Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Plant Biotechnol J ; 22(5): 1282-1298, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38124464

RESUMO

The repeated emergence of the same trait (convergent evolution) in distinct species is an interesting phenomenon and manifests visibly the power of natural selection. The underlying genetic mechanisms have important implications to understand how the genome evolves under environmental challenges. In cereal crops, both rice and barley can develop black-coloured husk/pericarp due to melanin accumulation. However, it is unclear if this trait shares a common origin. Here, we fine-mapped the barley HvBlp gene controlling the black husk/pericarp trait and confirmed its function by gene silencing. The result was further supported by a yellow husk/pericarp mutant with deletion of the HvBlp gene, derived from gamma ray radiation of the wild-type W1. HvBlp encodes a putative tyrosine transporter homologous to the black husk gene OsBh4 in rice. Surprisingly, synteny and phylogenetic analyses showed that HvBlp and OsBh4 belonged to different lineages resulted from dispersed and tandem duplications, respectively, suggesting that the black husk/pericarp trait has emerged independently. The dispersed duplication (dated at 21.23 MYA) yielding HvBlp occurred exclusively in the common ancestor of Triticeae. HvBlp and OsBh4 displayed converged transcription in husk/pericarp tissues, contributing to the black husk/pericarp trait. Further transcriptome and metabolome data identified critical candidate genes and metabolites related to melanin production in barley. Taken together, our study described a compelling case of convergent evolution resulted from transcriptional convergence after repeated gene duplication, providing valuable genetic insights into phenotypic evolution. The identification of the black husk/pericarp genes in barley also has great potential in breeding for stress-resilient varieties with higher nutritional values.


Assuntos
Hordeum , Oryza , Hordeum/genética , Hordeum/metabolismo , Oryza/genética , Oryza/metabolismo , Filogenia , Genes de Plantas , Melaninas/genética , Melaninas/metabolismo , Melhoramento Vegetal , Sistemas de Transporte de Aminoácidos/genética
2.
Int J Mol Sci ; 24(23)2023 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-38069108

RESUMO

Flooding stress, including waterlogging and submergence, is one of the major abiotic stresses that seriously affects the growth and development of plants. In the present study, physiological, epigenetic, and transcriptomic analyses were performed in wheat seedling leaves under waterlogging (WL), half submergence (HS), and full submergence (FS) treatments. The results demonstrate that FS increased the leaves' hydrogen peroxide (H2O2) and malondialdehyde (MDA) contents and reduced their chlorophyll contents (SPAD), photosynthetic efficiency (Fv/Fm), and shoot dry weight more than HS and WL. In addition, FS increased catalase (CAT) and peroxidase (POD) activities more than HS and WL. However, there were no significant differences in the contents of H2O2, MDA, SPAD, and Fv/Fm, and the activities of superoxide dismutase (SOD) and POD between the HS and WL treatments. The changes in DNA methylation were related to stress types, increasing under the WL and HS treatments and decreasing under the FS treatment. Additionally, a total of 9996, 10,619, and 24,949 genes were differentially expressed under the WL, HS, and FS treatments, respectively, among which the 'photosynthesis', 'phenylpropanoid biosynthesis', and 'plant hormone signal transduction' pathways were extensively enriched under the three flooding treatments. The genes involved in these pathways showed flooding-type-specific expression. Moreover, flooding-type-specific responses were observed in the three conditions, including the enrichment of specific TFs and response pathways. These results will contribute to a better understanding of the molecular mechanisms underlying the responses of wheat seedling leaves to flooding stress and provide valuable genetic and epigenetic information for breeding flood-tolerant varieties of wheat.


Assuntos
Inundações , Triticum , Triticum/metabolismo , Plântula/genética , Plântula/metabolismo , Água/metabolismo , Peróxido de Hidrogênio/metabolismo , Melhoramento Vegetal , Antioxidantes/metabolismo , Perfilação da Expressão Gênica , Folhas de Planta/metabolismo , Epigênese Genética
3.
Int J Mol Sci ; 24(19)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37834249

RESUMO

High temperature is one of the most important environmental factors influencing rice growth, development, and yield. Therefore, it is important to understand how rice plants cope with high temperatures. Herein, the heat tolerances of T2 (Jinxibai) and T21 (Taizhongxianxuan2hao) were evaluated at 45 °C, and T21 was found to be sensitive to heat stress at the seedling stage. Analysis of the H2O2 and proline content revealed that the accumulation rate of H2O2 was higher in T21, whereas the accumulation rate of proline was higher in T2 after heat treatment. Meanwhile, transcriptome analysis revealed that several pathways participated in the heat response, including "protein processing in endoplasmic reticulum", "plant hormone signal transduction", and "carbon metabolism". Additionally, our study also revealed that different pathways participate in heat stress responses upon prolonged stress. The pathway of "protein processing in endoplasmic reticulum" plays an important role in stress responses. We found that most genes involved in this pathway were upregulated and peaked at 0.5 or 1 h after heat treatment. Moreover, sixty transcription factors, including the members of the AP2/ERF, NAC, HSF, WRKY, and C2H2 families, were found to participate in the heat stress response. Many of them have also been reported to be involved in biotic or abiotic stresses. In addition, through PPI (protein-protein interactions) analysis, 22 genes were identified as key genes in the response to heat stress. This study improves our understanding of thermotolerance mechanisms in rice, and also lays a foundation for breeding thermotolerant cultivars via molecular breeding.


Assuntos
Oryza , Humanos , Oryza/metabolismo , Peróxido de Hidrogênio/metabolismo , Melhoramento Vegetal , Resposta ao Choque Térmico/genética , Perfilação da Expressão Gênica , Prolina/metabolismo , Transcriptoma , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
Sci Data ; 10(1): 535, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563167

RESUMO

Wild barley, from "Evolution Canyon (EC)" in Mount Carmel, Israel, are ideal models for cereal chromosome evolution studies. Here, the wild barley EC_S1 is from the south slope with higher daily temperatures and drought, while EC_N1 is from the north slope with a cooler climate and higher relative humidity, which results in a differentiated selection due to contrasting environments. We assembled a 5.03 Gb genome with contig N50 of 3.53 Mb for wild barley EC_S1 and a 5.05 Gb genome with contig N50 of 3.45 Mb for EC_N1 using 145 Gb and 160.0 Gb Illumina sequencing data, 295.6 Gb and 285.35 Gb Nanopore sequencing data and 555.1 Gb and 514.5 Gb Hi-C sequencing data, respectively. BUSCOs and CEGMA evaluation suggested highly complete assemblies. Using full-length transcriptome data, we predicted 39,179 and 38,373 high-confidence genes in EC_S1 and EC_N1, in which 93.6% and 95.2% were functionally annotated, respectively. We annotated repetitive elements and non-coding RNAs. These two wild barley genome assemblies will provide a rich gene pool for domesticated barley.


Assuntos
Genoma de Planta , Hordeum , Cromossomos , Hordeum/genética , Anotação de Sequência Molecular , Filogenia , Sequências Repetitivas de Ácido Nucleico
5.
Int J Mol Sci ; 24(11)2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37298358

RESUMO

Short-term heat stress can affect the growth of rice (Oryza sativa L.) seedlings, subsequently decreasing yields. Determining the dynamic response of rice seedlings to short-term heat stress is highly important for accelerating research on rice heat tolerance. Here, we observed the seedling characteristics of two contrasting cultivars (T11: heat-tolerant and T15: heat-sensitive) after different durations of 42 °C heat stress. The dynamic transcriptomic changes of the two cultivars were monitored after 0 min, 10 min, 30 min, 1 h, 4 h, and 10 h of stress. The results indicate that several pathways were rapidly responding to heat stress, such as protein processing in the endoplasmic reticulum, glycerophospholipid metabolism, and plant hormone signal transduction. Functional annotation and cluster analysis of differentially expressed genes at different stress times indicate that the tolerant cultivar responded more rapidly and intensively to heat stress compared to the sensitive cultivar. The MAPK signaling pathway was found to be the specific early-response pathway of the tolerant cultivar. Moreover, by combining data from a GWAS and RNA-seq analysis, we identified 27 candidate genes. The reliability of the transcriptome data was verified using RT-qPCR on 10 candidate genes and 20 genes with different expression patterns. This study provides valuable information for short-term thermotolerance response mechanisms active at the rice seedling stage and lays a foundation for breeding thermotolerant varieties via molecular breeding.


Assuntos
Oryza , Transcriptoma , Oryza/metabolismo , Reprodutibilidade dos Testes , Melhoramento Vegetal , Resposta ao Choque Térmico/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Plântula/genética
6.
Int J Mol Sci ; 24(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37175750

RESUMO

In this study, based on the OneKP database and through comparative genetic analysis, we found that HMT and HDM may originate from Chromista and are highly conserved in green plants, and that during the evolution from algae to land plants, histone methylation modifications gradually became complex and diverse, which is more conducive to the adaptation of plants to complex and variable environments. We also characterized the number of members, genetic similarity, and phylogeny of HMT and HDM families in barley using the barley pangenome and the Tibetan Lasa Goumang genome. The results showed that HMT and HDM were highly conserved in the domestication of barley, but there were some differences in the Lasa Goumang SDG subfamily. Expression analysis showed that HvHMTs and HvHDMs were highly expressed in specific tissues and had complex expression patterns under multiple stress treatments. In summary, the amplification and variation of HMT and HDM facilitate plant adaptation to complex terrestrial environments, while they are highly conserved in barley and play an important role in barley growth and development with abiotic stresses. In brief, our findings provide a novel perspective on the origin and evolutionary history of plant HvHMTs and HvHDMs, and lay a foundation for further investigation of their functions in barley.


Assuntos
Hordeum , Humanos , Hordeum/metabolismo , Histonas/genética , Histonas/metabolismo , Metilação , Plantas/metabolismo , Filogenia , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta
7.
Plant Biotechnol J ; 21(1): 46-62, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36054248

RESUMO

Divergent selection of populations in contrasting environments leads to functional genomic divergence. However, the genomic architecture underlying heterogeneous genomic differentiation remains poorly understood. Here, we de novo assembled two high-quality wild barley (Hordeum spontaneum K. Koch) genomes and examined genomic differentiation and gene expression patterns under abiotic stress in two populations. These two populations had a shared ancestry and originated in close geographic proximity but experienced different selective pressures due to their contrasting micro-environments. We identified structural variants that may have played significant roles in affecting genes potentially associated with well-differentiated phenotypes such as flowering time and drought response between two wild barley genomes. Among them, a 29-bp insertion into the promoter region formed a cis-regulatory element in the HvWRKY45 gene, which may contribute to enhanced tolerance to drought. A single SNP mutation in the promoter region may influence HvCO5 expression and be putatively linked to local flowering time adaptation. We also revealed significant genomic differentiation between the two populations with ongoing gene flow. Our results indicate that SNPs and small SVs link to genetic differentiation at the gene level through local adaptation and are maintained through divergent selection. In contrast, large chromosome inversions may have shaped the heterogeneous pattern of genomic differentiation along the chromosomes by suppressing chromosome recombination and gene flow. Our research offers novel insights into the genomic basis underlying local adaptation and provides valuable resources for the genetic improvement of cultivated barley.


Assuntos
Hordeum , Hordeum/genética , Genômica , Adaptação Fisiológica/genética , Genes de Plantas
8.
Front Plant Sci ; 13: 878420, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35646033

RESUMO

Ionizing radiation (IR) is an effective approach for mutation breeding. Understanding the mutagenesis and transcriptional profiles induced by different mutagens is of great significance for improving mutation breeding efficiency. Here, using RNA sequencing and methylation-sensitive amplification polymorphism (MSAP) approaches, we compared the genetic variations, epigenetics, and transcriptional responses induced by the mixed high-energy particle field (CR) and 7Li-ion beam (LR) radiation in M1 seedlings of two wheat genotypes (Yangmai 18 and Yangmai 20). The results showed that, in both wheat genotypes, CR displayed significantly a higher mutation efficiency (1.79 × 10-6/bp) than that by LR (1.56 × 10-6/bp). The induced mutations were not evenly distributed across chromosomes and varied across wheat genotypes. In Y18 M1, the highest number of mutations were detected on Chr. 6B and Chr. 6D, whilst in Y20 M1, Chr. 7A and Chr. 3A had the highest mutations. The transcript results showed that total of 4,755 CR-regulated and 1,054 LR-regulated differentially expressed genes (DEGs) were identified in the both genotypes. Gene function enrichment analysis of DEGs showed that these DEGs overlapped or diverged in the cascades of molecular networks involved in "phenylpropanoid biosynthesis" and "starch and sucrose metabolism" pathways. Moreover, IR type specific responses were observed between CR an LR irradiation, including specific TFs and response pathways. MSAP analysis showed that DNA methylation level increased in LR treatment, while decreased at CR. The proportion of hypermethylation was higher than that of hypomethylation at LR, whereas a reverse pattern was observed at CR, indicating that DNA methylation plays critical roles in response to IR irradiation. All these results support that the response to different IRs in wheat includes both common and unique pathways, which can be served as a useful resource to better understand the mechanisms of responses to different IRs in other plants.

9.
Physiol Plant ; 174(4): e13727, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35657636

RESUMO

DNA methylation and histone modification enable plants to rapidly adapt to adverse temperature stresses, including low temperature (LT) and high temperature (HT) stress. In this study, we conducted physiological, epigenetic, and transcriptomic analyses of barley seedlings grown under control (22°C), mild low temperature (MLT, 14°C) and HT (38°C) conditions to elucidate the underlying molecular mechanisms. Compared to MLT, HT implies greater deleterious effects on barley seedlings' growth. The methylation-sensitive amplification polymorphism analysis showed that MLT induced more DNA methylation and HT more DNA demethylation compared to control. Besides, the higher levels of H3K9ac and H3K4me3 under HT compared to MLT stresses might lead to the loosening of chromatin and, subsequently, the activation of gene expression. Consistently, the transcriptome analysis revealed that there were more differentially expressed genes (DEGs) in plants subjected to HT stress than MLT stress compared to control. The common and unique pathways of these DEGs between MLT and HT were also analyzed. Transcription factors, such as ERF, bHLH, NAC, HSF, and MYB, were most involved in MLT and HT stress. The underlying gene regulation networks of epigenetic modulation-related genes were further explored by weight gene co-expression network analysis. Our study provides new insights into the understanding of epigenetic regulation responses to temperature stress in barley, which will lead to improved strategies for the development of cold- and heat-tolerant barley varieties for sustainable barley production in a climate-changing world.


Assuntos
Hordeum , Transcriptoma , Epigênese Genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Resposta ao Choque Térmico , Hordeum/genética , Hordeum/metabolismo , Plântula/genética , Temperatura , Transcriptoma/genética
10.
Front Genet ; 13: 873850, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35601488

RESUMO

The Nudum (Nud) gene controls the caryopsis type of cereal crops by regulating lipid biosynthetic pathways. Based on the HvNud sequence and its homologous gene sequences in wheat, a conserved sgRNA was designed to obtain the mutants from the barley variety "Vlamingh" and the wheat variety "Fielder" via Agrobacterium-mediated transformation. A total of 19 and 118 transgenic plants were obtained, and 11 and 61 mutant plants were identified in T0 transgenic plants in barley and wheat after PCR-RE detection, and the editing efficiencies of the targeted gene were 57.9 and 51.7% in barley and wheat, respectively. The grain shape of the barley mutants was naked. Five different combinations of mutations for wheat TaNud genes were identified in the T0 generation, and their homozygous-edited plants were obtained in the T1 generation. Interestingly, the conjoined plants in which one plant has different genotypes were first identified. The different tillers in an individual T0 plant showed independent transgenic or mutant events in both barley and wheat, and the different genotypes can stably inherit into T1 generation, indicating that the T0 transgenic plants were the conjoined type. In addition, we did not find any off-target mutations in both barley and wheat. A candidate method for detecting putative-edited wheat plants was suggested to avoid losing mutations in this investigation. This study provides not only materials for studying the function of the Nud gene in barley and wheat but also a system for detecting the mutants in wheat.

11.
PeerJ ; 10: e13119, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35356472

RESUMO

Plant aldehyde oxidases (AOs) are multi-functional enzymes, and they could oxidize abscisic aldehyde into ABA (abscisic acid) or indole acetaldehyde into IAA (indoleacetic acid) as the last step, respectively. AOs can be divided into four groups based on their biochemical and physiological functions. In this review, we summarized the recent studies about AOs in plants including the motif information, biochemical, and physiological functions. Besides their role in phytohormones biosynthesis and stress response, AOs could also involve in reactive oxygen species homeostasis, aldehyde detoxification and stress tolerance.


Assuntos
Aldeído Oxidase , Reguladores de Crescimento de Plantas , Ácido Abscísico , Aldeídos , Espécies Reativas de Oxigênio
12.
Sensors (Basel) ; 21(21)2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34770298

RESUMO

Tufa barrages play an important role in fluviatile tufa ecosystems and sedimentary records. Quantifying the height of tufa barrage is significant for understanding the evolution and development of the Holocene tufa barrage systems. However, for submerged tufa barrages, there is no low-cost non-contact method to retrieve barrage height. Generally, it is difficult to recognize small tufa barrages by means of remotely sensed satellite data, but the combination of unmanned aerial vehicles (UAV) and Structure-from-Motion (SfM) photogrammetry makes it possible. In this study, we used a fixed-wing UAV and a consumer-grade camera to acquire images of the submerged tufa barrage in Lying Dragon Lake, Jiuzhaigou National Nature Reserve, China, and estimated the height of the tufa barrage through UAV-based photogrammetric bathymetry. On this foundation, the relationship between barrage height and its spectrum was established through band ratio analysis using UAV-derived geometric bathymetry and digital orthoimages, which provided an alternative strategy to characterize the height of submerged tufa barrages. However, the spectral characteristics of submerged tufa barrages will oscillate with changes in the environmental conditions. In future research, we will consider using a dedicated aquatic multispectral camera to improve the experimentation.


Assuntos
Ecossistema , Tecnologia de Sensoriamento Remoto , Lagos , Movimento (Física) , Fotogrametria
13.
J Anal Methods Chem ; 2021: 5599388, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34336359

RESUMO

The chemical method for the determination of the resistant starch (RS) content in grains is time-consuming and labor intensive. Near-infrared (NIR) and attenuated total reflectance mid-infrared (ATR-MIR) spectroscopy are rapid and nondestructive analytical techniques for determining grain quality. This study was the first report to establish and compare these two spectroscopic techniques for determining the RS content in wheat grains. Calibration models with four preprocessing techniques based on the partial least squares (PLS) algorithm were built. In the NIR technique, the mean normalization + Savitzky-Golay smoothing (MN + SGS) preprocessing technique had a higher coefficient of determination (R c 2 = 0.672; R p 2 = 0.552) and a relative lower root mean square error value (RMSEC = 0.385; RMSEP = 0.459). In the ATR-MIR technique, the baseline preprocessing method exhibited a better performance regarding to the values of coefficient of determination (R c 2 = 0.927; R p 2 = 0.828) and mean square error value (RMSEC = 0.153; RMSEP = 0.284). The validation of the developed best NIR and ATR-MIR calibration models showed that the ATR-MIR best calibration model has a better RS prediction ability than the NIR best calibration model. Two high grain RS content wheat mutants were screened out by the ATR-MIR best calibration model from the wheat mutant library. There was no significant difference between the predicted values and chemical measured values in the two high RS content mutants. It proved that the ATR-MIR model can be a perfect substitute in RS measuring. All the results indicated that the ATR-MIR spectroscopy with improved screening efficiency can be used as a fast, rapid, and nondestructive method in high grain RS content wheat breeding.

14.
J Struct Biol ; 213(3): 107767, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34214602

RESUMO

The enzymes exopolyphosphatase/guanosine pentaphosphate phosphohydrolase (PPX/GppA) play important roles in the bacterial stringent response. PPX degrades inorganic polyphosphate (polyP), a polymer composed of a few to hundreds of phosphate residues supporting cell survival in the stationary phase. The crystal structure of PPX from Porphyromonas gingivalis (PgPPX) in complex with catalytic magnesium ions and several sulfate ions was solved. PgPPX contained two domains and represented a "closed" configuration. Four sulfate ions forming a linear dispersed chain were observed in the aqueduct of the PPX dimer, which the long polyP chain most likely occupied. The side chain of R255 stretched into the cavity where polyP could be located, obstructing the entrance of larger substrates such as NTP and NDP. This study provided the first view into the structure of the PPX/GppA homolog in complex with magnesium ions and substrate analogs and explained how PgPPX implemented its functionality.


Assuntos
Polifosfatos , Porphyromonas gingivalis , Hidrolases Anidrido Ácido/química , Magnésio , Polifosfatos/metabolismo , Porphyromonas gingivalis/metabolismo
15.
J Fluoresc ; 31(5): 1219-1225, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34255255

RESUMO

A novel pH-responsive probe based on an imidazo[1,2-a]indole fluorophore architecture is reported. The probe was highly selective to strongly acidic pH (pKa = 3.56) with high sensitivity and a fast response time (within 30 s). The probe did not demonstrate any fluorescence changes in the presence of interfering metal ions, and it featured excellent reversibility under strongly acidic conditions. The mechanism of detection of the probe was determined to be based on intramolecular charge transfer (ICT) at different pH. The probe was also able to be used for imaging for detecting acidic pH in Saccharomyces cerevisiae.


Assuntos
Corantes Fluorescentes , Saccharomyces cerevisiae , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Indóis
16.
Physiol Mol Biol Plants ; 27(6): 1245-1260, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34177146

RESUMO

Salinity is one of the most important problems that adversely affect crops growth, productivity and quality worldwide. Salt Overly Sensitive 1 (SOS1) gene family plays vital roles in plant response to salt stress. Herein, we report the identification of the SOS family in wheat and the exploration of the expression profiles of SOSs under salt stress. Complete genome sequences of T. aestivum were downloaded from Ensembl plant database. Conservation and divergence of TaSOS1 family were conducted by using phylogenetic tree, gene structure and synteny distribution analysis. Expression profiles of TaSOS1s were obtained based on transcriptome and qRT-PCR analysis. Totally, 119 TaSOS1 proteins in wheat were identified at the genome-wide level and classified into three groups. Six motifs were conserved in TaSOS1 gene family. Moreover, 25 TaSOS1 genes had three copies distributing in three sub-genomes (A, B and D). A total of 32, 28 and 29 TaSOS1 genes were located on the sub-genomes A, B and D, respectively. Moreover, there were 19, 12, 6, 7, 28, 5 and 12 genes located on the three homologous of chromosomes 1, 2, 3, 4, 5, 6 and 7, respectively. Two genes were mapped to unattributed scaffolds. The duplication events analysis indicated that tandem repeats contributed to the expansion of the SOS1 family in wheat. Collinearity analysis demonstrated that segmental duplications play an important role in the expansion of SOS1 members. Chromosome 7, 5, 3, and 2 showed collinear relationship. Tissue specific expression pattern analysis revealed that 41 TaSOS1 genes expressed in various tissues, such as root, shoot, leaf, spike and grain. Transcriptomic analysis revealed that 28 and 26 genes were up- and down-regulated under salinity stress, respectively, of which 18 genes were further confirmed by RT-qPCR. The plants with high expression level of these genes displayed higher tolerance to salinity stress, stronger root system, higher Fv/Fm value and water potential. The results could be helpful for further elucidating the molecular mechanism of TaSOS1 related to salt tolerance in wheat and provide a toolkit for improving the salinity tolerance of wheat. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-01009-y.

17.
J Mol Neurosci ; 71(12): 2487-2499, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33738762

RESUMO

Apoptosis of hippocampal neurons is one of the mechanisms of hippocampal atrophy in posttraumatic stress disorder (PTSD), and it is also an important cause of memory impairment in PTSD patients. Endoplasmic reticulum stress (ERS) mediated by activated transcription factor 6α (ATF6α)/site 1 protease (S1P)/S2P is involved in cell apoptosis, but it is not clear whether it is involved in hippocampal neuron apoptosis caused by PTSD. A PTSD rat model was constructed by the single prolonged stress (SPS) method. The study was divided into three parts. Experiment 1 included the control group, SPS 1 d group, SPS 7 d group, and SPS 14 d group. Experiment 2 included the control group, SPS 7 d group, SPS 7 d + AEBSF group, and control + AEBSF group. (4-(2-Aminoethyl)benzenesulfonyl fluoride hydrochloride (AEBSF) is an ATF6α pathway inhibitor). Experiment 3 included the control group, SPS 4 d group, SPS 4 d + AEBSF group, and control + AEBSF group. The protein and mRNA expression levels of ATF6α, glucose-regulated protein (GRP78), S1P, S2P, C/EBP homologous protein (CHOP), and caspase-12 in the hippocampus of PTSD rats were detected by immunohistochemistry, Western blotting and qRT-PCR. Apoptosis of hippocampal neurons was detected by TUNEL staining. In experiment 1, the protein and mRNA expression of ATF6α and GRP78 increased gradually in the SPS 1 d group and the SPS 7 d group but decreased in the SPS 14 d group (P < 0.01). In experiment 2, compared with that in the control group, the protein and mRNA expression of ATF6α, GRP78, S1P, S2P, CHOP, and caspase-12 and the apoptosis rate were significantly increased in the SPS 7 d group (P < 0.01). However, the protein and mRNA expression of ATF6α, GRP78, S1P, S2P, CHOP, and caspase-12 and the apoptosis rate were significantly decreased after AEBSF pretreatment (P < 0.01). In experiment 3, compared with that in the control group, the protein and mRNA expression of ATF6α, GRP78, S1P, S2P, CHOP, and caspase-12 and the apoptosis rate were increased in the SPS 14 d group (P < 0.05). However, the protein and mRNA expression of ATF6α, GRP78, S1P, S2P, CHOP, and caspase-12 and the apoptosis rate were decreased after AEBSF pretreatment (P < 0.05). SPS induced apoptosis of hippocampal neurons by activating ERS mediated by ATF6α, suggesting that ERS-induced apoptosis is involved in the occurrence of PTSD.


Assuntos
Fator 6 Ativador da Transcrição/metabolismo , Apoptose , Hipocampo/metabolismo , Pró-Proteína Convertases/metabolismo , Serina Endopeptidases/metabolismo , Transtornos de Estresse Pós-Traumáticos/metabolismo , Fator 6 Ativador da Transcrição/genética , Animais , Caspase 12/genética , Caspase 12/metabolismo , Estresse do Retículo Endoplasmático , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Hipocampo/citologia , Masculino , Memória , Neurônios/metabolismo , Pró-Proteína Convertases/genética , Ratos , Ratos Wistar , Serina Endopeptidases/genética , Transdução de Sinais , Transtornos de Estresse Pós-Traumáticos/genética , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo
18.
Theor Appl Genet ; 133(7): 2307-2321, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32405768

RESUMO

KEY MESSAGE: An effective and stable quantitative resistance locus, QSc.VR4, was fine mapped, characterized and physically anchored to the short arm of 4H, conferring adult plant resistance to the fungus Rhynchosporium commune in barley. Scald caused by Rhynchosporium commune is one of the most destructive barley diseases worldwide. Accumulation of adult plant resistance (APR) governed by multiple resistance alleles is predicted to be effective and long-lasting against a broad spectrum of pathotypes. However, the molecular mechanisms that control APR remain poorly understood. Here, quantitative trait loci (QTL) analysis of APR and fine mapping were performed on five barley populations derived from a common parent Vlamingh, which expresses APR to scald. Two QTLs, designated QSc.VR4 and QSc.BR7, were detected from a cross between Vlamingh and Buloke. Our data confirmed that QSc.VR4 is an effective and stable APR locus, residing on the short arm of chromosome 4H, and QSc.BR7 derived from Buloke may be an allele of reported Rrs2. High-resolution fine mapping revealed that QSc.VR4 is located in a 0.38 Mb genomic region between InDel markers 4H2282169 and 4H2665106. The gene annotation analysis and sequence comparison suggested that a gene cluster containing two adjacent multigene families encoding leucine-rich repeat receptor kinase-like proteins (LRR-RLKs) and germin-like proteins (GLPs), respectively, is likely contributing to scald resistance. Adult plant resistance (APR) governed by QSc.VR4 may confer partial levels of resistance to the fungus Rhynchosporium commune and, furthermore, be an important resource for gene pyramiding that may contribute broad-based and more durable resistance.


Assuntos
Ascomicetos/patogenicidade , Mapeamento Cromossômico , Resistência à Doença/genética , Hordeum/genética , Doenças das Plantas/genética , Alelos , Cromossomos de Plantas , Genes de Plantas , Marcadores Genéticos , Genótipo , Hordeum/microbiologia , Limite de Detecção , Modelos Genéticos , Família Multigênica , Fenótipo , Doenças das Plantas/microbiologia , Locos de Características Quantitativas
19.
J Mol Neurosci ; 70(4): 576-589, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31933182

RESUMO

Posttraumatic stress disorder (PTSD) is closely related to brain structures of the memory loop such as the hippocampus, amygdala, and medial prefrontal cortex (mPFC). The fear gene stathmin plays an important role in regulating fear memory. However, whether the fear gene stathmin is related to fear memory loop anomalies caused by PTSD is unclear. A single-prolonged stress (SPS) rat model of PTSD was constructed. Wistar rats were randomly divided into 5 groups: the control group, SPS 1-day group, SPS 4-day group, SPS 7-day group, and SPS 14-day group. Then, we measured the protein and mRNA expression of stathmin, p-stathmin (Ser16, Ser25, Ser38, and Ser63), ß-tubulin, and MAP-1B in the hippocampus, amygdala, and mPFC in the 5 groups by immunohistochemistry, Western blotting, and qRT-PCR. The expression of the stathmin protein in the hippocampus, mPFC, and amygdala of the rat memory loop decreased gradually in the SPS 1-day group, the SPS 4-day group, and the SPS 7-day group, in which it was the lowest, and then increased. The trend of the expression of stathmin mRNA in the three areas of the memory loop was consistent with the trend of the expression of the stathmin protein. The trend of the protein expression of p-stathmin (Ser25 and Ser38) was opposite of that of stathmin; it reached a peak on the 7th day, and then decreased in the hippocampus. The protein expression of p-stathmin (Ser63) showed the same trend in the mPFC. The protein and mRNA expression of ß-tubulin and MAP-1B was consistent with that of p-stathmin; it reached a peak on the 7th day, and then decreased in the rat hippocampus, mPFC, and amygdala. Stathmin in the memory loop, especially in the hippocampus, regulates microtubule structure through its phosphorylation at Ser25 and Ser38 and thereby participates in the mediation of fear memory abnormalities in PTSD.


Assuntos
Tonsila do Cerebelo/metabolismo , Hipocampo/metabolismo , Estatmina/genética , Transtornos de Estresse Pós-Traumáticos/metabolismo , Animais , Masculino , Memória , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Córtex Pré-Frontal/metabolismo , Ratos , Ratos Wistar , Estatmina/metabolismo , Transtornos de Estresse Pós-Traumáticos/genética , Transtornos de Estresse Pós-Traumáticos/fisiopatologia , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
20.
Plant J ; 101(5): 1057-1074, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31571294

RESUMO

Functional divergence after gene duplication plays a central role in plant evolution. Among cereals, only Hordeum vulgare (barley), Triticum aestivum (wheat) and Secale cereale (rye) accumulate delphinidin-derived (blue) anthocyanins in the aleurone layer of grains, whereas Oryza sativa (rice), Zea mays (maize) and Sorghum bicolor (sorghum) do not. The underlying genetic basis for this natural occurrence remains elusive. Here, we mapped the barley Blx1 locus involved in blue aleurone to an approximately 1.13 Mb genetic interval on chromosome 4HL, thus identifying a trigenic cluster named MbHF35 (containing HvMYB4H, HvMYC4H and HvF35H). Sequence and expression data supported the role of these genes in conferring blue-coloured (blue aleurone) grains. Synteny analyses across monocot species showed that MbHF35 has only evolved within distinct Triticeae lineages, as a result of dispersed gene duplication. Phylogeny analyses revealed a shared evolution pattern for MbHF35 in Triticeae, suggesting that these genes have co-evolved together. We also identified a Pooideae-specific flavonoid 3',5'-hydroxylase (F3'5'H) lineage, termed here Mo_F35H2, which has a higher amino acid similarity with eudicot F3'5'Hs, demonstrating a scenario of convergent evolution. Indeed, selection tests identified 13 amino acid residues in Mo_F35H2 that underwent positive selection, possibly driven by protein thermostablility selection. Furthermore, through the interrogation of barley germplasm there is evidence that HvMYB4H and HvMYC4H have undergone human selection. Collectively, our study favours blue aleurone as a recently evolved trait resulting from environmental adaptation. Our findings provide an evolutionary explanation for the absence of blue anthocyanins in other cereals and highlight the importance of gene functional divergence for plant diversity and environmental adaptation.


Assuntos
Hordeum/genética , Proteínas de Plantas/genética , Adaptação Fisiológica/genética , Evolução Biológica , Mapeamento Cromossômico , Cor , Grão Comestível , Meio Ambiente , Duplicação Gênica , Loci Gênicos/genética , Hordeum/fisiologia , Fenótipo , Filogenia , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA