duration of hospital stay, operation time, blood loss, and hospitalization costs in the PMTD group. BMI, presence or absence of diabetes and baseline ODI score were influencing factors for the improvement of ODI (Trial Registration: ChiCTR2000040025).

11.
Orthop Surg ; 14(7): 1281-1293, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35582931

RESUMO

To compare the efficacy and safety of different surgical procedures for patients with single-segment lumbar spinal stenosis (LSS), Bayesian network meta-analysis (NMA) was conducted in this study. Randomized controlled trials (RCTs) which reported 2 years' results after surgery were searched from PubMed, Embase, and Cochrane Register of Controlled Trials up to February 2021. Eligible RCTs that contained at least two of the following surgical procedures, bilateral decompression via the unilateral approach (BDUL), decompression with conventional laminectomy (CL), decompression with fusion (DF), endoscopic decompression (ED), interspinous process devices only (IPDs), decompression with interlaminar stabilization (DILS), decompression with lumbar spinal process-splitting laminectomy (LSPSL), and minimally invasive tubular decompression (MTD), would be included after screening based on the inclusion and exclusion criteria. The primary outcome was Oswestry Disability Index (ODI). Twenty eligible RCTs were included, with a total of 2201 patients enrolled. The NMA showed that the following surgical procedures ranked first (surface under the cumulative ranking) when compared with CL and DF: DILS for ODI (SUCRA 87.8%); LSPSL for back pain (95%); and MTD for leg pain (95.6%). MTD ranked among the top three surgical procedures for most outcomes. The quality of the synthesized evidence was low according to the Grading of Recommendations Assessment, Development, and Evaluation criteria. DILS, LSPSL, MTD, IPDs, and ED are the most effective procedures for patients with single-segment LSS. Because of combining efficacy and safety, MTD may be the most promising routine surgical option for treating single-segment LSS.


Assuntos
Estenose Espinal , Descompressão Cirúrgica/métodos , Humanos , Laminectomia/métodos , Vértebras Lombares/cirurgia , Metanálise em Rede , Estenose Espinal/cirurgia , Resultado do Tratamento
12.
Front Cell Neurosci ; 16: 882306, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35518647

RESUMO

Spinal cord injury (SCI) not only affects the quality of life of patients but also poses a heavy burden on their families. Therefore, it is essential to prevent the occurrence of SCI; for unpreventable SCI, it is critical to develop effective treatments. In recent years, various major breakthroughs have been made in cell therapy to protect and regenerate the damaged spinal cord via various mechanisms such as immune regulation, paracrine signaling, extracellular matrix (ECM) modification, and lost cell replacement. Nevertheless, many recent studies have shown that the cell therapy has many disadvantages, such as tumorigenicity, low survival rate, and immune rejection. Because of these disadvantages, the clinical application of cell therapy is limited. In recent years, the role of exosomes in various diseases and their therapeutic potential have attracted much attention. The same is true for exosomal noncoding RNAs (ncRNAs), which do not encode proteins but affect transcriptional and translational processes by targeting specific mRNAs. This review focuses on the mechanism of action of exosomes obtained from different cell sources in the treatment of SCI and the regulatory role and therapeutic potential of exosomal ncRNAs. This review also discusses the future opportunities and challenges, proposing that exosomes and exosomal ncRNAs might be promising tools for the treatment of SCI.

13.
Eur Radiol ; 32(11): 8019-8026, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35499565

RESUMO

OBJECTIVES: Undiagnosed osteoporosis may lead to severe complications after spinal surgery. This study aimed to construct and validate a radiomic signature based on CT scans to screen for lumbar spine osteoporosis. METHODS: Using a stratified random sample method, 386 vertebral bodies were randomly divided into a training set (n = 270) and a test set (n = 116). A total of 1040 radiomics features were automatically retracted from lumbar spine CT scans using the 3D slicer pyradiomics module, and a radiomic signature was created. The sensitivity, specificity, accuracy, and area under the receiver operating characteristic curve (AUC) of the Hounsfield and radiomics signature models were calculated. The AUCs of the two models were compared using the DeLong test. Their clinical usefulness was assessed using a decision curve analysis. RESULTS: Twelve features were chosen to establish the radiomic signature. The AUCs of the radiomics signature and Hounsfield models were 0.96 and 0.88 in the training set and 0.92 and 0.84 in the test set, respectively. According to the DeLong test, the AUCs of the two models were significantly different (p < 0.05). The radiomics signature model indicated a higher overall net benefit than the Hounsfield model, as determined by decision curve analysis. CONCLUSIONS: The CT-based radiomic signature can differentiate patients with/without osteoporosis prior to lumbar spinal surgery. Without additional medical cost and radiation exposure, the radiomics method may provide valuable information facilitating surgical decision-making. KEY POINTS: • The goal of the study was to evaluate the efficacy of a radiomics signature model based on routine preoperative lumbar spine CT scans in screening osteoporosis. • The radiomics signature model demonstrated excellent prediction performance in both the training and test sets. • This radiomics method may provide valuable information and facilitate surgical decision-making without additional medical costs and radiation exposure.


Assuntos
Osteoporose , Tomografia Computadorizada por Raios X , Humanos , Área Sob a Curva , Osteoporose/diagnóstico por imagem , Curva ROC , Tomografia Computadorizada por Raios X/métodos
14.
Front Cell Neurosci ; 16: 860131, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35444516

RESUMO

Objective: To compare the safety and effectiveness of transplanted cells from different sources for spinal cord injury (SCI). Design: A systematic review and Bayesian network meta-analysis. Data Sources: Medline, Embase, and the Cochrane Central Register of Controlled Trials. Study Selection: We included randomized controlled trials, case-control studies, and case series related to cell transplantation for SCI patients, that included at least 1 of the following outcome measures: American Spinal Cord Injury Association (ASIA) Impairment Scale (AIS grade), ASIA motor score, ASIA sensory score, the Functional Independence Measure score (FIM), International Association of Neurorestoratology Spinal Cord Injury Functional Rating Scale (IANR-SCIFRS), or adverse events. Follow-up data were analyzed at 6 and 12 months. Results: Forty-four eligible trials, involving 1,266 patients, investigated 6 treatments: olfactory ensheathing cells (OECs), neural stem cells/ neural progenitor cells (NSCs), mesenchymal stem cells (MSCs), Schwann cells, macrophages, and combinations of cells (MSCs plus Schwann cells). Macrophages improved the AIS grade at 12 months (mean 0.42, 95% credible interval: 0-0.91, low certainty) and FIM score at 12 months (42.83, 36.33-49.18, very low certainty). MSCs improved the AIS grade at 6 months (0.42, 0.15-0.73, moderate certainty), the motor score at 6 months (4.43, 0.91-7.78, moderate certainty), light touch at 6 (10.01, 5.81-13.88, moderate certainty) and 12 months (11.48, 6.31-16.64, moderate certainty), pinprick score at 6 (14.54, 9.76-19.46, moderate certainty) and 12 months (12.48, 7.09-18.12, moderate certainty), and the IANR-SCIFRS at 6 (3.96, 0.62-6.97, moderate certainty) and 12 months (5.54, 2.45-8.42, moderate certainty). OECs improved the FIM score at 6 months (9.35, 1.71-17.00, moderate certainty). No intervention improved the motor score significantly at 12 months. The certainty of other interventions was low or very low. Overall, the number of adverse events associated with transplanted cells was low. Conclusions: Patients with SCI who receive transplantation of macrophages, MSCs, NSCs, or OECs may have improved disease prognosis. MSCs are the primary recommendations. Further exploration of the mechanism of cell transplantation in the treatment of SCI, transplantation time window, transplantation methods, and monitoring of the number of transplanted cells and cell survival is needed. Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/#recordDetails, identifier: CRD 42021282043.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA