Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 18451, 2024 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-39117712

RESUMO

As a class of biologically active molecules with significant immunomodulatory and anti-inflammatory effects, anti-inflammatory peptides have important application value in the medical and biotechnology fields due to their unique biological functions. Research on the identification of anti-inflammatory peptides provides important theoretical foundations and practical value for a deeper understanding of the biological mechanisms of inflammation and immune regulation, as well as for the development of new drugs and biotechnological applications. Therefore, it is necessary to develop more advanced computational models for identifying anti-inflammatory peptides. In this study, we propose a deep learning model named DAC-AIPs based on variational autoencoder and contrastive learning for accurate identification of anti-inflammatory peptides. In the sequence encoding part, the incorporation of multi-hot encoding helps capture richer sequence information. The autoencoder, composed of convolutional layers and linear layers, can learn latent features and reconstruct features, with variational inference enhancing the representation capability of latent features. Additionally, the introduction of contrastive learning aims to improve the model's classification ability. Through cross-validation and independent dataset testing experiments, DAC-AIPs achieves superior performance compared to existing state-of-the-art models. In cross-validation, the classification accuracy of DAC-AIPs reached around 88%, which is 7% higher than previous models. Furthermore, various ablation experiments and interpretability experiments validate the effectiveness of DAC-AIPs. Finally, a user-friendly online predictor is designed to enhance the practicality of the model, and the server is freely accessible at http://dac-aips.online .


Assuntos
Anti-Inflamatórios , Aprendizado Profundo , Peptídeos , Peptídeos/química , Humanos
2.
Genes Genomics ; 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39150611

RESUMO

BACKGROUND: This study investigates the role of CXXC5 in the self-renewal and differentiation of hematopoietic stem cells (HSCs) within the bone marrow microenvironment, utilizing advanced methodologies such as single-cell RNA sequencing (scRNA-seq), CRISPR-Cas9, and proteomic analysis. METHODS: We employed flow cytometry to isolate HSCs from bone marrow samples, followed by scRNA-seq analysis using the 10x Genomics platform to examine cell clustering and CXXC5 expression patterns. CRISPR-Cas9 and lentiviral vectors facilitated the knockout and overexpression of CXXC5 in HSCs. The impact on HSCs was assessed through qRT-PCR, Western blot, CCK-8, CFU, and LTC-IC assays, alongside flow cytometry to measure apoptosis and cell proportions. A mouse model was also used to evaluate the effects of CXXC5 manipulation on HSC engraftment and survival rates. RESULTS: Our findings highlight the diversity of cell clustering and the significant role of CXXC5 in HSC regulation. Knockout experiments showed reduced proliferation and accelerated differentiation, whereas overexpression led to enhanced proliferation and delayed differentiation. Proteomic analysis identified key biological processes influenced by CXXC5, including cell proliferation, differentiation, and apoptosis. In vivo results demonstrated that CXXC5 silencing impaired HSC engraftment in a bone marrow transplantation model. CONCLUSION: CXXC5 is crucial for the regulation of HSC self-renewal and differentiation in the bone marrow microenvironment. Its manipulation presents a novel approach for enhancing HSC function and provides a potential therapeutic target for hematological diseases.

3.
Small ; : e2401551, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39109958

RESUMO

Wound healing is a dynamic process involving the timely transition of organized phases. However, infected wounds often experience prolonged inflammation due to microbial overload. Thus, addressing the viable treatment needs across different healing stages is a critical challenge in wound management. Herein, a novel core-shell microneedle (CSMN) patch is designed for the sequential delivery of tannic acid-magnesium (TA-Mg) complexes and extracellular vesicles from Lactobacillus druckerii (LDEVs). Upon application to infected sites, CSMN@TA-Mg/LDEV releases TA-Mg first to counteract pathogenic overload and reduce reactive oxygen species (ROS), aiding the transition to proliferative phase. Subsequently, the sustained release of LDEVs enhances the activities of keratinocytes and fibroblasts, promotes vascularization, and modulates the collagen deposition. Notably, dynamic track of microbial composition demonstrates that CSMN@TA-Mg/LDEV can both inhibit the aggressive pathogen and increase the microbial diversity at wound sites. Functional analysis further highlights the potential of CSMN@TA-Mg/LDEV in facilitating wound healing and skin barrier restoration. Moreover, it is confirmed that CSMN@TA-Mg/LDEV can accelerate wound closure and improve post-recovery skin quality in the murine infected wound. Conclusively, this innovative CSMN patch offers a rapid and high-quality alternative treatment for infected wounds and emphasizes the significance of microbial homeostasis.

4.
iScience ; 27(8): 110393, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39108733

RESUMO

Symmetry analysis is a cutting-edge research approach in physics, yet its application in macroscopic energy systems remains limited. This study demonstrates its potential to provide valuable insights for a deeper understanding and development of thermodynamic cycles. This article first studies the symmetry of the proposed C-P diagrams and finds rich symmetries including reflection symmetry, translation symmetry, and rotational symmetry within Carnot cycles. Then, it emphasizes that one can use symmetry alone to prove that the highest efficiency for any cycle operating in a certain temperature range is the Carnot efficiency, without relying on the entropy concept in the second law of thermodynamics. Lastly, it is found that this symmetry analysis framework can also be used for thermal cycles with phase transitions, as exemplified by applying in Rankine cycles. This research not only contributes groundbreaking insights into unraveling the symmetry inherent in thermodynamic cycles, but also promotes symmetry analysis to be an alternative analysis mean.

5.
Front Pharmacol ; 15: 1423884, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39108758

RESUMO

Background: Fu-zi decoction (FZD) has a long history of application for treating Rheumatoid arthritis (RA) as a classic formulation. However, its underlying mechanisms have not been fully elucidated. This study aimed to decipher the potential mechanism of FZD in treating RA, with a specific focus on receptor activator of nuclear factor κB/receptor activator of nuclear factor κB ligand (RANK/RANKL) signaling pathway. Methods: The impact of FZD on RA was investigated in collagen-induced arthritis rats (CIA), and the underlying mechanism was investigated in an osteoclast differentiation cell model. In vivo, the antiarthritic effect of FZD at various doses (2.3, 4.6, 9.2 g/kg/day) was evaluated by arthritis index score, paw volume, toe thickness and histopathological examination of inflamed joints. Additionally, the ankle joint tissues were determined with micro-CT and safranin O fast green staining to evaluate synovial hyperplasia and articular cartilage damage. In vitro, osteoclast differentiation and maturation were evaluated by TRAP staining in RANKL-induced bone marrow mononuclear cells. The levels of pro- and anti-inflammatory cytokines as well as RANKL and OPG were evaluated by ELISA kits. In addition, Western blotting was used to investigate the effect of FZD on RANK/RANKL pathway activation both in vivo and in vitro. Results: FZD significantly diminished the arthritis index score, paw volume, toe thickness and weigh loss in CIA rats, alleviated the pathological joint alterations. Consistent with in vivo results, FZD markedly inhibited RANKL-induced osteoclast differentiation by decreasing osteoclast numbers in a dose-dependent manner. Moreover, FZD decreased the levels of pro-inflammatory cytokines IL-6, IL-1ß and TNF-α, while increasing anti-inflammatory cytokine IL-10 level both in serum and culture supernatants. Treatment with FZD significantly reduced serum RANKL levels, increased OPG levels, and decreased the RANKL/OPG ratio. In both in vivo and in vitro settings, FZD downregulated the protein expressions of RANK, RANKL, and c-Fos, while elevating OPG levels, further decreasing the RANKL/OPG ratio. Conclusion: In conclusion, FZD exerts a therapeutic effect in CIA rats by inhibiting RANK/RANKL-mediated osteoclast differentiation, which suggested that FZD is a promising treatment for RA.

6.
Molecules ; 29(15)2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39124974

RESUMO

In our ongoing work to create potential antifungal agents, we synthesized and tested a group of C1-substituted acylhydrazone ß-carboline analogues 9a-o and 10a-o for their effectiveness against Valsa mali, Fusarium solani, Fusarium oxysporum, and Fusarium graminearum. Their compositions were analyzed using different spectral techniques, such as 1H/13C NMR and HRMS, with the structure of 9l being additionally confirmed through X-ray diffraction. The antifungal evaluation showed that, among all the target ß-carboline analogues, compounds 9n and 9o exhibited more promising and broad-spectrum antifungal activity than the commercial pesticide hymexazol. Several intriguing findings regarding structure-activity relationships (SARs) were examined. In addition, the cytotoxicity test showed that these acylhydrazone ß-carboline analogues with C1 substitutions exhibit a preference for fungi, with minimal harm to healthy cells (LO2). The reported findings provide insights into the development of ß-carboline analogues as new potential antifungal agents.


Assuntos
Antifúngicos , Carbolinas , Fusarium , Hidrazonas , Testes de Sensibilidade Microbiana , Carbolinas/química , Carbolinas/farmacologia , Carbolinas/síntese química , Antifúngicos/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Relação Estrutura-Atividade , Fusarium/efeitos dos fármacos , Hidrazonas/farmacologia , Hidrazonas/química , Hidrazonas/síntese química , Estrutura Molecular , Humanos
7.
Small ; : e2404734, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38966904

RESUMO

The morphology of the active layer is crucial for highly efficient organic solar cells (OSCs), which can be regulated by selecting a rational third component. In this work, the highly crystalline nonfullerene acceptor BTP-eC9 is selected as the morphology regulator in OSCs with PM6:BTP-BO-4Cl as the main system. The addition of BTP-eC9 can prolong the nucleation and crystallization progress of acceptor and donor molecules, thereby enhancing the order of molecular arrangement. Meanwhile, the nucleation and crystallization time of the donor is earlier than that of the acceptors after introducing BTP-eC9, which is beneficial for obtaining a better vertical structural phase separation. The exciton dissociation, charge transport, and charge collection are promoted effectively by the optimized morphology of the active layer, which improves the short-circuit current density and filling factor. After introducing BTP-eC9, the power conversion efficiencies (PCEs) of the ternary OSCs are improved from 17.31% to 18.15%. The PCE is further improved to 18.39% by introducing gold nanopyramid (Au NBPs) into the hole transport layer to improve photon utilization efficiency. This work indicates that the morphology can be optimized by selecting a highly crystalline third component to regulate the nucleation and crystallization progress of the acceptor and donor molecules.

8.
World J Gastrointest Surg ; 16(6): 1825-1834, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38983318

RESUMO

BACKGROUND: Application of indocyanine green (ICG) fluorescence has led to new developments in gastrointestinal surgery. However, little is known about the use of ICG for the diagnosis of postoperative gut leakage (GL). In addition, there is a lack of rapid and intuitive methods to definitively diagnose postoperative GL. AIM: To investigate the effect of ICG in the diagnosis of anastomotic leakage in a surgical rat GL model and evaluate its diagnostic value in colorectal surgery patients. METHODS: Sixteen rats were divided into two groups: GL group (n = 8) and sham group (n = 8). Approximately 0.5 mL of ICG (2.5 mg/mL) was intravenously injected postoperatively. The peritoneal fluid was collected for the fluorescence test at 24 and 48 h. Six patients with rectal cancer who had undergone laparoscopic rectal cancer resection plus enterostomies were injected with 10 mL of ICG (2.5 mg/mL) on postoperative day 1. Their ostomy fluids were collected 24 h after ICG injection to identify the possibility of the ICG excreting from the peripheral veins to the enterostomy stoma. Participants who had undergone colectomy or rectal cancer resection were enrolled in the diagnostic test. The peritoneal fluids from drainage were collected 24 h after ICG injection. The ICG fluorescence test was conducted using OptoMedic endoscopy along with a near-infrared fluorescent imaging system. RESULTS: The peritoneal fluids from the GL group showed ICG-dependent green fluorescence in contrast to the sham group. Six samples of ostomy fluids showed green fluorescence, indicating the possibility of ICG excreting from the peripheral veins to the enterostomy stoma in patients. The peritoneal fluid ICG test exhibited a sensitivity of 100% and a specificity of 83.3% for the diagnosis of GL. The positive predictive value was 71.4%, while the negative predictive value was 100%. The likelihood ratios were 6.0 for a positive test result and 0 for a negative result. CONCLUSION: The postoperative ICG test in a drainage tube is a valuable and simple technique for the diagnosis of GL. Hence, it should be employed in clinical settings in patients with suspected GL.

9.
Front Biosci (Landmark Ed) ; 29(7): 243, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39082336

RESUMO

BACKGROUND: The tumour mutation burden (TMB) is a valuable indicator of the accumulation of somatic mutations, and is thought to be associated with the biological behaviour and prognosis of tumours. However, the related genetic mechanism for these association is still unclear. The aim of the present study was to identify the key gene(s) associated with TMB in hepatocellular carcinoma (HCC) and to investigate its biological functions, downstream transcription factors, and mechanism of action. METHODS: Patients in The Cancer Genome Atlas-Liver Hepatocellular Carcinoma (TCGA-LIHC) database were classified according to TMB signature-related genes. Key genes related to the TMB signature and tumour prognosis were identified. Immunohistochemistry and Quantitative Real-Time Polymerase Chain Reaction (qPCR) were then used to assess gene expression in clinical HCC tissues and HCC cells. Cells with altered gene expression were evaluated for the effect on cell proliferation and apoptosis, both in vitro and in vivo. Three independent databases and cell sequencing data were used to identify the mechanisms involved and the downstream transcription factors. The mechanism was also studied by altering the expression of downstream transcription factors in vitro. RESULT: The integrated cluster (IC) 2 group, characterized by 99 TMB signature-related genes, showed a significant different TMB score compared to the IC1 group (p < 0.001), as well as more favourable tumour prognosis (p = 0.031). We identified five key prognostic genes that were differentially expressed between IC2 and IC1 and were associated with overall survival. The expression of one of these key prognostic genes, RCAN2, was negatively correlated with TMB in 18 out of 33 tumour types examined. A high level of RCAN2 was correlated with better overall survival in HCC (p = 0.0009). Overexpression of RCAN2 enhanced apoptosis in vitro and in vivo, whereas knockdown of RCAN2 attenuated apoptosis. The mechanism by which RCAN2 promotes apoptosis may involve upregulation of the expression of ETS homologous factor (EHF) and of death receptor 5 (DR5). CONCLUSIONS: Downregulation of RCAN2 expression was found to correlate with elevated TMB in multiple cancer types. RCAN2 was also found to be a biomarker of HCC prognosis, and to promote the apoptosis of HCC cells through the EHF/DR5 pathway. These findings provide a new perspective on systemic treatment for advanced HCC with a high TMB.


Assuntos
Apoptose , Carcinoma Hepatocelular , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , Proteínas Musculares , Receptores do Ligante Indutor de Apoptose Relacionado a TNF , Fatores de Transcrição , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Apoptose/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Camundongos Nus , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Mutação , Prognóstico , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Transdução de Sinais/genética , Regulação para Cima/genética , Fatores de Transcrição/metabolismo
10.
World J Clin Cases ; 12(21): 4536-4542, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39070807

RESUMO

BACKGROUND: Intrapancreatic fat deposition (IPFD) exerts a significant negative impact on patients with type 2 diabetes mellitus (T2DM), accelerates disease deterioration, and may lead to impaired ß-cell quality and function. AIM: To investigate the correlation between T2DM remission and IPFD. METHODS: We enrolled 80 abdominally obese patients with T2DM admitted to our institution from January 2019 to October 2023, including 40 patients with weight loss-induced T2DM remission (research group) and 40 patients with short-term intensive insulin therapy-induced T2DM remission (control group). We comparatively analyzed improvements in IPFD [differential computed tomography (CT) values of the spleen and pancreas and average CT value of the pancreas]; levels of fasting blood glucose (FBG), 2-h postprandial blood glucose (2hPBG), and insulin; and homeostasis model assessment of insulin resistance (HOMA-IR) scores. Correlation analysis was performed to explore the association between T2DM remission and IPFD. RESULTS: After treatment, the differential CT values of the spleen and pancreas, FBG, 2hPBG, and HOMA-IR in the research group were significantly lower than those before treatment and in the control group, and the average CT value of the pancreas and insulin levels were significantly higher. Correlation analysis revealed that the greater the T2DM remission, the lower the amount of IPFD. CONCLUSION: T2DM remission and IPFD are inversely correlated.

11.
Sci Adv ; 10(26): eado5460, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38941466

RESUMO

The nanoscale morphology of the photoactive layer notably impacts the performance of organic solar cells (OSCs). Conventional methods to tune the morphology are typically chemical approaches that adjust the properties (such as solubility and miscibility) of the active components including donor, acceptor, and/or additive. Here, we demonstrate a completely different approach by applying an external electric field (EEF) on the active layer during the wet coating. The EEF-coating method is perfectly compatible with an ambient blade coating using environmentally friendly solvents, which are essential requirements for industrial production of OSCs. A record 18.6% efficiency is achieved using the EEF coating, which is the best value for open-air, blade-coated OSCs to date. Our findings suggest broad material applicability and attribute-enhanced performance to EEF-induced fiber formation and long-range ordering of microstructures of acceptor domains. This technique offers an effective method for producing high-performance OSCs, especially suited for industry OSC production based on open-air printing.

12.
Int J Biol Macromol ; 273(Pt 1): 133066, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38866294

RESUMO

To counteract the increasing severity of water pollution and purify water sources, wastewater treatment materials are essential. In particular, it is necessary to improve the bonding strength between the adsorption material and the substrate in a long-term humid environment, and resist the invasion of microorganisms to prolong the service life. In this study, an amyloid-like aggregation method of lysozyme catalyzed by microbial transglutaminase (mTGase). Lysozyme self-assembles into an amyloid-like phase-transited lysozyme (PTL) in the presence of a reducing agent. Simultaneously, mTGase catalyzes acyl transfer reactions within lysozyme molecules or between lysozyme and keratin molecules, and driving PTL assembly on the wool fiber (TG-PTL@wool). This process enhances the grafting amount and fastness of PTL on the wool. Moreover, the tensile strength of wool fabric increased to 523 N. TG-PTL@wool achieves a 97.32 % removal rate of heavy metals, maintaining a removal rate of over 95 % after 5 cycles. TG-PTL@wool has excellent antibacterial property (99 %), and it remains above 90 % after 50 times of circulating washing. This study proved that mTGase can enhance the amyloid aggregation of lysozyme and enhance the bonding strength between PTL coating and substrate. Moreover, TG-PTL@wool provides a sustainable, efficient and cleaner solution for removing heavy metals from water.


Assuntos
Metais Pesados , Muramidase , Águas Residuárias , Metais Pesados/química , Águas Residuárias/química , Animais , Muramidase/química , Muramidase/isolamento & purificação , Muramidase/metabolismo , Transglutaminases/química , Transglutaminases/metabolismo , Transglutaminases/isolamento & purificação , Lã/química , Purificação da Água/métodos , Poluentes Químicos da Água/isolamento & purificação , Poluentes Químicos da Água/química , Adsorção , Proteínas Amiloidogênicas/química , Proteínas Amiloidogênicas/isolamento & purificação , Proteínas Amiloidogênicas/metabolismo , Fibra de Lã , Agregados Proteicos , Amiloide/química
13.
Plants (Basel) ; 13(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38891365

RESUMO

The plant hormone jasmonic acid plays an important role in plant growth and development, participating in many physiological processes, such as plant disease resistance, stress resistance, organ development, root growth, and flowering. With the improvement in living standards, people have higher requirements regarding the quality of vegetables. However, during the growth process of vegetables, they are often attacked by pests and diseases and undergo abiotic stresses, resulting in their growth restriction and decreases in their yield and quality. Therefore, people have found many ways to regulate the growth and quality of vegetable crops. In recent years, in addition to the role that JA plays in stress response and resistance, it has been found to have a regulatory effect on crop quality. Therefore, this study aims to review the jasmonic acid accumulation patterns during various physiological processes and its potential role in vegetable development and quality formation, as well as the underlying molecular mechanisms. The information provided in this manuscript sheds new light on the improvements in vegetable yield and quality.

15.
Acta Biomater ; 184: 296-312, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38871203

RESUMO

Psoriasis is a chronic skin inflammation influenced by dysregulated skin microbiota, with the role of microbiota in psoriasis gaining increasing prominence. Bacterial extracellular vesicles (bEVs) serve as crucial regulators in the interaction between hosts and microbiota. However, the mechanism underlying the therapeutic potential of bEVs from commensal bacteria in psoriasis remains unclear. Here, we investigated the therapeutic role of Cutibacterium acnes (C. acnes)-derived extracellular vesicles (CA-EVs) in psoriasis treatment. To prolong the active duration of CA-EVs, we encapsulated them in gelatin methacrylate (GelMA) to fabricate hydrogel microspheres (CA-EVs@GHM) with sustained release properties. As GelMA degraded, CA-EVs were gradually released, maintaining a high concentration in mouse skin even 96 h post-treatment. In human keratinocyte cells (HaCaT), CA-EVs@GHM enhanced resistance to Staphylococcus aureus (S. aureus), promoted proliferation and migration of HaCaT cells exposed to S. aureus, and significantly reduced the expression of inflammatory genes such as interleukin (IL)-6 and C-X-C motif chemokine ligand 8 (CXCL8). In vivo, CA-EVs@GHM, more potent than CA-EVs alone, markedly attenuated proinflammatory gene expression, including tumor necrosis factor (TNF), Il6, Il17a, Il22 and Il23a in imiquimod (IMQ)-induced psoriasis-like mice, and restored skin barrier function. 16S rRNA sequencing revealed that CA-EVs@GHM might provide therapeutic effects against psoriasis by restoring microbiota diversity on the back skin of mice, reducing Staphylococcus colonization, and augmenting lipid metabolism. Furthermore, flow cytometry analysis showed that CA-EVs@GHM prevented the conversion of type 2 innate lymphoid cells (ILC2) to type 3 innate lymphoid cells (ILC3) in psoriasis-like mouse skin, reducing the pathogenic ILC3 population and suppressing the secretion of IL-17 and IL-22. In summary, our findings demonstrate that the long-term sustained release of CA-EVs alleviated psoriasis symptoms by controlling the transformation of innate lymphoid cells (ILCs) subgroups and restoring skin microbiota homeostasis, thus offering a promising therapy for psoriasis treatment. STATEMENT OF SIGNIFICANCE: Cutibacterium acnes, which is reduced in psoriasis skin, has been reported to promote skin homeostasis by regulating immune balance. Compared to live bacteria, bacterial extracellular vesicles (bEVs) are less prone to toxicity and safety concerns. bEVs play a pivotal role in maintaining bacterial homeostasis and modulating the immune system. However,bEVs without sustained release materials are unable to function continuously in chronic diseases. Therefore, we utilized hydrogel microspheres to encapsulate Cutibacterium acnes (C. acnes)-derived extracellular vesicles (CA-EVs), enabling long term sustained release. Our findings indicate that, CA-EVs loaded gelatin methacrylate hydrogel microspheres (CA-EVs@GHM) showed superior therapeutic effects in treating psoriasis compared to CA-EVs. CA-EVs@GHM exhibited a more significant regulation of pathological type 3 innate lymphoid cells (ILC3) and skin microbiota, providing a promising approach for microbiota-derived extracellular vesicle therapy in the treatment of skin inflammation.


Assuntos
Vesículas Extracelulares , Hidrogéis , Linfócitos , Microesferas , Psoríase , Vesículas Extracelulares/metabolismo , Animais , Humanos , Psoríase/patologia , Psoríase/imunologia , Psoríase/terapia , Psoríase/microbiologia , Hidrogéis/química , Hidrogéis/farmacologia , Camundongos , Linfócitos/imunologia , Linfócitos/metabolismo , Imunidade Inata/efeitos dos fármacos , Staphylococcus aureus , Células HaCaT
16.
World J Gastrointest Oncol ; 16(4): 1421-1436, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38660653

RESUMO

BACKGROUND: Metabolic reprogramming plays a key role in cancer progression and clinical outcomes; however, the patterns and primary regulators of metabolic reprogramming in colorectal cancer (CRC) are not well understood. AIM: To explore the role of nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) in promoting progression of CRC. METHODS: We evaluated the expression and function of dysregulated and survival-related metabolic genes using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. Consensus clustering was used to cluster CRC based on dysregulated metabolic genes. A prediction model was constructed based on survival-related metabolic genes. Sphere formation, migration, invasion, proliferation, apoptosis and clone formation was used to evaluate the biological function of NOX4 in CRC. mRNA sequencing was utilized to explore the alterations of gene expression NOX4 over-expression tumor cells. In vivo subcutaneous and lung metastasis mouse tumor model was used to explore the effect of NOX4 on tumor growth. RESULTS: We comprehensively analyzed 3341 metabolic genes in CRC and identified three clusters based on dysregulated metabolic genes. Among these genes, NOX4 was highly expressed in tumor tissues and correlated with worse survival. In vitro, NOX4 overexpression induced clone formation, migration, invasion, and stemness in CRC cells. Furthermore, RNA-sequencing analysis revealed that NOX4 overexpression activated the mitogen-activated protein kinase-MEK1/2-ERK1/2 signaling pathway. Trametinib, a MEK1/2 inhibitor, abolished the NOX4-mediated tumor progression. In vivo, NOX4 overexpression promoted subcutaneous tumor growth and lung metastasis, whereas trametinib treatment can reversed the metastasis. CONCLUSION: Our study comprehensively analyzed metabolic gene expression and highlighted the importance of NOX4 in promoting CRC metastasis, suggesting that trametinib could be a potential therapeutic drugs of CRC clinical therapy targeting NOX4.

17.
Int J Biol Macromol ; 267(Pt 2): 131656, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38636749

RESUMO

The gut microbiota plays a significant role in the pathogenesis and remission of inflammatory bowel disease. However, conventional antibiotic therapies may alter microbial ecology and lead to dysbiosis of the gut microbiome, which greatly limits therapeutic efficacy. To address this challenge, novel nanomicelles that couple inulin with levofloxacin via disulfide bonds for the treatment of salmonellosis were developed in this study. Owing to their H2S-responsiveness, the nanomicelles can target the inflamed colon and rapidly release levofloxacin to selectively fight against enteric pathogens. Moreover, the embedded inulin can serve as prebiotic fiber to increase the amount of Bifidobacteria and Lactobacilli in mice with salmonellosis, thus maintaining the intestinal mechanical barrier and regulating the balance of the intestinal flora. Therefore, multifunctional nanomicelles had a better curative effect than pure levofloxacin on ameliorating inflammation in vivo. The pathogen-targeted glycovesicle represents a promising drug delivery platform to maximize the efficacy of antibacterial drugs for the treatment of inflammatory bowel disease.


Assuntos
Antibacterianos , Microbioma Gastrointestinal , Inulina , Infecções por Salmonella , Animais , Inulina/farmacologia , Inulina/química , Camundongos , Antibacterianos/farmacologia , Antibacterianos/química , Infecções por Salmonella/tratamento farmacológico , Infecções por Salmonella/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Levofloxacino/farmacologia , Micelas , Portadores de Fármacos/química , Nanopartículas/química
18.
J Colloid Interface Sci ; 664: 681-690, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38492369

RESUMO

Hard carbon (HC) has emerged as a highly promising anode material for sodium ion batteries, drawing tremendous interest in producing this material with low-cost and easily accessible precursors. The determination of the crucial parameters of precursors influencing the formation of key structures, such as closed pores, in the HC is of paramount importance. Considering the potential role of free radicals in the structural evolution of the precursors, we, for the first time, delve into the impact of radical species on the development of closed pores by electron paramagnetic resonance spectroscopy, with petroleum asphalt as the model system. Our findings reveal that carbon centred radicals, with the g value close to that of the free electron (2.0023), exhibit a propensity to form long-range, well-ordered graphitic structures with lower sodium storage capacity. Conversely, the deliberately incorporated oxygen radicals with the g value over 2.005 require a higher energy for ordering the graphitic structures, leading to the creation of closed pores. As a result, the optimal sample showcases a four-fold increase in plateau capacity for sodium ion storage due to the pore filling process. Our research underscores the pivotal role of employing electron paramagnetic resonance spectroscopy studying the critical structural evolution of functional carbon materials.

19.
iScience ; 27(4): 109460, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38550980

RESUMO

Various energy storage systems (ESS) can be derived from the Brayton cycle, with the most representative being compressed air energy storage and pumped thermal electricity storage systems. Although some important studies on above ESS are reported, the topological structure behind those systems (i.e., derivations of the Brayton cycle) has not been studied, and the underlying thermodynamic ideas still need to be further explored. This paper first introduces the topological structure and the symmetry of ESS and their based Brayton cycles. The formation method of ESS based on paths and separation points is specified. It is found that round-trip path can form ESS directly. Then various ESS formed are compared. Finally, the synergistic effect and gain principle of thermal cycle and ESS are revealed. This work helps to reveal the intrinsic relationship between thermal cycles and ESS, understand the general laws behind ESS, and guide the combination of thermal cycles and ESS.

20.
BMC Genom Data ; 25(1): 30, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491489

RESUMO

BACKGROUND: The suamc genus Rhus (sensu stricto) includes two subgenera, Lobadium (ca. 25 spp.) and Rhus (ca. 10 spp.). Their members, R. glabra and R. typhina (Rosanae: Sapindales: Anacardiaceae), are two economic important species. Chloroplast genome information is of great significance for the study of plant phylogeny and taxonomy. RESULTS: The three complete chloroplast genomes from two Rhus glabra and one R. typhina accessions were obtained with a total of each about 159k bp in length including a large single-copy region (LSC, about 88k bp), a small single-copy regions (SSC, about 19k bp) and a pair of inverted repeats regions (IRa/IRb, about 26k bp), to form a canonical quadripartite structure. Each genome contained 88 protein-coding genes, 37 transfer RNA genes, eight ribosomal RNA genes and two pseudogenes. The overall GC content of the three genomes all were same (37.8%), and RSCU values showed that they all had the same codon prefers, i.e., to use codon ended with A/U (93%) except termination codon. Three variable hotspots, i.e., ycf4-cemA, ndhF-rpl32-trnL and ccsA-ndhD, and a total of 152-156 simple sequence repeats (SSR) were identified. The nonsynonymous (Ka)/synonymous (Ks) ratio was calculated, and cemA and ycf2 genes are important indicators of gene evolution. The phylogenetic analyses of the family Anacardiaceae showed that the eight genera were grouped into three clusters, and supported the monophyly of the subfamilies and all the genera. The accessions of five Rhus species formed four clusters, while, one individual of R. typhina grouped with the R. glabra accessions instead of clustering into the two other individuals of R. typhina in the subgenus Rhus, which showed a paraphyletic relationship. CONCLUSIONS: Comparing the complete chloroplast genomes of the Rhus species, it was found that most SSRs were A/T rich and located in the intergenic spacer, and the nucleotide divergence exhibited higher levels in the non-coding region than in the coding region. The Ka/Ks ratio of cemA gene was > 1 for species collected in America, while it was < 1 for other species in China, which dedicated that the Rhus species from North America and East Asia have different evolutionary pressure. The phylogenetic analysis of the complete chloroplast genome clarified the Rhus placement and relationship. The results obtained in this study are expected to provide valuable genetic resources to perform species identification, molecular breeding, and intraspecific diversity of the Rhus species.


Assuntos
Anacardiaceae , Genoma de Cloroplastos , Magnoliopsida , Rhus , Humanos , Filogenia , Rhus/genética , Anacardiaceae/genética , Magnoliopsida/genética , Códon/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA