Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 325
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39446555

RESUMO

Carbonyl azides are important precursors to isocyanates and are used as energetic compounds. However, the further development of these compounds is limited by their inherently poor stability. In this study, we present a new family of carbonyl azides, 5-nitro-1H-1,2,4-triazol-3-yl-carbamoyl-azide (NTCA), which was synthesized through in situ oxidation cleavage of amino-tetrazole. Compared with its precursor (nitrocarbamoyl azide, HNCA), X-ray data and quantum calculations indicate that NTCA has much stronger conjugation (dihedral angle decreased from 13.39° to 1.35°) and more H-bonds (increase from 2 to 7 pairs). As a result, NTCA exhibits the highest thermal stability (decomposition temperature of 212 °C) and highest density (1.820 g cm-3) among all known carbonyl azides. In addition, a series of Curtius rearrangements were performed to generate substituted ionic derivatives, which also exhibit high stability and energy. This study provides an effective strategy for synthesizing carbonyl azides with high stability and energy, paving the way for future practical applications.

2.
Molecules ; 29(20)2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39459277

RESUMO

Conventional oxidation processes for alkyl aromatics to ketones employ oxidants that tend to generate harmful byproducts and cause severe equipment corrosion, ultimately creating critical environmental problems. Thus, in this study, a practical, efficient, and green method was developed for the synthesis of aromatic ketones by applying a bis(2-butoxyethyl) ether/O2 system under external catalyst-, additive-, and base-free conditions. This O2-mediated oxidation system can tolerate various functional groups and is suitable for large-scale synthesis. Diverse target ketones were prepared under clean conditions in moderate-to-high yields. The late-stage functionalization of drug derivatives with the corresponding ketones and one-pot sequential chemical conversions to ketone downstream products further broaden the application prospects of this approach.

4.
Gels ; 10(9)2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39330171

RESUMO

Chinese herbs are a huge treasure trove of natural products and an important source of many active molecules. The theory of traditional Chinese medicine compatibility (TCMC) is widely applied in clinical practice, but its mechanism is still ambiguous. This study aims to open a new window for this predicament by studying the interaction between the main active ingredients from a drug pair. Carrier-free assembly of natural products improves the shortcomings of traditional nanodelivery systems and opens a new path for the development of new nanomaterials. The drug pair "Pueraria and Hedyotis diffusa" has been commonly used in clinical practice, with a predominant therapeutic effect. This study is devoted to the study of the binary small molecule co-assembly of the main active molecules from the drug pair. In this study, we introduce a carrier-free composite gel, formed by the co-assembly of puerarin (PUE) and deacetylasperulosidic acid (DAA) via non-covalent bonds including π-π packing, intermolecular hydrogen bonding, and C=O π interactions. With a strain point 7-fold higher than that of P gel, the P - D gel exhibited favorable rheological properties. The survival rate of SW1990 cells in the P - D group was only 21.39% when the concentration of administration reached 200 µM. It thus demonstrated activity in inhibiting SW1990 cells' survival, suggesting potential in combating pancreatic cancer. Furthermore, this research offers a valuable concept for enhancing the mechanical properties and bioactivity of hydrogel materials through the utilization of a multi-component natural small molecule co-assembly approach. More importantly, this provides new ideas and methods for the treatment of pancreatic cancer and the analysis of traditional Chinese medicine compatibility theory.

6.
Cancer Lett ; 605: 217280, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39343354

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a highly metastatic malignancy for which there are currently no effective anti-metastatic therapies. Herein, we employed single-cell RNA sequencing and metabolomics analysis to demonstrate that metastatic cells highly express focal adhesion kinase (FAK), which promotes metastasis by remodeling choline kinase α (CHKα)-dependent choline metabolism. We designed a novel CHKα inhibitor, CHKI-03, and verified its efficacy in inhibiting metastasis in multiple preclinical models. Classical and newly synthesized small-molecule inhibitors have previously been used to assess the therapeutic potential of targeting mTOR and CHKα in various animal models. Mechanistically, FAK activated mTOR and its downstream HIF-1α, thereby elevating CHKα expression and promoting the proliferation, migration, and invasion of PDAC cells, as well as tumor growth and metastasis. Consistently, high expression levels of both FAK and CHKα are correlated with poor prognosis in patients with PDAC. Notably, CHK1-03 inhibited CHKα expression and also suppressed mTORC1 phosphorylation, disrupting the mTORC1-CHKα positive feedback loop. In addition, the combination of CHKI-03 and the mTORC1 inhibitor rapamycin synergistically inhibited tumor growth and metastasis in PDX models. The combination of CHKI-03 and rapamycin demonstrates considerable therapeutic efficacy in PDO models resistant to gemcitabine. Our findings reveal a pivotal mechanism underlying PDAC metastasis regulated by mTORC1-CHKα loop-dependent choline metabolism reprogramming, highlighting the therapeutic potential of this novel regimen for treating PDAC metastasis.

7.
Phytochemistry ; 229: 114257, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39209239

RESUMO

Cancer poses a significant global public health challenge, with commonly used adjuvant or neoadjuvant chemotherapy often leading to adverse side effects and drug resistance. Therefore, advancing cancer treatment necessitates the ongoing development of novel anticancer agents with diverse structures and mechanisms of action. Natural products remain crucial in the process of drug discovery, serving as a primary source for pharmaceutical leads and therapeutic advancements. Triterpenoids are particularly compelling due to their complex structures and wide array of biological activities. Recent research has demonstrated that naturally occurring triterpenes and their derivatives have the potential to serve as promising candidates for new drug development. This review aims to comprehensively explore the anticancer properties of triterpenoids and their synthetic analogs, with a focus on recent advancements. Various aspects, such as synthesis, phytochemistry, and molecular simulation for structure-activity relationship analyses, are summarized. It is anticipated that triterpenoid derivatives will emerge as notable anticancer agents following further investigation into their mechanisms of action and in vivo studies.

8.
Jt Dis Relat Surg ; 35(3): 562-573, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39189565

RESUMO

OBJECTIVES: This study aims to investigate the feasibility and safety of combined anesthesia with spontaneous breathing in the operation of intertrochanteric fracture of femur in the elderly. PATIENTS AND METHODS: Between January 2020 and January 2023, a total of 141 elderly patients (45 males, 96 females; mean age: 72.5±6.8 years; range, 65 to 87 years) who underwent proximal femoral nail anti-rotation (PFNA) surgery for intertrochanteric fracture of femur were included in this single-blind, prospective, randomized-controlled study. The patients were randomly divided into three groups. Group A (experimental group) was a general anesthesia with laryngeal mask airway (LMA) group preserving spontaneous breathing, Group B (control group 1) was a general anesthesia with LMA group for mechanical ventilation, and Group C (control group 2) was a tracheal intubation anesthesia group for mechanical ventilation. The differences of related indexes among the three groups were compared. RESULTS: The mean onset time of anesthesia (6.23±1.45 vs. 12.78±2.78 vs. 13.73±2.43 min), postoperative recovery time of consciousness (8.13±0.83 vs. 11.34±0.89 vs. 12.45±0.86 min), and postoperative complete awakening time (10.45±2.34 vs. 18.87±2.56 vs. 19.62±2.93 min) were significantly shorter in Group A than in Groups B and C (p<0.05). The duration of analgesic effect was longer in Group A than in Groups B and C (p<0.05). After anesthesia, the Ramsay Sedation Scale and Visual Analog Scale (VAS) scores were significantly lower in Group A than the other groups (p<0.05). The mean Mini-Mental State Examination (MMS) scores were significantly higher in Group A than in Groups B and C (p<0.05). Hemodynamic parameters showed that blood pressure, heart rate, cardiac output, and cardiac index (CI) levels were significantly higher in Group A than the other groups (p<0.05). CONCLUSION: Our study results indicate that combined anesthesia preserving spontaneous breathing is safe and feasible in the operation of intertrochanteric fracture of femur in the elderly, with faster anesthesia recovery than the mechanical ventilation group.


Assuntos
Anestesia Geral , Fraturas do Quadril , Máscaras Laríngeas , Respiração Artificial , Humanos , Feminino , Masculino , Idoso , Idoso de 80 Anos ou mais , Fraturas do Quadril/cirurgia , Anestesia Geral/métodos , Estudos Prospectivos , Método Simples-Cego , Respiração Artificial/métodos , Respiração , Estudos de Viabilidade , Intubação Intratraqueal/métodos
9.
Ren Fail ; 46(2): 2387429, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39132829

RESUMO

Objectives: To investigate the role of the intestinal flora and metabolites in the development of hyperuricemic renal injury in chronic kidney disease (CKD).Methods: Unilaterally nephrectomized mice were fed with adenine and potassium oxonate for 9 weeks. HE staining combined with plasma biochemical indicators was used to evaluate renal pathological and functional changes. We conducted 16S rRNA sequencing and untargeted metabolomics on feces and plasma samples to reveale changes in intestinal microbiota and metabolites.Result: Our analysis revealed significant differences in 15 bacterial genera, with 7 being upregulated and 8 being downregulated. Furthermore, metabolomic analysis revealed changes in the distribution of amino acid and biotin metabolites in basic metabolic pathways in both feces and serum. Specifically, differentially abundant metabolites in feces were associated primarily with histidine metabolism; the biosynthesis of phenylalanine, tyrosine, and tryptophan; and tyrosine metabolism. In plasma, the differentially abundant metabolites were involved in multiple metabolic pathways, including aminoacyl-tRNA biosynthesis; glycine, serine, and threonine amino acid metabolism; valine, leucine, and isoleucine biosynthesis; tyrosine biosynthesis and metabolism; biotin metabolism; and taurine and hypotaurine metabolism. Furthermore, correlation analysis revealed that Akkermansia, UCG-005, Lachnospiraceae_NK4A136_group, Lactococcus, and Butymonas were associated with various differentially abundant metabolites as well as renal function, oxidative stress, and mitophagy. The changes in the intestinal flora observed in hyperuricemia may lead to imbalances in amino acid and biotin metabolism in both the intestine and host, ultimately affecting oxidative stress and mitophagy in mice and accelerating the progression of CKD.Conclusion: Our findings provide insights into a potential pathogenic mechanism by which hyperuricemia exacerbates renal injury in mice with renal insufficiency. Understanding these pathways may offer new therapeutic strategies for managing hyperuricemic renal injury in CKD patients.


Assuntos
Modelos Animais de Doenças , Microbioma Gastrointestinal , Hiperuricemia , Animais , Hiperuricemia/metabolismo , Camundongos , Masculino , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/microbiologia , Metabolômica/métodos , Fezes/microbiologia , RNA Ribossômico 16S , Camundongos Endogâmicos C57BL , Rim/metabolismo , Rim/patologia
10.
Front Microbiol ; 15: 1409771, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39104590

RESUMO

Cyanobacteria have great potential in CO2-based bio-manufacturing and synthetic biological studies. The filamentous cyanobacterium, Leptolyngbya sp. strain BL0902, is comparable to Arthrospira (Spirulina) platensis in commercial-scale cultivation while proving to be more genetically tractable. Here, we report the analyses of the whole genome sequence, gene inactivation/overexpression in the chromosome and deletion of non-essential chromosomal regions in this strain. The genetic manipulations were performed via homologous double recombination using either an antibiotic resistance marker or the CRISPR/Cpf1 editing system for positive selection. A desD-overexpressing strain produced γ-linolenic acid in an open raceway photobioreactor with the productivity of 0.36 g·m-2·d-1. Deletion mutants of predicted patX and hetR, two genes with opposite effects on cell differentiation in heterocyst-forming species, were used to demonstrate an analysis of the relationship between regulatory genes in the non-heterocystous species. Furthermore, a 50.8-kb chromosomal region was successfully deleted in BL0902 with the Cpf1 system. These results supported that BL0902 can be developed into a stable photosynthetic cell factory for synthesizing high value-added products, or used as a model strain for investigating the functions of genes that are unique to filamentous cyanobacteria, and could be systematically modified into a genome-streamlined chassis for synthetic biological purposes.

11.
BMC Infect Dis ; 24(1): 710, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030493

RESUMO

BACKGROUND: The clinical presentation of extrapulmonary tuberculosis (EPTB) is atypical and it is easily confused with other diseases such as common infections, making prompt diagnosis a great challenge. This study aimed to evaluate the accuracy of targeted nanopore sequencing (TNS) in the diagnosis of EPTB. The diagnostic accuracy of TNS using different types of extrapulmonary specimens was also evaluated. METHODS: We reviewed the clinical data of patients with suspected EPTB for whom TNS was conducted and who were hospitalized at our center. The true positive, false positive, false negative, and true negative values were determined. Indices of diagnostic accuracy were computed, including sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and area under the curve (AUC) for TNS and acid-fast bacilli (AFB) culture, and compared with those from clinical diagnosis. RESULTS: 149 patients were included in the analysis. The overall sensitivity, specificity, PPV, NPV, and AUC of TNS for the diagnosis of EPTB were 86.4%, 87.5%, 97.3%, 55.3%, and 0.87, respectively. For diagnosis by AFB culture, these values were 25.6%, 100.0%, 100.0%, 20.5%, and 0.63, respectively. The most common specimens used were lymph node tissue, cerebrospinal fluid, pleural effusion, and pleural tissue. The diagnostic accuracy of TNS using all types of extrapulmonary specimens was good. CONCLUSIONS: TNS demonstrates good diagnostic accuracy in the rapid diagnosis of EPTB and this was true across different types of extrapulmonary specimens.


Assuntos
Mycobacterium tuberculosis , Sequenciamento por Nanoporos , Sensibilidade e Especificidade , Tuberculose , Humanos , Tuberculose/diagnóstico , Tuberculose/microbiologia , Feminino , Masculino , Sequenciamento por Nanoporos/métodos , Pessoa de Meia-Idade , Adulto , Idoso , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/isolamento & purificação , Estudos Retrospectivos , Adulto Jovem , Valor Preditivo dos Testes , Tuberculose Extrapulmonar
12.
Zhongguo Zhong Yao Za Zhi ; 49(11): 2947-2952, 2024 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-39041154

RESUMO

This paper aimed to study the chemical constituents from Clitocybe clavipes. Silica gel, ODS, Sephadex LH-20, and semi-p reparative HPLC were employed to separate the ethanol extract of C. clavipes. Six compounds were identified by ~1H-NMR, ~(13)CNMR,and ESI-MS as clavilactone L(1), clavilactone A(2), clavilactone B(3), clavilactone E(4), clavilactone H(5), and clav ilactone I(6). Among them, compound 1 was a new meroterpenoid with a 10-membered carbocycle connected to a hydroquinone. Theantitumor activities of compounds 1-6 were determined by the methyl thiazolyl tetrazolium(MTT) ass ay. The results showed that compounds 1-6 exerted inhibitory effects on the proliferation of human gastric cancer cells(MGC-803),human non-small cell lung cancer cells(A549), and cervical cancer cells(HeLa). Compound 1 exhibited significant inhibitory activity against MGC-803 cells, with the half maximal inhibitory concentration(IC_(50)) of 11. 76 µmol·L~(-1).


Assuntos
Proliferação de Células , Humanos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Estrutura Molecular , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química
13.
BMJ Open ; 14(6): e079038, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951003

RESUMO

BACKGROUND: Non-small cell lung cancer (NSCLC) has a poor prognosis. Transvascular intervention is an important approach for treating NSCLC. Drug-eluting bead bronchial artery chemoembolisation (DEB-BACE) is a technique of using DEBs loaded with chemotherapeutic drugs for BACE. This study aims to conduct a meta-analysis to comprehensively assess the effectiveness and safety of DEB-BACE in treating NSCLC and investigate a novel therapeutic strategy for NSCLC. METHODS AND ANALYSIS: Wanfang, China National Knowledge Infrastructure, Medline (via PubMed), Cochrane Library, Scopus and Embase databases will be searched in November 2024. A meta-analysis will be conducted to assess the effectiveness and safety of DEB-BACE in the treatment of NSCLC. The following keywords will be applied: "Carcinoma, Non-Small-Cell Lung", "Non-Small Cell Lung Cancer", "Drug-Eluting Bead Bronchial Arterial Chemoembolization" and "drug-eluting beads". Reports in Chinese or English comparing the efficacy of DEB-BACE with other NSCLC treatment options will be included. Case reports, single-arm studies, conference papers, abstracts without full text and reports published in languages other than English and Chinese will not be considered. The Cochrane Handbook for Systematic Reviews of Interventions will be used to independently assess the risk of bias for each included study. In case of significant heterogeneity between studies, possible sources of heterogeneity will be explored through subgroup and sensitivity analysis. For the statistical analysis of the data, RevMan V.5.3 will be used. ETHICS AND DISSEMINATION: This meta-analysis will seek publication in a peer-reviewed journal on completion. Ethical approval is not required for this study as it is a database-based study. PROSPERO REGISTRATION NUMBER: CRD42023411392.


Assuntos
Artérias Brônquicas , Carcinoma Pulmonar de Células não Pequenas , Quimioembolização Terapêutica , Neoplasias Pulmonares , Metanálise como Assunto , Humanos , Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/terapia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Quimioembolização Terapêutica/métodos , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/tratamento farmacológico , Projetos de Pesquisa
14.
J Org Chem ; 89(15): 10467-10471, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39031914

RESUMO

Full nitration is one of the most effective strategies used in synthesizing high-density energetic materials, but this strategy has reached its limit because the resultant compounds cannot be further functionalized. To overcome this limitation, we present the synergistic action of full nitration and strong intermolecular H-bonding in designing and synthesizing 1-trinitromethyl-3,5-dinitro-4-nitroaminopyrazole (DNTP) with a density that exceeds those of the reported monocyclic CHON compounds. The detonation velocity and specific impulse of DNTP exceed those of 1-trinitromethyl-3,4,5-trinitropyrazole (TTP), HMX, and ADN.

15.
PLoS One ; 19(6): e0304162, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38843269

RESUMO

BACKGROUND: Pulmonary tuberculosis (PTB) is the most common type of tuberculosis (TB). Rapid diagnosis of PTB can help in TB control. Although the use of molecular tests (such as the GeneXpert MTB/RIF) has improved the ability to rapidly diagnose PTB, there is still room for improvement. Nanopore sequencing is a novel means of rapid TB detection. The purpose of this study was to establish a systematic review and meta-analysis protocol for evaluating the accuracy of nanopore sequencing for the rapid diagnosis of PTB. METHODS: We completed this protocol according to the Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) statement and registered on the PROSPERO platform. We will screen studies related to nanopore sequencing for diagnosis of PTB by searching through PubMed, EMBASE, the Cochrane Library using English, and Wanfang database, CNKI (China National Knowledge Infrastructure) using Chinese. Eligible studies will be screened according to the inclusion and exclusion criteria established in the study protocol. We will evaluate the methodological quality of the individual included studies using Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2). We will use Stata (version 15.0) with the midas command and RevMan (version 5.3) for meta-analysis and forest plots and SROC curves generation. A p < 0.05 was treated as a statistically significant difference. When significant heterogeneity exists between studies, we will explore sources of heterogeneity through meta-regression analysis and subgroup analysis. CONCLUSION: To the best of our knowledge, this will be the first systematic review and meta-analysis of nanopore sequencing for the diagnosis of PTB. We hope that this study will find a new and effective tool for the early diagnosis of PTB. PROSPERO REGISTRATION NUMBER: CRD42023495593.


Assuntos
Metanálise como Assunto , Sequenciamento por Nanoporos , Revisões Sistemáticas como Assunto , Tuberculose Pulmonar , Tuberculose Pulmonar/diagnóstico , Humanos , Sequenciamento por Nanoporos/métodos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/isolamento & purificação
16.
J Am Chem Soc ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602511

RESUMO

Meroterpenoid clavilactones feature a unique benzo-fused ten-membered carbocyclic ring unit with an α,ß-epoxy-γ-lactone moiety, forming an intriguing 10/5/3 tricyclic nested skeleton. These compounds are good inhibitors of the tyrosine kinase, attracting a lot of chemical synthesis studies. However, the natural enzymes involved in the formation of the 10/5/3 tricyclic nested skeleton remain unexplored. Here, we identified a gene cluster responsible for the biosynthesis of clavilactone A in the basidiomycetous fungus Clitocybe clavipes. We showed that a key cytochrome P450 monooxygenase ClaR catalyzes the diradical coupling reaction between the intramolecular hydroquinone and allyl moieties to form the benzo-fused ten-membered carbocyclic ring unit, followed by the P450 ClaT that exquisitely and stereoselectively assembles the α,ß-epoxy-γ-lactone moiety in clavilactone biosynthesis. ClaR unprecedentedly acts as a macrocyclase to catalyze the oxidative cyclization of the isopentenyl to the nonterpenoid moieties to form the benzo-fused macrocycle, and a multifunctional P450 ClaT catalyzes a ten-electron oxidation to accomplish the biosynthesis of the 10/5/3 tricyclic nested skeleton in clavilactones. Our findings establish the foundation for the efficient production of clavilactones using synthetic biology approaches and provide the mechanistic insights into the macrocycle formation in the biosynthesis of fungal meroterpenoids.

17.
Oncogene ; 43(23): 1779-1795, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38649438

RESUMO

Transcription factors (TFs) engage in various cellular essential processes including differentiation, growth and migration. However, the master TF involved in distant metastasis of nasopharyngeal carcinoma (NPC) remains largely unclear. Here we show that KLF5 regulates actin remodeling to enhance NPC metastasis. We analyzed the msVIPER algorithm-generated transcriptional regulatory networks and identified KLF5 as a master TF of metastatic NPC linked to poor clinical outcomes. KLF5 regulates actin remodeling and lamellipodia formation to promote the metastasis of NPC cells in vitro and in vivo. Mechanistically, KLF5 preferentially occupies distal enhancer regions of ACTN4 to activate its transcription, whereby decoding the informative DNA sequences. ACTN4, extensively localized within actin cytoskeleton, facilitates dense and branched actin networks and lamellipodia formation at the cell leading edge, empowering cells to migrate faster. Collectively, our findings reveal that KLF5 controls robust transcription program of ACTN4 to modulate actin remodeling and augment cell motility which enhances NPC metastasis, and provide new potential biomarkers and therapeutic interventions for NPC.


Assuntos
Actinina , Actinas , Movimento Celular , Fatores de Transcrição Kruppel-Like , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/patologia , Carcinoma Nasofaríngeo/metabolismo , Animais , Actinina/genética , Actinina/metabolismo , Movimento Celular/genética , Neoplasias Nasofaríngeas/patologia , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Linhagem Celular Tumoral , Actinas/metabolismo , Actinas/genética , Regulação Neoplásica da Expressão Gênica , Metástase Neoplásica , Pseudópodes/metabolismo , Pseudópodes/patologia , Camundongos Nus
18.
Phytomedicine ; 128: 155328, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38522316

RESUMO

BACKGROUND: Glioblastoma (GBM) represents as the most formidable intracranial malignancy. The systematic exploration of natural compounds for their potential applications in GBM therapy has emerged as a pivotal and fruitful avenue of research. PURPOSE: In the present study, a panel of 96 diterpenoids was systematically evaluated as a repository of potential antitumour agents. The primary objective was to discern their potency in overcoming resistance to temozolomide (TMZ). Through an extensive screening process, honatisine, a heptacyclic diterpenoid alkaloid, emerged as the most robust candidate. Notably, honatisine exhibited remarkable efficacy in patient-derived primary and recurrent GBM strains. Subsequently, we subjected this compound to comprehensive scrutiny, encompassing GBM cultured spheres, GBM organoids (GBOs), TMZ-resistant GBM cell lines, and orthotopic xenograft mouse models of GBM cells. RESULTS: Our investigative efforts delved into the mechanistic underpinnings of honatisine's impact. It was discerned that honatisine prompted mitonuclear protein imbalance and elicited the mitochondrial unfolded protein response (UPRmt). This effect was mediated through the selective depletion of mitochondrial DNA (mtDNA)-encoded subunits, with a particular emphasis on the diminution of mitochondrial transcription factor A (TFAM). The ultimate outcome was the instigation of deleterious mitochondrial dysfunction, culminating in apoptosis. Molecular docking and surface plasmon resonance (SPR) experiments validated honatisine's binding affinity to TFAM within its HMG-box B domain. This binding may promote phosphorylation of TFAM and obstruct the interaction of TFAM bound to heavy strand promoter 1 (HSP1), thereby enhancing Lon-mediated TFAM degradation. Finally, in vivo experiments confirmed honatisine's antiglioma properties. Our comprehensive toxicological assessments underscored its mild toxicity profile, emphasizing the necessity for a thorough evaluation of honatisine as a novel antiglioma agent. CONCLUSION: In summary, our data provide new insights into the therapeutic mechanisms underlying honatisine's selective inducetion of apoptosis and its ability to overcome chemotherapy resistance in GBM. These actions are mediated through the disruption of mitochondrial proteostasis and function, achieved by the inhibition of TFAM-mediated mtDNA transcription. This study highlights honatisine's potential as a promising agent for glioblastoma therapy, underscoring the need for further exploration and investigation.


Assuntos
DNA Mitocondrial , Diterpenos , Resistencia a Medicamentos Antineoplásicos , Glioblastoma , Temozolomida , Fatores de Transcrição , Glioblastoma/tratamento farmacológico , Humanos , Animais , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Temozolomida/farmacologia , Linhagem Celular Tumoral , Diterpenos/farmacologia , Fatores de Transcrição/metabolismo , Camundongos , DNA Mitocondrial/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Proteínas Mitocondriais/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias Encefálicas/tratamento farmacológico , Transcrição Gênica/efeitos dos fármacos , Camundongos Nus
19.
Nat Commun ; 15(1): 2654, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531972

RESUMO

The Myoviridae cyanophage A-1(L) specifically infects the model cyanobacteria Anabaena sp. PCC 7120. Following our recent report on the capsid structure of A-1(L), here we present the high-resolution cryo-EM structure of its intact tail machine including the neck, tail and attached fibers. Besides the dodecameric portal, the neck contains a canonical hexamer connected to a unique pentadecamer that anchors five extended bead-chain-like neck fibers. The 1045-Å-long contractile tail is composed of a helical bundle of tape measure proteins surrounded by a layer of tube proteins and a layer of sheath proteins, ended with a five-component baseplate. The six long and six short tail fibers are folded back pairwise, each with one end anchoring to the baseplate and the distal end pointing to the capsid. Structural analysis combined with biochemical assays further enable us to identify the dual hydrolytic activities of the baseplate hub, in addition to two host receptor binding domains in the tail fibers. Moreover, the structure of the intact A-1(L) also helps us to reannotate its genome. These findings will facilitate the application of A-1(L) as a chassis cyanophage in synthetic biology.


Assuntos
Anabaena , Myoviridae , Proteínas do Capsídeo/química , Capsídeo
20.
Nephrol Dial Transplant ; 39(10): 1624-1641, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-38402460

RESUMO

BACKGROUND: Immunoglobulin A nephropathy (IgAN) is a major cause of primary glomerulonephritis characterized by mesangial deposits of galactose-deficient IgA1 (Gd-IgA1). Toll-like receptors (TLRs), particularly TLR4, are involved in the pathogenesis of IgAN. The role of gut microbiota on IgAN patients was recently investigated. However, whether gut microbial modifications of Gd-IgA1 through TLR4 play a role in IgAN remains unclear. METHODS: We recruited subjects into four groups, including 48 patients with untreated IgAN, 22 treated IgAN patients (IgANIT), 22 primary membranous nephropathy and 31 healthy controls (HCs). Fecal samples were collected to analyze changes in gut microbiome. Gd-IgA1 levels, expression of TLR4, B-cell stimulators and intestinal barrier function were evaluated in all subjects. C57BL/6 mice were treated with a broad-spectrum antibiotic cocktail to deplete the gut microbiota and then gavaged with fecal microbiota transplanted from clinical subjects of every group. Gd-IgA1 and TLR4 pathway were detected in peripheral blood mononuclear cells (PBMCs) from IgAN and HCs co-incubated with lipopolysaccharide (LPS) and TLR4 inhibitor. RESULTS: Compared with the other three groups, different compositions and decreased diversity demonstrated gut dysbiosis in the untreated IgAN group, especially the enrichment of Escherichia-Shigella. Elevated Gd-IgA1 levels were found in untreated IgAN patients and correlated with gut dysbiosis, TLR4, B-cell stimulators, indexes of intestinal barrier damage and proinflammatory cytokines. In vivo, mice colonized with gut microbiota from IgAN and IgANIT patients mimicked the IgAN phenotype with the activation of TLR4/MyD88/nuclear factor-κB pathway and B-cell stimulators in the intestine, and had with enhanced proinflammatory cytokines. In vitro, LPS activated TLR4/MyD88/NF-κB pathway, B-cell stimulators and proinflammatory cytokines in PBMCs of IgAN patients. This process may induce the overproduction of Gd-IgA1, which was inhibited by TLR4 inhibitors. CONCLUSIONS: Our results illustrated that the gut-kidney axis is involved in the pathogenesis of IgAN. Gut dysbiosis could stimulate the overproduction of Gd-IgA1 via TLR4 signaling pathway production and B-cell stimulators.


Assuntos
Microbioma Gastrointestinal , Glomerulonefrite por IGA , Imunoglobulina A , Transdução de Sinais , Receptor 4 Toll-Like , Adulto , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Estudos de Casos e Controles , Glomerulonefrite por IGA/microbiologia , Glomerulonefrite por IGA/metabolismo , Glomerulonefrite por IGA/imunologia , Glomerulonefrite por IGA/patologia , Imunoglobulina A/metabolismo , Camundongos Endogâmicos C57BL , Receptor 4 Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA