Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Environ Sci Pollut Res Int ; 30(10): 28238-28246, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36401004

RESUMO

The H2O2 evaporation rate directly affected the oxidation of NO by H2O2. Green zeolite and synthetic mordenite were selected to promote H2O2 thermal decomposition and NO oxidation. The effects of different zeolites, evaporation conditions, temperatures, and reactant concentrations on the NO oxidation ratio were explored. The promotion mechanism of zeolite on NO oxidation by H2O2 thermal decomposition was explained. The results show that the zeolite surface can significantly accelerate the H2O2 evaporation rate to obtain a high NO oxidation ratio. The hydrophilicity and rich pore structure of zeolite enable the rapid diffusion and evaporation of droplets on the zeolite surface. Compared with the green zeolite with the mesoporous structure, the synthetic mordenite with the hierarchical pore structure has a more obvious promotion effect on the NO oxidation by H2O2 thermal decomposition. The reason is that the synthetic mordenite contains micropores, resulting in a larger specific surface area, and the mesoporous structure is conducive to the mass transfer and diffusion of H2O2 on its surface. The product of NO oxidation is mainly NO2, which proves that ·OH plays a major role in the process.


Assuntos
Zeolitas , Zeolitas/química , Peróxido de Hidrogênio/química , Silicatos de Alumínio/química , Oxirredução
2.
Sci Rep ; 9(1): 16406, 2019 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-31712561

RESUMO

Long-term operations carried out at high altitude (HA) by military personnel, pilots, and astronauts may trigger health complications. In particular, chronic exposure to high altitude (CEHA) has been associated with deficits in cognitive function. In this study, we found that mice exposed to chronic HA (5000 m for 12 weeks) exhibited deficits in learning and memory associated with hippocampal function and were linked with changes in the expression of synaptic proteins across various regions of the brain. Specifically, we found decreased levels of synaptophysin (SYP) (p < 0.05) and spinophilin (SPH) (p < 0.05) in the olfactory cortex, post synaptic density-95 (PSD-95) (p < 0.05), growth associated protein 43 (GAP43) (p < 0.05), glial fibrillary acidic protein (GFAP) (p < 0.05) in the cerebellum, and SYP (p < 0.05) and PSD-95 (p < 0.05) in the brainstem. Ultrastructural analyses of synaptic density and morphology in the hippocampus did not reveal any differences in CEHA mice compared to SL mice. Our data are novel and suggest that CEHA exposure leads to cognitive impairment in conjunction with neuroanatomically-based molecular changes in synaptic protein levels and astroglial cell marker in a region specific manner. We hypothesize that these new findings are part of highly complex molecular and neuroplasticity mechanisms underlying neuroadaptation response that occurs in brains when chronically exposed to HA.


Assuntos
Altitude , Astrócitos/fisiologia , Pareamento Cromossômico , Exposição Ambiental , Memória , Animais , Encéfalo/fisiologia , Exposição Ambiental/efeitos adversos , Hipocampo/fisiologia , Camundongos , Plasticidade Neuronal
3.
Exp Neurol ; 311: 293-304, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30321497

RESUMO

We sought to understand the mechanisms underlying cognitive deficits that are reported to affect non-native subjects following their prolonged stay and/or work at high altitude (HA). We found that mice exposed to a simulated environment of 5000 m exhibit deficits in hippocampal learning and memory accompanied by abnormalities in brain MR imaging. Exposure (1-8 months) to HA led to an increase in brain ventricular volume, a reduction in relative cerebral blood flow and changes in diffusion tensor imaging (DTI) derived parameters within the hippocampus and corpus callosum. Furthermore, neuropathological examination revealed significant expansion of the neurovascular network, microglia activation and demyelination within the corpus callosum. Electrophysiological recordings from the corpus callosum indicated that axonal excitabilities are increased while refractory periods are longer despite a lack of change in action potential conduction velocities of both myelinated and unmyelinated fibers. Next generation RNA-sequencing identified alterations in hippocampal and amygdala transcriptome signaling pathways linked to angiogenesis, neuroinflammation and myelination. Our findings reveal that exposure to hypobaric-hypoxia triggers maladaptive responses inducing cognitive deficits and suggest potential mechanisms underlying the adverse impacts of staying or traveling at high altitude.


Assuntos
Adaptação Fisiológica/fisiologia , Altitude , Pressão Atmosférica , Circulação Cerebrovascular/fisiologia , Transtornos da Memória/metabolismo , Neurônios/metabolismo , Animais , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Transtornos da Memória/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neocórtex/metabolismo , Neocórtex/patologia , Neurônios/patologia , Distribuição Aleatória
4.
Exp Neurol ; 277: 227-243, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26730521

RESUMO

Traumatic brain injury (TBI) is the leading cause of death for persons under the age of 45. Military service members who have served on multiple combat deployments and contact-sport athletes are at particular risk of sustaining repetitive TBI (rTBI). Cognitive and behavioral deficits resulting from rTBI are well documented. Optimal associative LTP, occurring in the CA1 hippocampal Schaffer collateral pathway, is required for both memory formation and retrieval. Surprisingly, ipsilateral Schaffer collateral CA1 LTP evoked by 100 Hz tetanus was enhanced in mice from the 3× closed head injury (3× CHI) treatment group in comparison to LTP in contralateral or 3× Sham CA1 area, and in spite of reduced freezing during contextual fear conditioning at one week following 3× CHI. Electrophysiological activity of CA1 neurons was evaluated with whole-cell patch-clamp recordings. 3× CHI ipsilateral CA1 neurons exhibited significant increases in action potential amplitude and maximum rise and decay slope while the action potential duration was decreased. Recordings of CA1 neuron postsynaptic currents were conducted to detect spontaneous excitatory and inhibitory postsynaptic currents (sEPSCs/sIPSCs) and respective miniature currents (mEPSCs and mIPSCs). In the 3× CHI mice, sEPSCs and sIPSCs in ipsilateral CA1 neurons had an increased frequency of events but decreased amplitudes. In addition, 3× CHI altered the action potential-independent miniature postsynaptic currents. The mEPSCs of ipsilateral CA1 neurons exhibited both an increased frequency of events and larger amplitudes. Moreover, the effect of 3× CHI on mIPSCs was opposite to that of the sIPSCs. Specifically, the frequency of the mIPSCs was decreased while the amplitudes were increased. These results are consistent with a mechanism in which repetitive closed-head injury affects CA1 hippocampal function by promoting a remodeling of excitatory and inhibitory synaptic inputs leading to impairment in hippocampal-dependent tasks.


Assuntos
Traumatismos Cranianos Fechados/patologia , Hipocampo/patologia , Hipocampo/fisiopatologia , Rede Nervosa/fisiopatologia , Células Piramidais/fisiologia , Animais , Condicionamento Psicológico , Modelos Animais de Doenças , Estimulação Elétrica , Medo , Potenciação de Longa Duração/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp , Receptores de AMPA/metabolismo , Receptores de GABA-A/metabolismo , Sinapses/fisiologia
5.
Physiol Rep ; 3(12)2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26702072

RESUMO

All individuals with Down syndrome (DS) have a varying but significant degree of cognitive disability. Although hippocampal deficits clearly play an important role, behavioral studies also suggest that deficits within the neocortex contribute to somatosensory deficits and impaired cognition in DS. Using thalamocortical slices from the Ts65Dn mouse model of DS, we investigated the intrinsic and network properties of regular spiking neurons within layer 4 of the somatosensory cortex. In these neurons, the membrane capacitance was increased and specific membrane resistance decreased in slices from Ts65Dn mice. Examination of combined active and passive membrane properties suggests that trisomic layer 4 neurons are less excitable than those from euploid mice. The frequencies of excitatory and inhibitory spontaneous synaptic activities were also reduced in Ts65Dn neurons. With respect to network activity, spontaneous network oscillations (Up states) were shorter and less numerous in the neocortex from Ts65Dn mice when compared to euploid. Up states evoked by electrical stimulation of the ventrobasal nucleus (VBN) of the thalamus were similarly affected in Ts65Dn mice. Additionally, monosynaptic EPSCs and polysynaptic IPSCs evoked by VBN stimulation were significantly delayed in layer 4 regular spiking neurons from Ts65Dn mice. These results indicate that, in the Ts65Dn model of DS, the overall electrophysiological properties of neocortical neurons are altered leading to aberrant network activity within the neocortex. Similar changes in DS individuals may contribute to sensory and cognitive dysfunction and therefore may implicate new targets for cognitive therapies in this developmental disorder.

6.
Physiol Behav ; 143: 158-65, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25647362

RESUMO

The interplay of environmental and genetic factors may lead to a spectrum of physiological and behavioral outcomes. How environmental stress factors interact with the diverse mouse genomes is still poorly understood and elucidating the underlying interactions requires specific stress models that can target integrated physiological systems. Here, we employ behavioral tests and whole-body plethysmography to examine the effects of 12 weeks of simulated high altitude (HA) exposure on two inbred mouse strains, BALBc and C57Bl6. We find that HA induced- weight loss recovers at significantly different rates in these two strains. Even at 12 weeks, however, both strains fail to reach body weight levels of controls. Performance on two motor tasks, rotarod and treadmill, improve with HA exposure but more prominently in BALBc mice. Whole-body plethysmography outcomes indicate that compensation to chronic HA includes increased respiratory frequencies and tidal volumes in both strains. However, the effects on tidal volume are significantly greater in BALBc mice and showed a biphasic course. Whole- body metabolic rates are also increased in both strains with prolonged HA exposure, but were more pronounced in BALBc mice suggestive of less successful adaptation in this strain. These adaptations occur in the absence of gross pathological changes in all major organs. Together these results indicate that chronic HA exposure results in environmental stressors that impact the specific physiological responses of BALBc more than C57Bl6 mice. Thus, these strains provide a promising platform for investigating how genetic backgrounds can differentially reinforce the effects of long-lasting environmental stressors and their potential to interact with psychological stressors.


Assuntos
Adaptação Fisiológica , Doença da Altitude/metabolismo , Doença da Altitude/fisiopatologia , Condicionamento Físico Animal/métodos , Especificidade da Espécie , Doença da Altitude/reabilitação , Animais , Teste de Esforço , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Atividade Motora , Consumo de Oxigênio , Pletismografia , Respiração , Fatores de Tempo
7.
Dev Neurosci ; 33(5): 451-67, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22042248

RESUMO

Down syndrome (DS; trisomy 21) is one of the most common genetic causes of intellectual disability, which is attributed to triplication of genes located on chromosome 21. Elevated levels of several microRNAs (miRNAs) located on chromosome 21 have been reported in human DS heart and brain tissues. The Ts65Dn mouse model is the most investigated DS model with a triplicated segment of mouse chromosome 16 harboring genes orthologous to those on human chromosome 21. Using ABI TaqMan miRNA arrays, we found a set of miRNAs that were significantly up- or downregulated in the Ts65Dn hippocampus compared to euploid controls. Furthermore, miR-155 and miR-802 showed significant overexpression in the Ts65Dn hippocampus, thereby confirming results of previous studies. Interestingly, miR-155 and miR-802 were also overexpressed in the Ts65Dn whole blood but not in lung tissue. We also found overexpression of the miR-155 precursors, pri- and pre-miR-155 derived from the miR-155 host gene, known as B cell integration cluster, suggesting enhanced biogenesis of miR-155. Bioinformatic analysis revealed that neurodevelopment, differentiation of neuroglia, apoptosis, cell cycle, and signaling pathways including ERK/MAPK, protein kinase C, phosphatidylinositol 3-kinase, m-TOR and calcium signaling are likely targets of these miRNAs. We selected some of these potential gene targets and found downregulation of mRNA encoding Ship1, Mecp2 and Ezh2 in Ts65Dn hippocampus. Interestingly, the miR-155 target gene Ship1 (inositol phosphatase) was also downregulated in Ts65Dn whole blood but not in lung tissue. Our findings provide insights into miRNA-mediated gene regulation in Ts65Dn mice and their potential contribution to impaired hippocampal synaptic plasticity and neurogenesis, as well as hemopoietic abnormalities observed in DS.


Assuntos
Síndrome de Down/genética , Síndrome de Down/metabolismo , Hipocampo/fisiologia , MicroRNAs/genética , MicroRNAs/metabolismo , Fenótipo , Animais , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Humanos , Camundongos , Lobo Parietal/fisiologia , Trissomia
8.
Toxicol Appl Pharmacol ; 253(3): 178-87, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21513724

RESUMO

Tungsten-alloy has carcinogenic potential as demonstrated by cancer development in rats with intramuscular implanted tungsten-alloy pellets. This suggests a potential involvement of epigenetic events previously implicated as environmental triggers of cancer. Here, we tested metal induced cytotoxicity and epigenetic modifications including H3 acetylation, H3-Ser10 phosphorylation and H3-K4 trimethylation. We exposed human embryonic kidney (HEK293), human neuroepithelioma (SKNMC), and mouse myoblast (C2C12) cultures for 1-day and hippocampal primary neuronal cultures for 1-week to 50-200 µg/ml of tungsten-alloy (91% tungsten/6% nickel/3% cobalt), tungsten, nickel, and cobalt. We also examined the potential role of intracellular calcium in metal mediated histone modifications by addition of calcium channel blockers/chelators to the metal solutions. Tungsten and its alloy showed cytotoxicity at concentrations > 50 µg/ml, while we found significant toxicity with cobalt and nickel for most tested concentrations. Diverse cell-specific toxic effects were observed, with C2C12 being relatively resistant to tungsten-alloy mediated toxic impact. Tungsten-alloy, but not tungsten, caused almost complete dephosphorylation of H3-Ser10 in C2C12 and hippocampal primary neuronal cultures with H3-hypoacetylation in C2C12. Dramatic H3-Ser10 dephosphorylation was found in all cobalt treated cultures with a decrease in H3 pan-acetylation in C2C12, SKNMC and HEK293. Trimethylation of H3-K4 was not affected. Both tungsten-alloy and cobalt mediated H3-Ser10 dephosphorylation were reversed with BAPTA-AM, highlighting the role of intracellular calcium, confirmed with 2-photon calcium imaging. In summary, our results for the first time reveal epigenetic modifications triggered by tungsten-alloy exposure in C2C12 and hippocampal primary neuronal cultures suggesting the underlying synergistic effects of tungsten, nickel and cobalt mediated by changes in intracellular calcium homeostasis and buffering.


Assuntos
Ligas/toxicidade , Epigênese Genética , Tungstênio/toxicidade , Animais , Canais de Cálcio Tipo L/fisiologia , Células Cultivadas , Quelantes/farmacologia , Relação Dose-Resposta a Droga , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Histonas/metabolismo , Humanos , Camundongos , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA