Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Fitoterapia ; 177: 106092, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38914272

RESUMO

Hemp (Cannabis sativa L.), an annual dioecious plant, has shown extensive application in the fields of fibers, food, oil, medicine, etc. Currently, most attention has been paid to the therapeutic properties of phytocannabinoids. However, the pharmaceutical research on essential oil from hemp is still lacking. In this study, hemp essential oil (HEO) was extracted from hemp flowers and leaves, and the components were analyzed by GC-MS. Quatitative analysis of three main compounds ß-caryophyllene, ß-caryophyllene oxide, α -humulene were determined by GC-FID. The anti-tumor and anti-neuropathic pain effects of HEO were evaluated. In the paclitaxel induced neuropathic mice model, HEO reduced the serum level of inflammatory cytokines TNF-α to achieve the analgesic effect, which was tested by evaluating mechanical and thermal hyperalgesia. Further investigation with cannabinoid receptor 2 (CB2 R) antagonist AM630 revealed the mechanism of reversing mechanical hyperalgesia may be related to CB2 R. In Lewis lung cancer grafted mice model, the tumor growth was significantly inhibited, the levels of tumor inflammatory cytokines TNF-α and IL-6 were downregulated, immune organ index was modified and immune-related CD4+, CD8+ T lymphocytes level, CD4+/CD8+ ratio were increased when administered with HEO. These results reveal that HEO plays a role not only in tumor chemotherapy induced peripheral neuropathy treatment, but also in anti-tumor treatment which offers key information for new strategies in cancer treatment and provides reference for the medicinal development of hemp.

2.
Molecules ; 29(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731449

RESUMO

Cannabis sativa L. (hemp) is a herbaceous plant rich in cannabinoids with a long history of use in pain treatment. The most well-characterized cannabinoids, cannabidiol (CBD) and Δ9-tetrahydrocannabinol (Δ9-THC), garnered much attention in chemotherapy-induced peripheral neuropathy (CIPN) treatment. However, few studies have investigated the biological benefits and mechanism of hemp extract on CIPN. In the present study, hemp extract (JG) rich in cannabinoids was extracted by supercritical fluid carbon dioxide extraction (SFCE). The antinociceptive efficacy was evaluated using a paclitaxel-induced peripheral neuropathy (PIPN) rat model based on behavioral tests. Further omics-based approaches were applied to explore the potential mechanisms. The results showed that JG decreased mechanical allodynia, thermal hyperalgesia, and inflammatory cytokines in PIPN rats significantly. Transcriptome analysis identified seven key genes significantly regulated by JG in PIPN model rats, mainly related to the neuroactive ligand-receptor interaction pathway, PPAR signaling pathway, and cAMP signaling pathway. In metabolomic analysis, a total of 39 significantly altered metabolites were identified, mainly correlated with pentose and glucuronate interconversions and the glycerophospholipid metabolism pathway. Gut microbiota analysis suggested that increased community Lachnoclostridium and Lachnospiraceae_UCG-006 in PIPN rats can be reversed significantly by JG. In conclusion, hemp extract exhibited antinociceptive effects on PIPN. The analgesic mechanism was probably related to the regulation of inflammation, neuroactive ligand-receptor interaction pathway, sphingolipid metabolism, etc. This study provides novel insights into the functional interactions of Cannabis sativa L. extract on PIPN.


Assuntos
Analgésicos , Cannabis , Neuralgia , Paclitaxel , Extratos Vegetais , Animais , Cannabis/química , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Ratos , Analgésicos/farmacologia , Analgésicos/química , Paclitaxel/efeitos adversos , Masculino , Metabolômica , Modelos Animais de Doenças , Hiperalgesia/tratamento farmacológico , Hiperalgesia/induzido quimicamente , Hiperalgesia/metabolismo , Canabinoides/farmacologia , Multiômica
3.
ACS Omega ; 9(16): 18032-18045, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38680313

RESUMO

Spherical δ-MnO2 nanoflower materials were synthesized via a facile one-step coprecipitation method through adjusting the molar ratio of KMnO4 to MnSO4. The influence of the molar ratio of the reactants on the crystal structure, morphology, and electrochemical performances was investigated. At a molar ratio of 3.3 for KMnO4 to MnSO4, the spherical δ-MnO2 nanoflowers composed of nanosheets with the highest specific surface area (228.0 m2 g-1) were obtained as electrode materials. In the conventional three-electrode system using 1 M Na2SO4 as an electrolyte, the specific capacitance of the spherical δ-MnO2 nanoflowers reached 172.3 F g-1 at a current density of 1 A g-1. Moreover, even after 5000 cycles at a current density of 5 A g-1, the GCD curves remained essentially unchanged, and the specific capacitance still retained 86.50% of the maximum value. The kinetics of the electrode reaction were preliminarily studied through the linear potential sweep technique to observe diffusion-controlled contribution toward total capacitance. For the spherical δ-MnO2 nanoflower electrode material, diffusion-controlled contribution accounted for 65.1% at low scan rates and still remained significant at high scan rates (100 mV s-1), indicating excellent utilization efficiency of the bulk phase. The as-fabricated asymmetric supercapacitor HFC-7//MnO2-3.3-ASC presented a prominent specific energy of 16.5 Wh kg-1 at the specific power of 450 W kg-1. Even when the specific power reached 9.0 kW kg-1, the energy density still retained 9.5 Wh kg-1.

4.
Planta Med ; 89(15): 1444-1456, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37709286

RESUMO

The discovery that Na/K-ATPase acts as a signal transducer led us to investigate the structural diversity of cardiotonic steroids and study their ligand effects. By applying Na/K-ATPase activity assay-guided fractionation, we isolated a total of 20 cardiotonic steroids from Streptocaulon juventas, including an undescribed juventasoside B (10: ) and 19 known cardiotonic steroids. Their structures have been elucidated. Using our platform of purified Na/K-ATPase and an LLC-PK1 cell model, we found that 10: , at a concentration that induces less than 10% Na/K-ATPase inhibition, can stimulate the Na/K-ATPase/Src receptor complex and selectively activate downstream pathways, ultimately altering prostate cancer cell growth. By assessing the ligand effect of the isolated cardiotonic steroids, we found that the regulation of cell viability by the isolated cardiotonic steroids was not associated with their inhibitory potencies against Na/K-ATPase activity but reflected their ligand-binding affinity to the Na/K-ATPase receptor. Based on this discovery, we identified a unique active cardiotonic steroid, digitoxigenin (1: ), and verified that it can protect LLC-PK1 cells from hypoxic injury, implicating its potential use in ischemia/reperfusion injury and inducing collagen synthesis in primary human dermal fibroblast cells, and implicating that compound 2: is the molecular basis of the wound healing activity of S. juventas.


Assuntos
Cardenolídeos , Glicosídeos Cardíacos , Masculino , Suínos , Animais , Humanos , Cardenolídeos/farmacologia , Ligantes , Glicosídeos Cardíacos/química , ATPase Trocadora de Sódio-Potássio/metabolismo , Cicatrização , Ouabaína/farmacologia
5.
Opt Express ; 31(12): 19463-19477, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37381361

RESUMO

A lensless camera is an imaging system that replaces the lens with a mask to reduce thickness, weight, and cost compared to a lensed camera. The improvement of image reconstruction is an important topic in lensless imaging. Model-based approach and pure data-driven deep neural network (DNN) are regarded as two mainstream reconstruction schemes. In this paper, the advantages and disadvantages of these two methods are investigated to propose a parallel dual-branch fusion model. The model-based method and the data-driven method serve as two independent input branches, and the fusion model is used to extract features from the two branches and merge them for better reconstruction. Two types of fusion model named Merger-Fusion-Model and Separate-Fusion-Model are designed for different scenarios, where Separate-Fusion-Model is able to adaptively allocate the weights of the two branches by the attention module. Additionally, we introduce a novel network architecture named UNet-FC into the data-driven branch, which enhances reconstruction by making full use of the multiplexing property of lensless optics. The superiority of the dual-branch fusion model is verified by drawing comparison with other state-of-the-art methods on public dataset (+2.95dB peak signal-to-noise (PSNR), +0.036 structural similarity index (SSIM), -0.0172 Learned Perceptual Image Patch Similarity (LPIPS)). Finally, a lensless camera prototype is constructed to further validate the effectiveness of our method in a real lensless imaging system.

6.
Sci Rep ; 13(1): 8304, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37221295

RESUMO

Alzheimer's disease (AD) is the most common cause of dementia. A common finding in AD is DNA damage. Double-strand DNA breaks (DSBs) are particularly hazardous to neurons because their post-mitotic state forces neurons to rely on error-prone and potentially mutagenic mechanisms to repair DNA breaks. However, it remains unclear whether DNA damage results from increased DNA damage or failure of DNA repair. Oligomerization of the tumor suppressor protein p53 is an essential part of DSB repair, and p53 phosphorylated on S15 is an indicator of DNA damage. We report that the monomer:dimer ratio of phosphorylated (S15) p53 is increased by 2.86-fold in temporal lobes of AD patients compared to age-matched controls, indicating that p53 oligomerization is compromised in AD. In vitro oxidation of p53 with 100 nM H2O2 produced a similar shift in the monomer:dimer ratio. A COMET test showed a higher level of DNA degradation in AD consistent with double-strand DNA damage or inhibition of repair. Protein carbonylation was also elevated (190% of control), indicating elevated oxidative stress in AD patients. Levels of the DNA repair support protein 14-3-3σ, γ-H2AX, a phosphorylated histone marking double strand DNA breaks, and phosphorylated ataxia telangiectasia mutated (ATM) protein were all increased. cGAS-STING-interferon signaling was impaired in AD and was accompanied by a depletion of STING protein from Golgi and a failure to elevate interferon despite the presence of DSBs. The results suggest that oxidation of p53 by ROS could inhibit the DDR and decrease its ability to orchestrate DSB repair by altering the oligomerization state of p53. The failure of immune-stimulated DNA repair may contribute to cell loss in AD and suggests new therapeutic targets for AD.


Assuntos
Doença de Alzheimer , Humanos , Peróxido de Hidrogênio , Proteína Supressora de Tumor p53 , Reparo do DNA , Quebras de DNA de Cadeia Dupla , Interferons
7.
Aging (Albany NY) ; 15(3): 866-880, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36791156

RESUMO

OBJECTIVE: To investigate the differential expression profile of urinary exosomal microRNA (miRNA) in patients with mesangial proliferative glomerulonephritis (MsPGN) and healthy controls and their potential role in the pathogenesis of MsPGN. METHODS: Urine specimens were collected from five MsPGN patients and five healthy controls, and differentially expressed miRNAs were screened using high-throughput sequencing technology. The sequenced urinary exosomal miRNAs were further investigated by quantitative real-time polymerase chain reaction (qRT-PCR) in a validation cohort (16 MsPGN patients and 16 healthy controls). Correlation and receiver operating characteristic (ROC) curve analyses were used to determine the association between clinical features and miRNA expression in MsPGN. Finally, fluorescence in situ hybridization was performed to detect miRNA expression in the renal tissues of MsPGN patients. RESULTS: Five differentially expressed miRNAs (miR-125b-2-3p, miR-205-5p, let-7b-3p, miR-1262, and miR-548o-3p) were identified by qRT-PCR. The expression of these miRNAs correlated with ACR, 24hUpro, mAlb, UA, and combined yielded a ROC curve area of 0.916 in discriminating MsPGN patients from the controls. In addition, the expression of miR-205-5p, let-7b-3p, miR-1262, and miR-548o-3p was elevated in the MsPGN patient group, and miR-125b-2-3p was decreased in the MsPGN patient group. CONCLUSIONS: Differential expression of urinary exosomal miRNAs may pose a risk of MsPGN and help distinguish MsPGN patients from controls. Certain miRNA expressions may be associated with disease progression, contributing to the epigenetic understanding of the pathophysiology of MsPGN.


Assuntos
Glomerulonefrite , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Hibridização in Situ Fluorescente , Reação em Cadeia da Polimerase em Tempo Real , Glomerulonefrite/genética , Sequenciamento de Nucleotídeos em Larga Escala , Curva ROC , Perfilação da Expressão Gênica
8.
Biochem Biophys Res Commun ; 619: 84-89, 2022 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-35749940

RESUMO

Fibroblast growth factor 21 (FGF21) is regulated by peroxisome proliferator activated receptor α (PPARα) in the liver. FGF21 regulates lipid metabolism via fibroblast growth factor receptor 1 (FGFR1). FGF21 protect against alcoholic fatty liver (AFL), however, FGF21 does not exert protective effect through liver FGFR1. We have previously shown that PPARα agonist WY-14,643 induces FGF21 and adipose atrophy but fails to protect against chronic ethanol-induced AFL in mice lacking adipose FGFR1. In this study we tested the direct role of the FGF21 in regulation of adipose tissue mass and ethanol induced-hepatic triglyceride (TG) accumulation in normal control (fgfr1fl/fl) mice and in adipose FGFR1 knockout mice (fgfr1adipoQ-cre). First, we tested whether WY-14,643 effects on adipose atrophy and AFL can be recapitulated in binge alcohol model. As in chronic model, adipose tissue mass and serum free fatty acid (FFA) were decreased by WY-14,643 in the fgfr1adipoQ-cre mice but not in the fgfr1fl/fl mice. However, in contrast to the chronic model, binge ethanol-induced AFL was blunted by WY-14,643 to a greater extent in the fgfr1adipoQ-cre mice than in the fgfr1fl/fl mice. Similarly, circulating FGF21 was elevated by binge ethanol to a greater extent in the fgfr1adipoQ-cre mice than in the fgfr1fl/fl mice on top of WY-14,643 treatment. Accordingly, we tested the involvement of the FGF21 in adipose atrophy and AFL. Consistent with FGFR1-dependent effects of WY-14,643 on adipose atrophy and AFL, recombinant mouse FGF21 (rFGF21) injection induced adipose atrophy, blunted AFL and serum TG elevation to a greater extent in the fgfr1adipoQ-cre mice than in the fgfr1fl/fl mice. These results indicated the consistency of adipose FGFR1 dependent effect of WY-14,643 and FGF21 in PPARα-mediated regulation of adipose tissue mass and fat mobilization from adipose tissues to the liver, suggesting that adipose tissues crosstalk with liver through an interaction between liver PPARα-FGF21 and adipose FGFR1 to maintain adipose tissue mass.


Assuntos
Fígado Gorduroso Alcoólico , PPAR alfa , Tecido Adiposo/metabolismo , Animais , Atrofia , Etanol/farmacologia , Fígado Gorduroso Alcoólico/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Knockout , PPAR alfa/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo
9.
Biochem Biophys Res Commun ; 613: 47-52, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35526488

RESUMO

Peroxisome proliferator-activated receptor α (PPARα) regulates fatty acid oxidation (FAO). Usually, very-long chain fatty acids are first activated by acyl-CoA synthetase (ACS) to generate acyl-CoA for oxidation by acyl-CoA oxidase (ACOX) in peroxisomes, and the resultant shorter chain fatty acids will be further oxidized in mitochondria. ACS long-chain family member 4 (ACSL4) preferentially uses arachidonic acid (AA) as substrates to synthesize arachidonoyl-CoA. Arachidonoyl-CoA is usually esterified into phospholipids. When AA is released by phospholipase A2 (PLA2) from phospholipids, it will be used for prostaglandin synthesis by cyclooxygenases (COX). In this study, when PPARα agonist WY-14,643 was mixed in liquid Lieber-DeCarli ethanol or control diets and fed to mice, liver PLA2, COX-2, and ACOX1 were induced but ACSL4 was inhibited, suggesting that AA released by PLA2 from phospholipid will be metabolized to prostaglandin via COX-2 instead of being synthesized into acyl-CoA by ACSL4. However, liver prostaglandin E2 (PGE2), a major component of prostaglandin, was not increased with the induced COX-2 but decreased by WY-14,643. ACOX1 specific inhibitor mixed in the liquid diets restored both the WY-14,643-suppressed liver TG and PGE2, but COX-2 specific inhibitor celecoxib mixed in the liquid diets reversed the WY-14,643-suppressed liver TG but not liver PGE2 contents. These results suggest that induction of PLA2, COX-2 and ACOX1 orchestrates to increase oxidation of AA/PGE2, which constitutes one new mechanism by which PPARα induces peroxisomal FAO and inhibits ethanol-induced liver fat accumulation.


Assuntos
Acil-CoA Oxidase , Ciclo-Oxigenase 2 , Fígado Gorduroso Alcoólico , PPAR alfa , Fosfolipases A2 , Pirimidinas , Acil-CoA Oxidase/metabolismo , Animais , Coenzima A/metabolismo , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Ácidos Graxos/metabolismo , Fígado Gorduroso Alcoólico/tratamento farmacológico , Fígado Gorduroso Alcoólico/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Camundongos , PPAR alfa/agonistas , PPAR alfa/metabolismo , Peroxissomos/efeitos dos fármacos , Peroxissomos/metabolismo , Fosfolipases A2/metabolismo , Fosfolipídeos/metabolismo , Pirimidinas/farmacologia , Transdução de Sinais/efeitos dos fármacos
10.
Biochem Pharmacol ; 192: 114678, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34265279

RESUMO

Fibroblast growth factor 21 (FGF21) is mainly regulated by peroxisome proliferator-activated receptor α (PPARα) in liver. The PPARα-FGF21 axis protects against alcohol-related liver disease (ALD). FGF21 exerts its effect via FGF receptor 1 (FGFR1). However, liver specific FGFR1 abrogation had no effect on ALD. Adipose tissues highly express FGFR1. When adipocyte specific FGFR1 knockout (fgfr1adipoQ-cre) mice and corresponding normal control (fgfr1fl/fl) mice were fed with Lieber-DeCarli ethanol liquid diet for 3 weeks, liver triglyceride (TG) accumulation was increased in the fgfr1fl/fl mice to a greater extent than in the fgfr1adipoQ-cre mice. When PPARα agonist WY-14,643 was added in the liquid ethanol diet at 10 mg/L, the ethanol-induced liver TG accumulation was blunted in the fgfr1fl/fl mice but not in the fgfr1adipoQ-cre mice. There was no significant difference in WY-14,643-induced fatty acid oxidation, ethanol metabolism, and oxidative stress between the fgfr1fl/fl and fgfr1adipoQ-cre mice. Interestingly, adipose atrophy was induced by WY-14,643 in the fgfr1adipoQ-cre mice but not in the fgfr1fl/fl mice. Serum free fatty acid was also decreased by WY-14,643 in the fgfr1adipoQ-cre mice but not in the fgfr1fl/fl mice. These results suggest that WY-14,643 inhibits alcoholic fatty liver and regulates adipose tissue mass and fat mobilization from adipose tissues to liver in an adipocyte FGFR1-dependent manner.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Etanol/toxicidade , Fígado Gorduroso Alcoólico/prevenção & controle , PPAR alfa/agonistas , Pirimidinas/uso terapêutico , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/deficiência , Tecido Adiposo/metabolismo , Animais , Atrofia/induzido quimicamente , Atrofia/metabolismo , Etanol/administração & dosagem , Fígado Gorduroso Alcoólico/metabolismo , Feminino , Camundongos , Camundongos Knockout , PPAR alfa/metabolismo , Proliferadores de Peroxissomos/uso terapêutico , Proliferadores de Peroxissomos/toxicidade , Pirimidinas/toxicidade , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética
11.
Eur J Pharmacol ; 908: 174354, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34284013

RESUMO

Forsythiaside B is the major ingredient of Callicarpa kwangtungensis Chun, and has been proven to protect myocardium from ischemia-reperfusion injury to achieve myocardial protection. However, the effect of forsythiaside B on adverse myocardial fibrosis remains unclear. In the present study, the myocardial fibrosis animal models were established induced by isoproterenol (ISO) to investigate whether forsythiaside B exhibited antifibrotic actions. Forsythiaside B was found to significantly improve the cardiac ejection fraction and fractional shortening rate of myocardial fibrosis mice compared with the normal saline group. In addition, forsythiaside B could lower the level of TGF-ß1, the expression of α-SMA and collagen III. Forsythiaside B down-regulated the expression of Smad4 and the phosphorylation level of Smad3, which indicates that forsythiaside B could suppress myocardial fibrosis by inhibiting the TGF-ß1/Smad signaling pathway. These results demonstrated that forsythiaside B could prevent myocardial fibrosis in ISO-induced mice, and may be a potentially rational therapeutic approach for the treatment of myocardial fibrosis.


Assuntos
Fator de Crescimento Transformador beta1 , Animais , Masculino , Camundongos
12.
Int J Mol Sci ; 22(7)2021 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-33801629

RESUMO

The Na/K-ATPase is the specific receptor for cardiotonic steroids (CTS) such as ouabain and digoxin. At pharmacological concentrations used in the treatment of cardiac conditions, CTS inhibit the ion-pumping function of Na/K-ATPase. At much lower concentrations, in the range of those reported for endogenous CTS in the blood, they stimulate hypertrophic growth of cultured cardiac myocytes through initiation of a Na/K-ATPase-mediated and reactive oxygen species (ROS)-dependent signaling. To examine a possible effect of endogenous concentrations of CTS on cardiac structure and function in vivo, we compared mice expressing the naturally resistant Na/K-ATPase α1 and age-matched mice genetically engineered to express a mutated Na/K-ATPase α1 with high affinity for CTS. In this model, total cardiac Na/K-ATPase activity, α1, α2, and ß1 protein content remained unchanged, and the cardiac Na/K-ATPase dose-response curve to ouabain shifted to the left as expected. In males aged 3-6 months, increased α1 sensitivity to CTS resulted in a significant increase in cardiac carbonylated protein content, suggesting that ROS production was elevated. A moderate but significant increase of about 15% of the heart-weight-to-tibia-length ratio accompanied by an increase in the myocyte cross-sectional area was detected. Echocardiographic analyses did not reveal any change in cardiac function, and there was no fibrosis or re-expression of the fetal gene program. RNA sequencing analysis indicated that pathways related to energy metabolism were upregulated, while those related to extracellular matrix organization were downregulated. Consistent with a functional role of the latter, an angiotensin-II challenge that triggered fibrosis in the α1r/rα2s/s mouse failed to do so in the α1s/sα2s/s. Taken together, these results are indicative of a link between circulating CTS, Na/K-ATPase α1, ROS, and physiological cardiac hypertrophy in mice under baseline laboratory conditions.


Assuntos
Glicosídeos Cardíacos/química , Coração/fisiologia , Miocárdio/enzimologia , ATPase Trocadora de Sódio-Potássio/genética , Angiotensina II/farmacologia , Animais , Cardiomegalia/patologia , Modelos Animais de Doenças , Ecocardiografia , Coração/efeitos dos fármacos , Masculino , Camundongos , Mutação , Ouabaína/farmacologia , Isoformas de Proteínas , RNA-Seq , Espécies Reativas de Oxigênio , Transdução de Sinais/efeitos dos fármacos
13.
Free Radic Biol Med ; 169: 283-293, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33892114

RESUMO

Peroxisome proliferator-activated receptor α (PPARα), a fatty acid oxidation regulator, inhibits alcohol-induced fatty liver (AFL). PPARα agonist WY-14,643 ameliorates AFL. Nicotine enhances AFL. In this study, we investigated whether PPARα activation also blocks nicotine-enhanced AFL. Mice were fed liquid diets containing ethanol in the presence or absence of nicotine, WY-14,643 was added to the above diets at 10 mg/L. The results showed that WY-14,643 blunted AFL and nicotine-enhanced AFL, which was paralleled with striking induction of PPARα target genes. However, serum ALT was dramatically increased by the ethanol/WY-14,643 feeding and was further increased by nicotine/ethanol/WY-14,643 feeding, which was confirmed by necro-inflammation and elevated oxidative stress. Interestingly, serum alcohol levels were dramatically decreased by WY-14,643. Ethanol is mainly metabolized by alcohol dehydrogenase (ADH), cytochrome P450 2E1 (CYP2E1) and catalase. ADH and CYP2E1 were not increased by WY-14,643, but catalase was induced. What is more, injection of catalase inhibitor increased serum ethanol. Decreased serum alcohol, attenuated fatty liver, and enhanced liver injury were not induced by WY-14,643 in mice lacking PPARα. In conclusion, PPARα activation by WY-14,643 attenuates alcohol/nicotine-induced fatty liver but deteriorates ethanol/nicotine-induced liver injury; WY-14,643 enhances ethanol metabolism via induction of catalase.


Assuntos
PPAR alfa , Pirimidinas , Animais , Catalase/genética , Etanol , Fígado , Camundongos , PPAR alfa/genética
14.
Carbohydr Polym ; 257: 117548, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33541671

RESUMO

Cotton is an important renewable biopolymer with extensive applications in various fields including textiles. In the current study a soy protein (SP) crosslinked cotton fabric (SPCCF) was prepared through the reaction of carboxyl cotton fabric with soy protein without using crosslinking agents. FTIR analysis of SPCCF samples indicated that carboxyl groups in oxycellulose fabric have reacted with amino groups of SP to give the corresponding C-N bond, that was also reconfirmed by XPS spectra and TGA/DTG analyses of the grafted fabrics. The resulting SPCCF fabrics acquired under the optimized conditions exhibited the improved tensile strength and capillary effect as compared to the oxidized cotton fabric. The ungrafted and grafted fabrics were further evaluated for dyeing property, as a result, the SPCCF fabrics showed markedly improved colour strength when dyed with acid dyes. The fastness properties of dyeability for the dyed SPCCF fabrics were also good compared with that of ungrafted fabrics by dyeing. Shikonin as a kind of Chinese medicine was found to immobilize on the SPCCF fabric through treatment with shikonin aqueous solution, such fabric displayed effective antibacterial activities against both gram-positive and gram-negative bacteria with durability of 30 washes. These results suggest that the SPCCF can be suitable for medical protective textiles by immobilizing drugs.


Assuntos
Celulose Oxidada/química , Fibra de Algodão , Proteínas de Soja/química , Têxteis , Antibacterianos/química , Cor , Corantes , Escherichia coli , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Naftoquinonas/química , Oxigênio/química , Espectroscopia Fotoeletrônica , Conformação Proteica , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus , Temperatura , Termogravimetria , Fatores de Tempo
15.
Mol Pharmacol ; 99(3): 217-225, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33495275

RESUMO

Recent studies have revealed that Na/K-ATPase (NKA) can transmit signals through ion-pumping-independent activation of pathways relayed by distinct intracellular protein/lipid kinases, and endocytosis challenges the traditional definition that cardiotonic steroids (CTS) are NKA inhibitors. Although additional effects of CTS have long been suspected, revealing its agonist impact through the NKA receptor could be a novel mechanism in understanding the basic biology of NKA. In this study, we tested whether different structural CTS could trigger different sets of NKA/effector interactions, resulting in biased signaling responses without compromising ion-pumping capacity. Using purified NKA, we found that ouabain, digitoxigenin, and somalin cause comparable levels of NKA inhibition. However, although endogenous ouabain stimulates both protein kinases and NKA endocytosis, digitoxigenin and somalin bias to protein kinases and endocytosis, respectively, in LLC-PK1 cells. The positive inotropic effects of CTS are traditionally regarded as NKA inhibitors. However, CTS-induced signaling occurs at concentrations at least one order of magnitude lower than that of inotropy, which eliminates their well known toxic actions on the heart. The current study adds a novel mechanism that CTS could exert its biased signaling properties through the NKA signal transducer. SIGNIFICANCE STATEMENT: Although it is now well accepted that NKA has an ion-pumping-independent signaling function, it is still debated whether direct and conformation-dependent NKA/effector interaction is a key to this function. Therefore, this investigation is significant in advancing our understanding of the basic biology of NKA-mediated signal transduction and gaining molecular insight into the structural elements that are important for cardiotonic steroid's biased action.


Assuntos
Glicosídeos Cardíacos/farmacologia , Digitoxigenina/farmacologia , Glicosídeos/farmacologia , Ouabaína/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Sobrevivência Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Células LLC-PK1 , ATPase Trocadora de Sódio-Potássio/metabolismo , Suínos
16.
Phytochemistry ; 181: 112577, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33190100

RESUMO

The new concept that Na/K-ATPase acts as a receptor prompted us to look for new ligands from Callicarpa kwangtungensis Chun. Using column chromatography, an undescribed phenethyl alcohol glycoside, callicarpanoside A, and an undescribed benzyl alcohol glycoside, callicarpanoside B, along with twelve known polyphenols were isolated from Callicarpa kwangtungensis Chun. All the isolated compounds were evaluated for their Na/K-ATPase (NKA) inhibitory activities. Using our NKA technology platform-based screening assay protocols, callicarpanoside B was identified as an undescribed Na/K-ATPase agonist. In particular, the newly identified benzyl alcohol glycoside was found to bind NKA and activate the receptor NKA/Src complex, resulting in the activation of protein kinase cascades. These cascades included extracellular signal-regulated kinases and protein kinase C epsilon, as well as NKA α1 endocytosis at nanomolar concentrations. Unlike the class of cardiotonic steroids, callicarpanoside B showed less inhibition of NKA activity and caused less cellular toxicity. Moreover, callicarpanoside B was found to bind NKA at a different site other than the cardiotonic steroids binding site. Thus, we have identified an undescribed NKA α1 agonist that may be used to enhance the physiological processes of NKA α1 signaling.


Assuntos
Callicarpa , Glicosídeos Cardíacos , Glicosídeos Cardíacos/farmacologia , Glicosídeos/farmacologia , Transdução de Sinais , ATPase Trocadora de Sódio-Potássio/metabolismo
17.
Molecules ; 25(17)2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32825728

RESUMO

In this study, oxidized chitosan grafted cashmere fibers (OCGCFs) were obtained by crosslinking the oxidized chitosan onto cashmere fibers by amide covalent modification. A novel method was developed for the selective oxidation of the C6 primary hydroxyls into carboxyl groups for chitosan. The effect of oxidization reaction parameters of HNO3/H3PO4-NaNO2 mediated oxidation system on the oxidation degree, structure, and properties of chitosan were investigated. The chemical structure of the oxidized chitosan was characterized by solid-state cross-polarization magic angle spinning carbon-13 Nuclear Magnetic Resonance (CP/MAS 13C-NMR), Fourier transform infrared spectroscopy (FT-IR), and its morphology was investigated by scanning electron microscopy (SEM). Subsequently, the effect of the oxidized chitosan grafting on OCGCF was examined, and the physical properties, moisture regain, and antibacterial activity of OCGCFs were also evaluated. The results showed that oxidation of chitosan mostly occurred at the C6 primary hydroxyl groups. Moreover, an oxidized chitosan with 43.5-56.8% carboxyl content was realized by ranging the oxidation time from 30 to 180 min. The resulting OCGCF had a C-N amido bond, formed as a result of the reaction between the primary amines in the cashmere fibers and the carboxyl groups in the oxidized chitosan through the amide reaction. The OCGCF exhibited good moisture regain and remarkable bacteriostasis against both Staphylococcus aureus and Escherichia coli bacteria with its durability.


Assuntos
Amidas/química , Bactérias/efeitos dos fármacos , Quitosana/química , Quitosana/farmacologia , Têxteis/análise , Lã/química , Animais
18.
J Ethnopharmacol ; 258: 112881, 2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32311484

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Callicarpa kwangtungensis Chun (C. kwangtungensis) is a very famous herbal medicine with the function of promoting blood circulation and removing blood stasis which is beneficial for cardiovascular disease (CVD). Phenylethanoid glycosides (PGs) are the major class of active ingredients in C. kwangtungensis and present significant anti-oxidative and anti-inflammatory property related to apoptosis. Therefore, this study aimed to investigate the effects of total phenylethanoid glycosides of C. kwangtungensis (CK-PGs) on isoproterenol (ISO) induced myocardial ischemic injury (MI) and the mechanisms related to the apoptosis mediated by oxidative damage and inflammation. METHODS: The myocardial ischemia animal model was established as subcutaneous injecting ISO. Echocardiography and biomarkers were employed to determine the degree of myocardial damage. Histopathological changes were observed by hematoxylin and eosin test. The TUNEL staining and activity of caspase-3 were measured to detect the level of apoptosis which is medicated by the oxidative damage detected by the level of MDA, GSH and ROS tested with the kit and the inflammation reflected by TNF-α. The activity of Na+-K+-ATPase (NKA) was detected by the commercial kits, whose expression was measured by immunohistochemistry analysis. At last, Western blot analysis was used to measure Na+-K+-ATPase/Src/ERK1/2 and Bax/Bcl-2 pathway. RESULTS: CK-PGs showed cardioprotective effect against ISO-induced myocardial ischemic injury evidenced by improving heart function and lowering myocardial injury markers. CK-PGs could inhibit the level of apoptosis as shown by the decrease of the TUNEL-positive cells, the activity of caspase-3 and increase of the expression of Bax. CK-PGs also reduced oxidative stress and inflammation to suppress apoptosis by decreasing the level of ROS, MDA, and increasing GSH activity and lowering the level of TNF-α. In addition, CK-PGs exerted the protection by increasing the activity and the expression of NKA. Meanwhile, Na+-K+-ATPase/Src/ERK1/2pathway was weakened for the inhibition of apoptosis. CONCLUSIONS: CK-PGs could protect cardiomyocytes from myocardial injury through suppressing Na+-K+-ATPase/Src/ERK1/2 pathway and inhibiting apoptosis mediated by oxidative stress and inflammation.


Assuntos
Callicarpa/química , Cardiotônicos/farmacologia , Glicosídeos/farmacologia , Inflamação/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Cardiotônicos/isolamento & purificação , Modelos Animais de Doenças , Glicosídeos/isolamento & purificação , Inflamação/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , ATPase Trocadora de Sódio-Potássio/metabolismo , Quinases da Família src/metabolismo
19.
Bioorg Chem ; 98: 103150, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31983469

RESUMO

ß-Sitosterols, is a common steroid that can be identified in a variety of plants and their efficacy in promoting wound healing has been demonstrated. Na+/K+-ATPase, more than a pump, its signal transduction function for involvement in cell growth regulation attracts widespread concern. The Na+/K+-ATPase/Src receptor complex can serve as a receptor involved in multiple signaling pathways including promoting wound healing pathways. To finding potent accelerating wound healing small molecular, we choose the high inhibitory activity of Na+/K+-ATPase and non-cardiotoxic natural compound, ß-sitosterol as the substrate. A series of ß-sitosterol derivatives were designed, synthesized and evaluated as potential Na+/K+-ATPase inhibitors. Among them, compounds 31, 47, 49, showed improved inhibitory activity on Na+/K+-ATPase, with IC50 value of 3.0 µM, 3.4 µM, 2.2 µM, which are more potent than ß-sitosterol with IC50 7.6 µM. Especially, compound 49 can induce cell proliferation, migration and soluble collagen production in L929 fibroblasts. Compared to model, compound 49 can accelerate wound healing in SD rats. Further studies indicated that 49 can activate the sarcoma (Src), uptake the protein kinase B (Akt), extracellular signal-regulated kinase (ERK) proteins expression in a concentration dependent manner. Finally, binding mode of compound 49 with Na+/K+-ATPase was studied, which provides insights into the determinants of potency and selectivity. These results proved ß-stitosterol derivative 49 can serve as an effective inhibitor of Na+/K+-ATPase and potential candidate for accelerating wound healing agents.


Assuntos
Inibidores Enzimáticos/farmacologia , Sitosteroides/farmacologia , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , Cicatrização/efeitos dos fármacos , Animais , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Masculino , Camundongos , Estrutura Molecular , Ratos , Ratos Sprague-Dawley , Sitosteroides/síntese química , Sitosteroides/química , ATPase Trocadora de Sódio-Potássio/metabolismo , Relação Estrutura-Atividade
20.
Anal Sci ; 36(3): 353-360, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-31656250

RESUMO

To achieve a rapid, sensitive, and economical method for the detection of ascorbic acid (AA) in the presence of Fe3+, a nitrogen and sulfur co-doped carbon dots (N,S-co-CDs) based fluorescence sensing system was developed. In this work, N,S-co-CDs were successfully synthesized via a one-step microwave-assisted method within 2.5 min using ammonium citrate and L-cysteine as precursors. The fluorescence of N,S-co-CDs was quenched (off ) by Fe3+ through a static-quenching mechanism. Subsequently, the fluorescence was recovered (on) after introducing AA into the quenched system, which was attributed to the reduction effect of AA for Fe3+. Therefore, a switch-on sensor (N,S-co-CDs/Fe3+ system) was developed for AA detection. Under optimal conditions, the limit of detection (LOD) of 2.31 µmol/L for AA was obtained over a linear range from 0 to 150 µmol/L. Furthermore, the proposed sensing method was successfully applied to detect AA in processed fruit juice with satisfactory results. The most important is that the sensor derived from a microwave-assisted method has simple and eco-friendly synthesis processes, is rapid, and has high detection efficiency. Therefore, such a switch-on sensor may be a promising candidate sensor for AA detection in processed fruit samples.


Assuntos
Ácido Ascórbico/análise , Sucos de Frutas e Vegetais/análise , Micro-Ondas , Pontos Quânticos , Limite de Detecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA