Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Talanta ; 280: 126690, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39126963

RESUMO

Metastasis is an important hallmark of malignant tumors, and telomerase often exhibits high expression in these tumors. Monitoring the real-time dynamics of telomerase will provide valuable insights into its association with tumor metastasis. In this study, we described a microfluidic system for screening highly metastatic sublines based on differential cell invasiveness, investigated telomerase expression in the process of tumor metastasis and explored the genes and signaling pathways involved in tumor metastasis. Cells with different metastasis abilities were efficiently classified into different channels, and the fluorescence imaging visually demonstrates that cells with higher metastasis ability have stronger telomerase activity. In addition, we successfully established the high-metastasis-ability LoVo subline (named as LoVo-H) and low-metastasis-ability LoVo subline (named as LoVo-L) from the human colorectal cancer LoVo cell lines through only one round of selection using the system. The results show that the LoVo-H cells display superior proliferation and invasiveness compared to LoVo-L cells. Furthermore, 6776 differentially expressed genes of LoVo-H compared with LoVo-L were identified by transcriptome sequencing. The genes associated with telomerase activity, cell migration and the epithelial to mesenchymal transition were up-regulated in LoVo-H, and PI3K-Akt signaling pathway, extracellular matrix-receptor interaction and Rap1 signaling pathway were significantly enriched in LoVo-H. This microfluidic system is a highly effective tool for selecting highly metastatic sublines and the LoVo-H subline established through this system presents a promising model for tumor metastasis research. Furthermore, this work preliminarily reveals telomerase expression during tumor metastasis and provides a new strategy for studying tumor metastasis and cancer diagnosis.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 323: 124910, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39128309

RESUMO

An ultrasensitive strategy for in-situ visual monitoring of ATP in a single living tumor cell during mitochondria-targeted photodynamic therapy (PDT) process with high spatiotemporal resolution was proposed using surface-enhanced Raman scattering (SERS) 3D imaging technique. The nanostructures consisting of Au-Ag2S Janus nanoparticles functionalized with both Au nanoparticles linked by a DNA chain and a mitochondrial-targeting peptide (JMDA NPs) were deliberately employed to target mitochondria. The JMDA NPs exhibit excellent SERS activity and remarkable antitumor activity. The quantization of ATP relies on the intensity of the SERS probes bonded to the DNA, which shows a strong correlation with the generated hot spot between the Janus and the Au. Consequently, spatiotemporally controlled monitoring of ATP in the mitochondria of single living cells during the PDT process was achieved. Additionally, the JMDA NPs demonstrated remarkable capability for mitochondria-targeted PDT, providing significant antitumor effects and superior therapeutic safety both in vitro and in vivo. Our work presents an effective JMDA NPs-based SERS imaging strategy for in-situ and real-time 3D visualization of intracellular ATP in living tumor cells during the mitochondria-targeted PDT process, which enables significant information on the time point of PDT treatment and is beneficial to precious PDT applications in tumor therapy.

3.
J Mater Chem B ; 12(31): 7646-7658, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39007565

RESUMO

Much effort has been devoted to designing diverse photosensitizers for efficient photodynamic therapy (PDT) and photothermal therapy (PTT) performance. However, the effect of PS morphology on the PDT and PTT performance needs to be further explored. In this work, a photosensitizer, Au-Ag2S nanoparticles functionalized with indocyanine green, caspase-3 recognition peptides, and mitochondria-targeting peptides (AICM NPs) with different morphologies, including core-shell, eccentric core-shell-I, eccentric core-shell-II, and Janus morphologies, were synthesized to enhance PDT and PTT performance. Among them, AICM Janus NPs with enhanced charge-transfer efficiency and photothermal conversion demonstrate superior PDT and PTT performance compared to those of other morphologies. In addition, AICM NPs exhibit satisfactory surface-enhanced Raman scattering performance for in situ SERS monitoring of caspase-3 during PDT and PTT processes. After PDT and PTT treatment with AICM Janus NPs, the damaged mitochondria released caspase-3. AICM Janus NPs achieved a superior apoptosis rate in tumor cells in vitro. Furthermore, AICM Janus NPs treat the tumors in vivo within only 10 days, which is half the time reported in other work. The AICM NPs demonstrated superior therapeutic safety both in vitro and in vivo. This study investigates the effects of morphology-property-performance of photosensitizers on the PDT and PTT performances, which opens a new pathway toward designing photosensitizers for efficient PDT and PTT.


Assuntos
Ouro , Mitocôndrias , Fotoquimioterapia , Fármacos Fotossensibilizantes , Terapia Fototérmica , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/síntese química , Ouro/química , Ouro/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Humanos , Animais , Camundongos , Compostos de Prata/química , Compostos de Prata/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Nanopartículas Metálicas/química , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Tamanho da Partícula , Camundongos Endogâmicos BALB C , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células/efeitos dos fármacos
4.
Talanta ; 278: 126483, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38963977

RESUMO

Self-driven microfluidic systems have attracted significant attention and demonstrated great potential in the field of point-of-care (POC) testing due to their device simplicity, low power consumption, increased portability, and reduced sample consumption. To develop POC detection chips with diverse characteristics that meet different requirements, there is a strong demand for feasible strategies that enable easy operation and reduce processing time. Here, a one-step processing approach using femtosecond laser direct writing technology was proposed to fabricate a capillary-actuated POC microfluidic chip. The driving force of the chip is highly dependent on its surface wettability, which can be easily adjusted by changing the laser processing parameters. This POC microfluidic chip allowed for the detection of intracellular H2O2 through a catalytic reaction system that incorporated 5-aminosalicylic acid -sensitized colloidal TiO2 nanoparticles and horse radish peroxidase, with integrating semiconductor-based surface-enhanced Raman scattering (SERS) quantitative technique. The concentration of H2O2 was determined by the SERS signal of the catalytic products in the microfluidic chip, resulting in rapid detection with minimal sample consumption. Our method provides a simple, feasible, and alternative strategy for POC testing of H2O2, with a linear range of 10-2∼10-6 M and a limit of detection of 0.55 µM. This approach was successfully applied to rapid detection of intracellular H2O2 in MCF-7 breast cancer cells with high sensitivity and minimal sample consumption. Additionally, this study not only demonstrates the exceptional advantages of femtosecond laser processing technology in fabricating diverse microfluidic chips for various applications, but also presents an efficient POC testing strategy for detecting cell signaling molecules.


Assuntos
Peróxido de Hidrogênio , Lasers , Análise Espectral Raman , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/análise , Humanos , Análise Espectral Raman/métodos , Semicondutores , Sistemas Automatizados de Assistência Junto ao Leito , Dispositivos Lab-On-A-Chip , Limite de Detecção , Células MCF-7
5.
Talanta ; 275: 126191, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38705020

RESUMO

Mucin 1 is a significant tumor marker, and developing portable and cost-effective methods for its detection is crucial, especially in resource-limited areas. Herein, we developed an innovative approach for mucin 1 detection using a visible multicolor aptasensor. Urease-encapsulated DNA microspheres were used to mediate multicolor change facilitated by the color mixing of the mixed pH indicator, a mixed methyl red and bromocresol green solution. Distinct color changes were exhibited in response to varying mucin 1 concentrations. Notably, the color mixing of the mixed pH indicator was used to display various hues of colors, broadening the range of color variation. And color tonality is much easier to differentiate than color intensity, improving the resolution with naked-eyes. Besides, the variation of color from red to green (a pair of complementary colors) enhanced the color contrast, heightening sensitivity for visual detection. Importantly, the proposed method was successfully applied to detect mucin 1 in real samples, demonstrating a clear differentiation of colors between the samples of healthy individuals and breast cancer patients. The use of a mixed pH indicator as a multichromatic substrate offers the merits of low cost, fast response to pH variation, and plentiful color-evolution. And the incorporation of calcium carbonate microspheres to encapsulate urease ensures stable urease activity and avoids the need for extra urease decoration. The color-mixing dependent strategy opens a new way for multicolor detection of MUC1, characterized by vivid color changes.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Cor , Mucina-1 , Urease , Urease/química , Concentração de Íons de Hidrogênio , Mucina-1/análise , Mucina-1/química , Humanos , Técnicas Biossensoriais/métodos , Aptâmeros de Nucleotídeos/química , Microesferas , Neoplasias da Mama
6.
J Colloid Interface Sci ; 668: 335-342, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38678888

RESUMO

Membrane receptors perform a diverse range of cellular functions, accounting for more than half of all drug targets. The mechanical microenvironment regulates cell behaviors and phenotype. However, conventional analysis methods of membrane receptors often ignore the effects of the extracellular matrix stiffness, failing to reveal the heterogeneity of cell membrane receptors expression. Herein, we developed an in-situ surface-enhanced Raman scattering (SERS) imaging method to visualize single-cell membrane receptors on substrates with different stiffness. Two SERS substrates, Au@4-mercaptobenzonitrile@Ag@Sgc8c and Au@4-pethynylaniline@Ag@SYL3c, were employed to specifically target protein tyrosine kinase-7 (PTK7) and epithelial cell adhesion molecule (EpCAM), respectively. The polyacrylamide (PA) gels with tunable stiffness (2.5-25 kPa) were constructed to mimic extracellular matrix. The simultaneous SERS imaging of dual membrane receptors on single cancer cells on substrates with different stiffness was achieved. Our findings reveal decreased expression of PTK7 and EpCAM on cells cultured on stiffer substrates and higher migration ability of the cells. The results elucidate the heterogeneity of membrane receptors expression of cells cultured on the substrates with different stiffness. This single-cell analysis method offers an in-situ platform for investigating the impacts of extracellular matrix stiffness on the expression of membrane receptors, providing insights into the role of cell membrane receptors in cancer metastasis.


Assuntos
Molécula de Adesão da Célula Epitelial , Matriz Extracelular , Análise de Célula Única , Análise Espectral Raman , Matriz Extracelular/metabolismo , Humanos , Molécula de Adesão da Célula Epitelial/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Ouro/química , Resinas Acrílicas/química , Prata/química , Propriedades de Superfície , Linhagem Celular Tumoral , Compostos de Anilina/química , Tamanho da Partícula , Moléculas de Adesão Celular
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124352, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38678841

RESUMO

Mucin 1 is an essential tumor biomarker, and developing cost-effective and portable methods for mucin 1 detection is crucial in resource-limited settings. Herein, the pH-regulated dual-enzyme mimic activities of manganese dioxide nanosheets were demonstrated, which were integrated into an aptasensor for dual-mode detection of mucin 1. Under acidic conditions, manganese dioxide nanosheets with oxidase mimic activities catalyzed the oxidation of 3,3',5,5'-tetramethylbenzidine sulfate, producing visible multicolor signals; while under basic conditions, manganese dioxide nanosheets with catalase mimic activities were used as catalyst for the decomposition of hydrogen peroxide, generating gas pressure signals. The proposed method allows the naked eye detection of mucin 1 through multicolor signal readout and the quantitative detection of mucin 1 with a handheld pressure meter or a UV-vis spectrophotometer. The study demonstrates that manganese dioxide nanosheets with pH-regulated dual-enzyme mimic activities can facilitate multidimensional transducing signals. The use of manganese dioxide nanosheets for the transduction of different signals avoids extra labels and simplifies the operation procedures. Besides, the signal readout mode can be selected according to the available detection instruments. Therefore, the use of manganese dioxide nanosheets with pH-regulated dual-enzyme mimic activities for dual-signal readout provides a new way for mucin 1 detection.


Assuntos
Compostos de Manganês , Mucina-1 , Nanoestruturas , Óxidos , Compostos de Manganês/química , Concentração de Íons de Hidrogênio , Mucina-1/análise , Óxidos/química , Nanoestruturas/química , Humanos , Colorimetria/métodos , Benzidinas/química , Pressão , Técnicas Biossensoriais/métodos , Peróxido de Hidrogênio/análise , Peróxido de Hidrogênio/química , Aptâmeros de Nucleotídeos/química
8.
Biomicrofluidics ; 18(2): 021301, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38566823

RESUMO

Fluid manipulation is an important foundation of microfluidic technology. Various methods and devices have been developed for fluid control, such as electrowetting-on-dielectric-based digital microfluidic platforms, microfluidic pumps, and pneumatic valves. These devices enable precise manipulation of small volumes of fluids. However, their complexity and high cost limit the commercialization and widespread adoption of microfluidic technology. Shape memory polymers as smart materials can adjust their shape in response to external stimuli. By integrating shape memory polymers into microfluidic chips, new possibilities for expanding the application areas of microfluidic technology emerge. These shape memory polymers can serve as actuators or regulators to drive or control fluid flow in microfluidic systems, offering innovative approaches for fluid manipulation. Due to their unique properties, shape memory polymers provide a new solution for the construction of intelligent and automated microfluidic systems. Shape memory microfluidic chips are expected to be one of the future directions in the development of microfluidic technology. This article offers a summary of recent research achievements in the field of shape memory microfluidic chips for fluid and droplet manipulation and provides insights into the future development direction of shape memory microfluidic devices.

9.
Biosens Bioelectron ; 251: 116076, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38340580

RESUMO

Detection of extracellular vesicles (EVs), particularly small EVs (sEVs), is of great significance in exploring their physiological characteristics and clinical applications. The heterogeneity of sEVs plays a crucial role in distinguishing different types of cells and diseases. Machine learning, with its exceptional data processing capabilities, offers a solution to overcome the limitations of conventional detection methods for accurately classifying sEV subtypes and sources. Principal component analysis, linear discriminant analysis, partial least squares discriminant analysis, XGBoost, support vector machine, k-nearest neighbor, and deep learning, along with some combined methods such as principal component-linear discriminant analysis, have been successfully applied in the detection and identification of sEVs. This review focuses on machine learning-assisted detection strategies for cell identification and disease prediction via sEVs, and summarizes the integration of these strategies with surface-enhanced Raman scattering, electrochemistry, inductively coupled plasma mass spectrometry and fluorescence. The performance of different machine learning-based detection strategies is compared, and the advantages and limitations of various machine learning models are also evaluated. Finally, we discuss the merits and limitations of the current approaches and briefly outline the perspective of potential research directions in the field of sEV analysis based on machine learning.


Assuntos
Técnicas Biossensoriais , Vesículas Extracelulares , Análise Discriminante , Eletroquímica , Aprendizado de Máquina
10.
J Mater Chem B ; 12(5): 1372-1378, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38240560

RESUMO

Owing to the efficient non-radiative relaxation by the free rotation of the B-phenyl moiety, monophenyl substituted aza-BODIPY on the boron centre with near-infrared absorption has high photothermal conversion efficiency, which is highly desirable for a photothermal therapy agent.


Assuntos
Compostos de Boro , Terapia Fototérmica , Rotação
11.
ACS Sens ; 8(11): 4307-4314, 2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-37923556

RESUMO

Matrix metalloproteinase-9 (MMP-9), a proteolytic enzyme, degrades the extracellular matrix and plays a key role in cell communication. However, the real-time monitoring of cell-secreted MMP-9 during cell-cell communication remains a challenge. Herein, we developed a cell-based membrane-anchored surface-enhanced Raman scattering (SERS) biosensor using a Au@4-mercaptobenzonitrile (4-MBN) @Ag@peptide nanoprobe for the monitoring of cell-secreted MMP-9 during cell communication. The multifunctional nanoprobe was created with Au@4-MBN@Ag acting as an interference-free SERS substrate with high enhancement in which the peptide not only serves to anchor the cell membrane but also provides MMP-9-activatable cleaved peptide chains. MMP-9-mediated cleavage resulted in the detachment of the Au@4-MBN@Ag nanoparticles from the cell membrane, thereby decreasing the SERS signals of cancer cells. The cell membrane-anchored SERS biosensor enables the real-time monitoring of cell-secreted MMP-9 during the interaction of MCF-7 and HUVEC cells. This study successfully demonstrates the dynamic change of cell-secreted MMP-9 during the communication between MCF-7 cells and HUVEC cells. The proposed nanoprobe was also utilized to precisely evaluate the breast and hepatoma cancer cell aggressiveness. This study provides a novel strategy for real-time monitoring of MMP-9 secretion during cell communication, which is promising for the investigation of the mechanisms underlying different tumor processes.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Humanos , Metaloproteinase 9 da Matriz , Prata , Membrana Celular , Peptídeos
12.
Anal Chem ; 95(35): 13297-13304, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37610312

RESUMO

A 2D flow cytometry platform, known as CytoLM Plus, was developed for multi-parameter single-cell analysis. Single particles or cells after hydrodynamic alignment in a microfluidic unit undergo first-dimension fluorescence and side scattering dual-channel optical detection. They were thereafter immediately directed to ICP-MS by connecting the microfluidic unit with a high-efficiency nebulizer to facilitate the second-dimension ICP-MS detection. Flow cytometry measurements of fluorescent microspheres evaluated the performance of CytoLM Plus for optical detection. 6434 fluorescence bursts were observed with a valid signal proportion as high as 99.7%. After signal unification and gating analysis, 6067 sets of single-particle signals were obtained with 6.6 and 6.2% deviations for fluorescence burst area and height, respectively. This is fairly comparable with that achieved by a commercial flow cytometer. Afterward, CytoLM Plus was evaluated by 2D flow cytometry measurement of Ag+-incubated and AO-stained MCF-7 cells. A program for 2D single-cell signal unification was developed based on the algorithm of screening in lag time window. In the present case, a lag time window of -4.2 ± 0.09 s was determined by cross-correlation analysis and two-parameter optimization, which efficiently unified the concurrent single-cell signals from fluorescence, side scattering, and ICP-MS. A total of 495 sets of concurrent 2D signals were screened out, and the statistical analysis of these single-cell signals ensured 2D multi-parameter single-cell analysis and data elucidation.


Assuntos
Algoritmos , Projetos de Pesquisa , Humanos , Corantes , Citometria de Fluxo , Análise de Célula Única
13.
ACS Sens ; 8(6): 2282-2289, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37246908

RESUMO

Extracellular vesicles (EVs) are crucial focus of current biomedical research and future medical diagnosis. However, the requirement for specialized sophisticated instruments for quantitative readouts has limited the sensitive measurement of EVs to specialized laboratory settings, which in turn has limited bench-to-bedside translation of EV-based liquid biopsies. In this work, a straightforward temperature-output platform based on a DNA-driven photothermal amplification transducer was developed for the highly sensitive visual detection of EVs using a simple household thermometer. The EVs were specifically recognized by the antibody-aptamer sandwich immune-configuration that was constructed on portable microplates. Via a one-pot reaction, cutting-mediated exponential rolling circle amplification was initiated in situ on the EV surface, generating substantial G-quadruplex-DNA-hemin conjugates. Significant amplification in temperature was achieved from the effective photothermal conversion and regulation guided by the G-quadruplex-DNA-hemin conjugates in the 3,3',5,5'-tetramethylbenzidine-H2O2 system. Through obvious temperature outputs, the DNA-driven photothermal transducer enabled highly sensitive EV detection at close to the single-particle level and supported the highly specific identification of tumor-derived EVs directly in serum samples, without the requirement of any sophisticated instrument or labeling process. Benefiting from highly sensitive visual quantification, an easy-to-use readout, and portable detection, this photothermometric strategy is expected to be deliverable across professional on-site screening to home self-testing as EV-based liquid biopsies.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Vesículas Extracelulares , Hemina , Peróxido de Hidrogênio , DNA
14.
Biosensors (Basel) ; 13(4)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37185546

RESUMO

A simple and efficient enantioselective discrimination method, especially the chirality-label-free discrimination method, for the recognition of chiral small molecules with high resolution and wide applicability has been urgently desired. Herein, achiral Au/p-aminothiophenol (PATP) substrates were prepared to link the enantiomers via coupling reactions for constructing the enantioselective discrimination system. The resultant Au/PATP/enantiomer systems displayed charge-transfer (CT)-induced surface-enhanced Raman scattering (SERS) spectra that offered distinguishable information for the systems with different chirality. The differentiated spectral signal can be amplified by regulating the applied electrode potential, leading to great enantioselective discrimination performance. Moreover, the relationship between the discrimination performance and the potential-regulated CT process was revealed by SERS, which enabled an accurate and effective enantiomeric determination for various chiral molecules, including aromatic and aliphatic small molecules. The aliphatic molecule with the shorter chain was discriminated with a higher resolution, since the longer-chain molecule in the discrimination system may cause a change in the molecular electronic structure of the PATP. In addition, the aromatic chiral molecule can be distinguished easier than the aliphatic molecules, which means that the generation of the conjugation of electrons in the aromatic molecule-involved enantiomeric systems facilitates CT-induced SERS discrimination. Our work provides guidance for the design and development of an effective enantioselective discrimination strategy with high discrimination performance in diverse application fields.


Assuntos
Análise Espectral Raman , Análise Espectral Raman/métodos , Estereoisomerismo , Estrutura Molecular
15.
Lab Chip ; 23(8): 2068-2074, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36928455

RESUMO

Open microfluidics has attracted increasing attention over the last decade because of its flexibility and simplicity with respect to cell culture and clinical diagnosis. However, traditional valves and pumps are difficult to integrate on open-channel microfluidic chips, in which a liquid is usually driven by capillary forces. Poor fluid control performance is a common drawback of open microfluidics. Herein, we proposed a method for controlling the liquid flow in open channels by controlling the continuous Laplace pressure induced by the deformation of the shape memory microstructures. The uniformly arranged cuboidal microcolumns in the open channels have magnetic/light dual responses, and the bending angle of the microcolumns can be controlled by adjusting Laplace pressure using near-infrared laser irradiation in a magnetic field. Laplace pressure and capillary force drove the liquid flow together, and the controllable fluid transport was realized by adjusting the hydrophilicity of the channel surface and the bending angle of the microcolumns. We demonstrated the controllability of the flow rate and the directional transport of water along a preset path. In addition, the start and stop of water transport were realized via local hydrophobic modification. The proposed strategy improves poor fluid control in traditional open systems and makes fluid flow highly controllable. We tried to extract and detect rhodamine B in tiny droplets on the open microfluidic chip, demonstrating the advantages of the proposed strategy in the separation and analysis of tiny samples.

16.
Talanta ; 258: 124424, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36905790

RESUMO

Flow cytometry is among the most powerful tools for single-cell analysis, while the high cost and mechanical complexity of the commercial instrumentation limit the applications in personalized single-cell analysis. For this issue, we hereby construct an open and low-cost flow cytometer. It is highly compact to integrate the functions of (1) single cell aligning by a lab-made modularized 3D hydrodynamic focusing device, and (2) fluorescence detection of the single cells by a confocal laser-induced fluorescence (LIF) detector. The ceiling cost of the entire hardware for the LIF detection unit and 3D focusing device is $ 3200 and $ 400 respectively. A sheath flow velocity of 150 µL/min produces a focused sample stream of 17.6 µm × 14.6 µm at sample flow of 2 µL/min, based on the LIF response frequency and the laser beam spot diameter. The assay performance of the flow cytometer was evaluated by characterizing fluorescent microparticles and acridine orange (AO) stained HepG2 cells, producing throughputs of 40.5/s and 6.2/s respectively. Favorable assay precision and accuracy were demonstrated by the agreement of frequency histogram with imaging analysis, and good Gaussian-like distributions of fluorescent microparticles and AO-stained HepG2 cells. Practically, the flow cytometer was successfully applied for the evaluation of ROS generation in single HepG2 cells.


Assuntos
Corantes , Hidrodinâmica , Citometria de Fluxo/métodos , Laranja de Acridina , Lasers
17.
J Colloid Interface Sci ; 641: 568-576, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36963250

RESUMO

Alkaline phosphatase (ALP), as a crucial enzyme involved in many physiological activities, is always used as one of the significant biomarkers in clinical diagnosis. Herein, a novel, simple, and effective photothermal quantitative method based on the etching of MnO2-coated gold nanoparticles (Au@MnO2 NPs) was established for ALP activity assay with a household thermometer-based visual readout. The photothermal effect of Au@MnO2 NPs is much higher than that of MnO2 NPs or Au NPs. The MnO2 shell of Au@MnO2 NPs can be etched by ascorbic acid, a product of ALP-catalyzed hydrolysis of 2-phospho-l-ascorbic acid. With the etching of Au@MnO2 NPs, the photothermal conversion efficiency decreased gradually, causing the decrease of the temperature increment of the solutions by degrees. A household thermometer, instead of large-scale and professional instruments, was used as a signal reader to realize the visual quantitative detection. The photothermal platform was used successfully for the determination of ALP with a wide linear range from 2.0 to 50 U/L and a detection limit as low as 0.75 U/L. Moreover, the inhibition efficiency of sodium vanadate for ALP activity was investigated, proving the photothermal quantitative method will be a potential platform for screening enzyme inhibitors. Such a sensitive, facile, and low-cost sensing assay provides a new prospect to develop platforms for point-of-care testing.


Assuntos
Fosfatase Alcalina , Nanopartículas Metálicas , Ouro , Compostos de Manganês , Óxidos
18.
Anal Chim Acta ; 1253: 341098, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36965991

RESUMO

Sensitive and accurate determination of tumor-derived exosomes from complicated biofluids is an important prerequisite for early tumor diagnosis through exosome-based liquid biopsy. Herein, a label-free fluorescence immunoassay protocol for ultrasensitive detection of exosomes was developed by engineering substantial dimerized guanine-quadruplex (Dimer-G4) signal units via in situ cutting-mediated exponential rolling circle amplification (CM-ERCA). First, exosomes were captured and enriched via immunomagnetic separation. Then, molecular recognition was built by the formation of antibody-aptamer sandwich immunocomplex through the specific binding of the designed aptamer-primers with the targeted exosomes. The accuracy of exosome detection was significantly improved by the specific recognition of two typical exosomal protein markers simultaneously. Eventually, in situ CM-ERCA was triggered by a perfect match between the multifunctional circular DNA template and the aptamer-primer on exosomal surface. Amplicons of CM-ERCA loaded with Dimer-G4 were exponentially accumulated during continuous cyclic amplification, dramatically lighting up the thioflavin T (ThT) and generating substantial Dimer-G4 signal units. As a result, ultrasensitive detection of exosomes with the detection limit down to 2.4 × 102 particles/mL was achieved due to the fluorescence enhancement of substantial Dimer-G4 signal units, which is ahead of most of available fluorescence-based methods reported currently. In addition, the intense fluorescence emission and favorable anti-interference of the proposed immunoassay supports identification of exosomes direct in human serums, overcoming the limitations of conventional G4/ThT in serum analysis and revealing its potential for exosome-based liquid biopsy.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Exossomos , Neoplasias , Humanos , Exossomos/química , Aptâmeros de Nucleotídeos/química , Neoplasias/metabolismo , Técnicas Biossensoriais/métodos , Limite de Detecção
19.
ACS Sens ; 8(2): 875-883, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36722734

RESUMO

Due to the heterogeneity of breast cancer, its early accurate diagnosis remains a challenge. Exosomes carry abundant genetic materials and proteins and are ideal biomarkers for early cancer detection. Herein, a ratiometric surface-enhanced Raman scattering (SERS) biosensor for exosome detection was constructed using a regularly arranged Au@Ag nanoparticles/graphene oxide (Au@Ag NPs/GO) substrate with 4-nitrothiophenol (4-NTP) molecules as an internal standard. Aptamers of two overexpressed proteins (epithelial cell adhesion molecule and human epidermal growth factor receptor 2) were linked by a short complementary DNA with rhodamine X modified at the 3'-terminal to form V-shaped double-stranded DNA, which attached to the surface of Au@Ag NPs/GO substrate for the selective recognition of breast cancer cell-derived exosomes. In the presence of exosomes, a competitive reaction occurred, resulting in the formation of the V-shaped double-stranded DNA/exosomes complex, and the V-shaped double-stranded DNA separated from the SERS substrate. The SERS signal of rhodamine X on the V-shaped double-stranded DNA decreased with the concentration of exosomes increasing, whereas the SERS signal of 4-NTP on the substrate remained stable. The ratiometric SERS strategy provides huge electromagnetic enhancement and abundant DNA adsorbing sites on the GO layer, achieving a wide detection range of 2.7 × 102 to 2.7 × 108 particles/mL and an ultralow limit of detection down to 1.5 × 102 particles/mL, without the requirement of any nucleic acid amplification. Particularly, the proposed method has significant applications in early cancer diagnosis as it can accurately identify breast cancer cell-derived exosomes in clinical serum samples and can differentiate pancreatic cancer patients and healthy individuals.


Assuntos
Técnicas Biossensoriais , Neoplasias da Mama , Exossomos , Nanopartículas Metálicas , Humanos , Feminino , Nanopartículas Metálicas/química , Prata/química , Oligonucleotídeos , DNA/química , Técnicas Biossensoriais/métodos , Rodaminas
20.
Talanta ; 253: 123900, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36095940

RESUMO

Research on ion channels and their monoclonal antibodies plays a critical role in drug development and disease diagnosis. The current ion channel researches are often not conducted in the microenvironment for cells survival, which restricts the mechanism study of the links between the cell structure and the ion channel function. In this work, we synthesized gold core-4-mercaptobenzonitrile-sliver shell-goat anti-rabbit immunoglobulin G (Au@4-MBN@Ag@IgG) nanoparticles as surface-enhanced Raman scattering (SERS) nanoprobes for investigating the human ether-a-go-go related gene (hERG) potassium ion channel in cell membranes. This is the first attempt to study ion channels using SERS. Due to the unique core-molecule-shell structure and the silver shell of nanoprobes, strong and stable SERS signal was obtained. With the help of antibodies, the Au@4-MBN@Ag@IgG nanoprobes were captured by hERG antibodies and then bonded with hERG ion channels based on the sandwich immune response. The reporter molecule, 4-MBN, displayed a strong and sharp characteristic peak at 2233 cm-1 in the Raman silent region. The intensity of this peak denoted the concentration of antibodies and the expression of ion channel proteins. We successfully applied this amplification-free method for in-situ imaging the distribution of the hERG ion channel on the transfected HEK293 cell surface at the single-cell level. This hERG ion channel profiling strategy promises a maneuverable tool for ion channel research.


Assuntos
Imunoglobulina G , Canais Iônicos , Humanos , Células HEK293 , Nanopartículas Metálicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA