RESUMO
We describe for the first time, a high-quality genome for a rare human yeast pathogen Candida mucifera, from a patient with chronic suppurative otitis media. This pathogen exhibited reduced azole susceptibility, similar to its close relatives within the Trichomonascus ciferrii species complex.
Assuntos
Candida , Genoma Fúngico , Otite Média , Sequenciamento Completo do Genoma , Humanos , Candida/genética , Candida/isolamento & purificação , Candida/classificação , Otite Média/microbiologia , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Azóis/farmacologia , Testes de Sensibilidade Microbiana , Análise de Sequência de DNARESUMO
OBJECTIVES: To establish the epidemiology cut-off (ECOFF) values of eravacycline against Escherichia coli, Klebsiella pneumoniae, Enterobacter cloacae, Acinetobacter baumannii and Staphylococcus aureus, from a multi-centre study in China. METHODS: We collected 2500 clinical isolates from five hospitals in China from 2017 to 2020. The MICs of eravacycline were determined using broth microdilution. The ECOFF values of eravacycline against the five species commonly causing cIAIs were calculated using visual estimation and ECOFFinder following the EUCAST guideline. RESULTS: The MICs of eravacycline against all the strains were in the range of 0.004-16 mg/L. The ECOFF values of eravacycline were 0.5 mg/L for E. coli, 2 mg/L for K. pneumonia and E. cloacae, and 0.25 mg/L for A. baumannii and S. aureus, consistent with the newest EUCAST publication of eravacycline ECOFF values for the populations. No discrepancy was found between the visually estimated and 99.00% ECOFF values calculated using ECOFFinder. CONCLUSIONS: The determined ECOFF values of eravacycline against the five species can assist in distinguishing wild-type from non-wild-type strains. Given its promising activity, eravacycline may represent a member of the tetracycline class in treating cIAIs caused by commonly encountered Gram-negative and Gram-positive pathogens.
Assuntos
Acinetobacter baumannii , Antibacterianos , Enterobacter cloacae , Escherichia coli , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Staphylococcus aureus , Tetraciclinas , Humanos , Antibacterianos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/isolamento & purificação , Tetraciclinas/farmacologia , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/isolamento & purificação , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , Enterobacter cloacae/efeitos dos fármacos , Enterobacter cloacae/isolamento & purificação , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , China/epidemiologiaRESUMO
BACKGROUND: Nocardia farcinica is one of the most common Nocardia species causing human infections. It is an opportunistic pathogen that often infects people with compromised immune systems. It could invade human body through respiratory tract or skin wounds, cause local infection, and affect other organs via hematogenous dissemination. However, N. farcinica-caused bacteremia is uncommon. In this study, we report a case of bacteremia caused by N. farcinica in China. CASE PRESENTATION: An 80-year-old woman was admitted to Peking Union Medical College Hospital with recurrent fever, right abdominal pain for one and a half month, and right adrenal gland occupation. N. farcinica was identified as the causative pathogen using blood culture and plasma metagenomics next-generation sequencing (mNGS). The clinical considerations included bacteremia and adrenal gland abscess caused by Nocardia infection. As the patient was allergic to sulfanilamide, imipenem/cilastatin and linezolid were empirically administered. Unfortunately, the patient eventually died less than a month after the initiation of anti-infection treatment. CONCLUSION: N. farcinica bacteremia is rare and its clinical manifestations are not specific. Its diagnosis depends on etiological examination, which can be confirmed using techniques such as Sanger sequencing and mNGS. In this report, we have reviewed cases of Nocardia bloodstream infection reported in the past decade, hoping to improve clinicians' understanding of Nocardia bloodstream infection and help in its early diagnosis and timely treatment.
Assuntos
Bacteriemia , Nocardiose , Nocardia , Sepse , Feminino , Humanos , Idoso de 80 Anos ou mais , Nocardia/genética , Nocardiose/diagnóstico , Nocardiose/tratamento farmacológico , Bacteriemia/diagnóstico , Bacteriemia/tratamento farmacológicoRESUMO
Candida auris, an emerging and multidrug-resistant fungal pathogen, has led to numerous outbreaks in China. While the resistance mechanisms against azole and amphotericin B have been studied, the development of drug resistance in this pathogen remains poorly understood, particularly in in vivo-generated drug-resistant strains. This study employed pathogen whole-genome sequencing to investigate the epidemiology and drug-resistance mutations of C. auris using 16 strains isolated from two patients. Identification was conducted through Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, and antimicrobial susceptibilities were assessed using broth microdilution and Sensititre YeastOne YO10. Whole-genome sequencing revealed that all isolates belonged to the South Asian lineage, displaying genetic heterogeneity. Despite low genetic variability among patient isolates, notable mutations were identified, including Y132F in ERG11 and A585S in TAC1b, likely linked to increased fluconazole resistance. Strains from patient B also carried F214L in TAC1b, resulting in a consistent voriconazole minimum inhibitory concentration of 4 µg/mL across all isolates. Furthermore, a novel frameshift mutation in the SNG1 gene was observed in amphotericin B-resistant isolates compared to susceptible ones. Our findings suggest the potential transmission of C. auris and emphasize the need to explore variations related to antifungal resistance. This involves analyzing genomic mutations and karyotypes, especially in vivo, to compare sensitive and resistant strains. Further monitoring and validation efforts are crucial for a comprehensive understanding of the mechanisms of drug resistance in C. auris.
Assuntos
Antifúngicos , Candidíase , Humanos , Antifúngicos/farmacologia , Candidíase/microbiologia , Candida auris , Candida , Anfotericina B/farmacologia , Farmacorresistência Fúngica/genética , Testes de Sensibilidade MicrobianaRESUMO
OBJECTIVES: We explored the epidemiological and molecular characteristics of Candida parapsilosis sensu stricto isolates in China, and their mechanisms of azole resistance. METHODS: Azole susceptibilities of 2318 non-duplicate isolates were determined using CLSI broth microdilution. Isolates were genotyped by a microsatellite typing method. Molecular resistance mechanisms were also studied and functionally validated by CRISPR/Cas9-based genetic alterations. RESULTS: Fluconazole resistance occurred in 2.4% (n = 56) of isolates, and these isolates showed a higher frequency of distribution in ICU inpatients compared with susceptible isolates (48.2%, n = 27/56 versus 27.8%, 613/2208; P = 0.019). Microsatellite-genotyping analysis yielded 29 genotypes among 56 fluconazole-resistant isolates, of which 10 genotypes, including 37 isolates, belonged to clusters, persisting and transmitting in Chinese hospitals for 1-29 months. Clusters harbouring Erg11Y132F (5/10; 50%) were predominant in China. Among these, the second most dominant cluster MT07, including seven isolates, characteristically harbouring Erg11Y132F and Mrr1Q625K, lent its carriage to being one of the strongest associations with cross-resistance and high MICs of fluconazole (>256 mg/L) and voriconazole (2-8 mg/L), causing transmission across two hospitals. Among mutations tested, Mrr1Q625K led to the highest-level increase of fluconazole MIC (32-fold), while mutations located within or near the predicted transcription factor domain of Tac1 (D440Y, T492M and L518F) conferred cross-resistance to azoles. CONCLUSIONS: This study is the first Chinese report of persistence and transmissions of multiple fluconazole-resistant C. parapsilosis sensu stricto clones harbouring Erg11Y132F, and the first demonstration of the mutations Erg11G307A, Mrr1Q625K, Tac1L263S, Tac1D440Y and Tac1T492M as conferring resistance to azoles.
Assuntos
Candida parapsilosis , Fluconazol , Fluconazol/farmacologia , Candida parapsilosis/genética , Antifúngicos/farmacologia , Azóis/farmacologia , China/epidemiologia , Testes de Sensibilidade Microbiana , Farmacorresistência Fúngica/genéticaRESUMO
Inadequate T cell activation has severely limited the success of T cell engager (TCE) therapy, especially in solid tumors. Enhancing T cell activity while maintaining the tumor specificity of TCEs is the key to improving their clinical efficacy. However, currently, there needs to be more effective strategies in clinical practice. Here, we design novel superantigen-fused TCEs that display robust tumor antigen-mediated T cell activation effects. These innovative drugs are not only armed with the powerful T cell activation ability of superantigens but also retain the dependence of TCEs on tumor antigens, realizing the ingenious combination of the advantages of two existing drugs. Superantigen-fused TCEs have been preliminarily proven to have good (>30-fold more potent) and specific (>25-fold more potent) antitumor activity in vitro and in vivo. Surprisingly, they can also induce the activation of T cell chemotaxis signals, which may promote T cell infiltration and further provide an additional guarantee for improving TCE efficacy in solid tumors. Overall, this proof-of-concept provides a potential strategy for improving the clinical efficacy of TCEs.
Assuntos
Neoplasias , Linfócitos T , Humanos , Superantígenos/uso terapêutico , Antígenos de Neoplasias , Morte CelularRESUMO
Invasive diseases caused by the globally distributed commensal yeast Candida tropicalis are associated with mortality rates of greater than 50%. Notable increases of azole resistance have been observed in this species, particularly within Asia-Pacific regions. Here, we carried out a genetic population study on 1571 global C. tropicalis isolates using multilocus sequence typing (MLST). In addition, whole-genome sequencing (WGS) analysis was conducted on 629 of these strains, comprising 448 clinical invasive strains obtained in this study and 181 genomes sourced from public databases. We found that MLST clade 4 is the predominant azole-resistant clone. WGS analyses demonstrated that dramatically increasing rates of azole resistance are associated with a rapid expansion of cluster AZR, a sublineage of clade 4. Cluster AZR isolates exhibited a distinct high-level azole resistance, which was induced by tandem duplications of the ERG11A395T gene allele. Ty3/gypsy-like retrotransposons were found to be highly enriched in this population. The alarming expansion of C. tropicalis cluster AZR population underscores the urgent need for strategies against growing threats of antifungal resistance.
Assuntos
Antifúngicos , Azóis , Azóis/farmacologia , Antifúngicos/farmacologia , Candida tropicalis/genética , Tipagem de Sequências Multilocus , Duplicação Gênica , Farmacorresistência Fúngica/genética , Testes de Sensibilidade MicrobianaRESUMO
Objective: To investigate the distribution and antimicrobial susceptibility of causative microorganisms recovered from patients with intra-abdominal infections (IAIs). Methods: A total of 2,926 bacterial and fungal strains were identified in samples collected from 1,679 patients with IAIs at the Peking Union Medical College Hospital between 2011 and 2021. Pathogenic bacteria and fungi were identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Antimicrobial susceptibility testing (AST) was performed using the VITEK 2 compact system and the Kirby-Bauer method. AST results were interpreted based on the M100-Ed31 clinical breakpoints of the Clinical and Laboratory Standards Institute. Results: Of the 2,926 strains identified, 49.2%, 40.8%, and 9.5% were gram-negative bacteria, gram-positive bacteria, and fungi, respectively. Escherichia coli was the most prevalent pathogen in intensive care unit (ICU) and non-ICU patients; however, a significant decrease was observed in the isolation of E. coli between 2011 and 2021. Specifically, significant decreases were observed between 2011 and 2021 in the levels of extended-spectrum ß-lactamase (ESBL)-producing E. coli (from 76.9% to 14.3%) and Klebsiella pneumoniae (from 45.8% to 4.8%). Polymicrobial infections, particularly those involving co-infection with gram-positive and gram-negative bacteria, were commonly observed in IAI patients. Moreover, Candida albicans was more commonly isolated from hospital-associated IAI samples, while Staphylococcus epidermidis had a higher ratio in community-associated IAIs. Additionally, AST results revealed that most antimicrobial agents performed better in non-ESBL-producers than in ESBL-producers, while the overall resistance rates (56.9%-76.8%) of Acinetobacter baumanmii were higher against all antimicrobial agents than those of other common gram-negative bacteria. Indeed, Enterococcus faecium, Enterococcus faecalis, S. epidermidis, and S. aureus were consistently found to be susceptible to vancomycin, teicoplanin, and linezolid. Similarly, C. albicans exhibited high susceptibility to all the tested antifungal drugs. Conclusion: The distribution and antimicrobial susceptibility of the causative microorganisms from patients with IAIs were altered between 2011 and 2021. This finding is valuable for the implementation of evidence-based antimicrobial therapy and provides guidance for the control of hospital infections.
Assuntos
Coinfecção , Infecções Intra-Abdominais , Humanos , Antibacterianos , Escherichia coli , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Estudos Retrospectivos , Staphylococcus aureus , Infecções Intra-Abdominais/tratamento farmacológico , Infecções Intra-Abdominais/epidemiologia , Candida albicansRESUMO
The rapid determination of antimicrobial susceptibility and evidence-based antimicrobial prescription is necessary to combat widespread antimicrobial resistance and promote effectively treatment for bacterial infections. This study developed a rapid phenotypic antimicrobial susceptibility determination method competent for seamless clinical implementation. A laboratory-friendly Coulter counter-based antimicrobial susceptibility testing (CAST) was developed and integrated with bacterial incubation, population growth monitoring, and result analysis to quantitatively detect differences in bacterial growth between resistant and susceptible strains following a 2 h exposure to antimicrobial agents. The distinct proliferation rates of the different strains enabled the rapid determination of their antimicrobial susceptibility phenotypes. We evaluated the performance efficacy of CAST for 74 clinically isolated Enterobacteriaceae subjected to 15 antimicrobials. The results were consistent with those obtained via the 24 h broth microdilution method, showing 90.18% absolute categorical agreement.
RESUMO
Targeting single tumor antigens makes it difficult to provide sufficient tumor selectivity for T cell engagers (TCEs), leading to undesirable toxicity and even treatment failure, which is particularly serious in solid tumors. Here, we designed novel trispecific TCEs (TriTCEs) to improve the tumor selectivity of TCEs by logic-gated dual tumor-targeting. TriTCE can effectively redirect and activate T cells to kill tumor cells (â¼18 pM EC50) by inducing the aggregation of dual tumor antigens, which was â¼70- or 750- fold more effective than the single tumor-targeted isotype controls, respectively. Further in vivo experiments indicated that TriTCE has the ability to accumulate in tumor tissue and can induce circulating T cells to infiltrate into tumor sites. Hence, TriTCE showed a stronger tumor growth inhibition ability and significantly prolonged the survival time of the mice. Finally, we revealed that this concept of logic-gated dual tumor-targeted TriTCE can be applied to target different tumor antigens. Cumulatively, we reported novel dual tumor-targeted TriTCEs that can mediate a robust T cell response by simultaneous recognition of dual tumor antigens at the same cell surface. TriTCEs allow better selective T cell activity on tumor cells, resulting in safer TCE treatment.
Assuntos
Neoplasias , Linfócitos T , Camundongos , Animais , Neoplasias/metabolismo , Antígenos de NeoplasiasRESUMO
Candida albicans remains the most common species causing invasive candidiasis. In this study, we present the population structure of 551 global C. albicans strains. Of these, the antifungal susceptibilities of 370 strains were tested. Specifically, 66.6% of the azole-nonsusceptible (NS)/non-wild-type (NWT) strains that were tested belonged to Clade 1. A phylogenetic analysis, a principal components analysis, the population structure, and a loss of heterozygosity events revealed two nested subclades in Clade 1, namely, Clade 1-R and Clade 1-R-α, that exhibited higher azole-NS/NWT rates (75.0% and 100%, respectively). In contrast, 6.4% (21/326) of the non-Clade 1-R isolates were NS/NWT to at least 1 of 4 azoles. Notably, all of the Clade 1-R-α isolates were pan-azole-NS/NWT that carried unique A114S and Y257H double substitutions in Erg11p and had the overexpression of ABC-type efflux pumps introduced by the substitution A736V in transcript factor Tac1p. It is worth noting that the Clade 1-R and Clade 1-R-α isolates were from different cities that are distributed over a large geographic span. Our study demonstrated the presence of specific phylogenetic subclades that are associated with antifungal resistance among C. albicans Clade 1, which calls for public attention on the monitoring of the future spread of these clones. IMPORTANCE Invasive candidiasis is the most common human fungal disease among hospitalized patients, and Candida albicans is the predominant pathogen. Considering the large number of infected cases and the limited alternative therapies, the azole-resistance of C. albicans brings a huge clinical threat. Here, our study suggested that antifungal resistance in C. albicans could also be associated with phylogenetic lineages. Specifically, it was revealed that more than half of the azole-resistant C. albicans strains belonged to the same clade. Furthermore, two nested subclades of the clade exhibited extremely high azole-resistance. It is worth noting that the isolates of two subclades were from different cities that are distributed over a large geographic span in China. This indicates that the azole-resistant C. albicans subclades may develop into serious public health concerns.
Assuntos
Antifúngicos , Candidíase Invasiva , Humanos , Antifúngicos/farmacologia , Candida albicans/genética , Filogenia , Testes de Sensibilidade Microbiana , Azóis , Farmacorresistência Fúngica/genéticaRESUMO
WHAT IS THIS SUMMARY ABOUT?: Molds are types of fungus that can cause sickness and death. Mold infections are increasing in China. Until 2022, medicines that can effectively treat all mold infections were still lacking in China. This summary of a study originally published in the journal Infection and Drug Resistance. The study took place in China and tested a medicine called isavuconazole on mold samples to check if isavuconazole can be used to treat mold infections. Isavuconazole became available in China in January 2022 as a capsule (a hard gel-covered pill filled with a dose of medicine) and in June 2022 as an injection or a shot. WHAT WERE THE RESULTS?: Isavuconazole stopped the growth of most molds. Other medicines were needed at higher amounts to stop the growth of molds. WHAT DO THE RESULTS OF THE STUDY MEAN?: Isavuconazole is another option to treat mold infections in China.
Assuntos
Aspergilose , Mucormicose , Humanos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Aspergilose/tratamento farmacológico , Mucormicose/tratamento farmacológico , Fungos , Nitrilas/farmacologia , Nitrilas/uso terapêutico , ChinaRESUMO
A Gram-negative, non-motile rod and strictly aerobic bacterium, designated as 18B16333T, was isolated from vertebral puncture tissue of a patient at Peking union medical college hospital in China. Growth occurred in NaCl concentrations of 0-1% (w/v) (optimum growth at 0% NaCl), at temperatures of 25-40 °C (optimum growth at 37 °C) and at pH 6.0-9.0 (optimum growth at pH 8.0). Diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine were the predominant polar lipids, and the major fatty acids were C16:0, C18:1 ω7c/C18:1 ω6c and C16:1 ω7c/C16:1 ω6c. Phylogenetic analysis based on 16S rRNA gene sequence comparisons indicated that strain 18B16333T was most closely related to Kingella potus CCUG 49773 T (97.3%, 16S rRNA gene sequence identity) and Neisseria bacilliformis CCUG 50858 T (96.8%). The ANI values between strain 18B16333T and the type strains K. potus CCUG 49773 T, N. bacilliformis CCUG 50858 T, Kingella kingae CCUG 352 T and Neisseria gonorrhoeae CCUG 26876 T were 77.3%, 79.1%, 72.1% and 75.4%, respectively. The dDDH values between strain 18B16333T and the four reference strains mentioned above were 24.8%, 26.9%, 24.2% and 20.7%. Further core gene analysis distinctively clustered strain 18B16333T with four Kingella species but not with Neisseria species. Based on the phenotypic, chemotaxonomic, and phylogenetic properties, strain 18B16333T represents a novel species of the genus Kingella, for which the name Kingella pumchi sp. nov. is proposed. The type strain is Kingella pumchi 18B16333T (= CICC 24913 T = CCUG 75125 T).
Assuntos
Kingella , Filogenia , Punção Espinal , Humanos , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Ácidos Graxos/química , Kingella/classificação , Kingella/isolamento & purificação , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/químicaRESUMO
Candida duobushaemulonii, type II Candida haemulonii complex, is closely related to Candida auris and capable of causing invasive and non-invasive infections in humans. Eleven strains of C. duobushaemulonii were collected from China Hospital Invasive Fungal Surveillance Net (CHIF-NET) and identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF), VITEK 2 Yeast Identification Card (YST), and internal transcribed spacer (ITS) sequencing. Whole genome sequencing of C. duobushaemulonii was done to determine their genotypes. Furthermore, C. duobushaemulonii strains were tested by Sensititre YeastOne™ and Clinical and Laboratory Institute (CLSI) broth microdilution panel for antifungal susceptibility. Three C. duobushaemulonii could not be identified by VITEK 2. All 11 isolates had high minimum inhibitory concentrations (MICs) to amphotericin B more than 2 µg/ml. One isolate showed a high MIC value of ≥64 µg/ml to 5-flucytosine. All isolates were wild type (WT) for triazoles and echinocandins. FUR1 variation may result in C. duobushaemulonii with high MIC to 5-flucytosine. Candida duobushaemulonii mainly infects patients with weakened immunity, and the amphotericin B resistance of these isolates might represent a challenge to clinical treatment.
RESUMO
Candida haemulonii var. vulnera is a rare variant of C. haemulonii, which has been previously reported to cause human infections. Owing to the close kinship between C. haemulonii sensu stricto and C. haemulonii var. vulnera, accurate identification of C. haemulonii var. vulnera relied on DNA sequencing assay targeting, for example, rDNA internal transcribed spacer (ITS) region. In this work, two strains of C. haemulonii var. vulnera were collected from the China Hospital Invasive Fungal Surveillance Net (CHIF-NET). The identification capacity of three matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and VITEK 2 YST ID biochemical methods were evaluated against ITS sequencing. In addition, antifungal susceptibility testing was performed using Sensititre YeastOne. Moreover, we comprehensively screened drug-resistant related genes by whole-genome sequencing. The two strains were not correctly identified to species variant level using MALDI-TOF MS and YST ID cards. Both strains were resistant to amphotericin B (minimum inhibitory concentration [MIC] > 2 µg/ml). Moreover, strain F4564 and F4584 exhibited high MIC to fluconazole (>256 µg/ml) and 5-flucytosine (>64 µg/ml), respectively, which were supposed to result from key amino acid substitutions Y132F and G307A in Erg11p and V58fs and G60K substitutions in Fur1p. The rare species C. haemulonii var. vulnera has emerged in China, and such drug-resistant fungal species that can cause invasive diseases require further close attention.
RESUMO
Objective: To investigate the baseline levels of microorganisms' growth on the hands of anesthesiologists and in the anesthesia environment at a cancer hospital. Methods: This study performed in nine operating rooms and among 25 anesthesiologists at a cancer hospital. Sampling of the hands of anesthesiologists and the anesthesia environment was performed at a ready-to-use operating room before patient contact began and after decontamination. Results: Microorganisms' growth results showed that 20% (5/25) of anesthesiologists' hands carried microorganisms (> 10 CFU/cm 2) before patient contact began. Female anesthesiologists performed hand hygiene better than did their male counterparts, with fewer CFUs ( P = 0.0069) and fewer species ( P = 0.0202). Our study also found that 55.6% (5/9) of ready-to-use operating rooms carried microorganisms (> 5 CFU/cm 2). Microorganisms regrowth began quickly (1 hour) after disinfection, and increased gradually over time, reaching the threshold at 4 hours after disinfection. Staphylococcus aureus was isolated from the hands of 20% (5/25) of anesthesiologists and 33.3% (3/9) of operating rooms. Conclusion: Our study indicates that male anesthesiologists need to pay more attention to the standard operating procedures and effect evaluation of hand hygiene, daily cleaning rate of the operating room may be insufficient, and we would suggest that there should be a repeat cleaning every four hours.
Assuntos
Anestesiologistas , Higiene das Mãos , Feminino , Humanos , Masculino , Anestesia , Anestesiologistas/estatística & dados numéricos , Desinfecção/normas , Higiene das Mãos/normas , Higiene das Mãos/estatística & dados numéricos , Infecções Estafilocócicas , Salas Cirúrgicas/normas , Salas Cirúrgicas/estatística & dados numéricos , Staphylococcus aureus/isolamento & purificaçãoRESUMO
The use of morphology to diagnose invasive mould infections in China still faces substantial challenges, which often leads to delayed diagnosis or misdiagnosis. We developed a model called XMVision Fungus AI to identify mould infections by training, testing, and evaluating a ResNet-50 model. Our research achieved the rapid identification of nine common clinical moulds: Aspergillus fumigatus complex, Aspergillus flavus complex, Aspergillus niger complex, Aspergillus terreus complex, Aspergillus nidulans, Aspergillus sydowii/Aspergillus versicolor, Syncephalastrum racemosum, Fusarium spp., and Penicillium spp. In our study, the adaptive image contrast enhancement enabling XMVision Fungus AI as a promising module by effectively improve the identification performance. The overall identification accuracy of XMVision Fungus AI was up to 93.00% (279/300), which was higher than that of human readers. XMVision Fungus AI shows intrinsic advantages in the identification of clinical moulds and can be applied to improve human identification efficiency through training. Moreover, it has great potential for clinical application because of its convenient operation and lower cost. This system will be suitable for primary hospitals in China and developing countries.
RESUMO
Objective: The purpose of this study was to help to promote a better understanding of the male fertility preservation status in China. Methods: In this cross-sectional survey, 1,912 healthcare providers and oncologists were surveyed anonymously using 16 questions carried out at community oncology practices in China from September 2018 to April 2021. 16 questions were designed to evaluate their knowledge on male fertility preservation in cancer patients, assess the factors they considered when deciding whether to discuss male fertility preservation with their patients. Results: Among the 1,912 healthcare providers (42.2% male), 1,713 (89.6%) considered that patients with cancer should be recommended for fertility preservation. 1,264 (66.1%) respondents were aware of male fertility preservation, but only 248 (13.0%) respondents knew the correct institutions. Whether a healthcare provide recommended fertility preservation to their patients depended on the provider's educational background, professional qualifications, hospital grade, area, department, and age. Among the healthcare providers, the three main factors for not recommending fertility preservation for patients with cancer were lack of suitability of the patient for fertility (28.2%), lack of knowledge of fertility preservation (28.6%), and lack of knowledge concerning the institutes that provide fertility preservation (25.4%). Conclusion: Despite this, healthcare providers and oncologists in China showed a positive attitude toward fertility preservation in patients with cancer. Hence, the education of physicians should include fertility preservation, with the aim of increasing their knowledge and awareness. There should be more collaboration between oncologists and reproductive medicine specialists.
RESUMO
Recently, the prevalence of macrolide-resistant Moraxella catarrhalis has been reported, especially among Chinese children. The fitness cost of resistance is reported to render the resistant bacteria less virulent. To investigate the correlation between macrolide susceptibility of M. catarrhalis and pathogenicity, the whole genome of 70 M. catarrhalis isolates belonging to four clonal complexes with different macrolide susceptibilities was sequenced. The gene products were annotated with the Gene Ontology terms. Based on 46 extracted essential virulence genes, 19 representative isolates were selected to infect type II alveolar cells (A549 cells). The ability of these isolates to adhere and invade human epithelial cells and to produce cytokines was comparatively analysed. Furthermore, mice were infected with a pair of M. catarrhalis isolates with different pathogenic behaviours and macrolide susceptibilities to examine pulmonary clearance, histological findings, and the production of cytokines. The percentages of annotations for binding, metabolic process, cellular process, and cell were non-significantly different between the macrolide-resistant and macrolide-susceptible groups. The presence of uspA2, uspA2H, pilO, lbpB, lex1, modM, mboIA, and mboIB significantly differed among the four clonal complexes and macrolide susceptibility groups. Furthermore, compared with those in macrolide-susceptible isolates, the adhesion ability was stronger (P = 0.0019) and the invasion ability was weaker (P < 0.0001) in the macrolide-resistant isolates. Mouse experiments revealed that pulmonary macrophages elicit immune responses against M. catarrhalis infection by significantly upregulating the Csf2, Il4, Il13, Il1b, Il6, Tnf, and Il18. Therefore, M. catarrhalis populations exhibited diverse pathogenicity in vitro and in vivo.