Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Sci (China) ; 150: 218-229, 2025 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-39306397

RESUMO

Assessing the impact of anthropogenic volatile organic compounds (VOCs) on ozone (O3) formation is vital for the management of emission reduction and pollution control. Continuous measurement of O3 and the major precursors was conducted in a typical light industrial city in the YRD region from 1 May to 25 July in 2021. Alkanes were the most abundant VOC group, contributing to 55.0% of TVOCs concentration (56.43 ± 21.10 ppb). OVOCs, aromatics, halides, alkenes, and alkynes contributed 18.7%, 9.6%, 9.3%, 5.2% and 1.9%, respectively. The observational site shifted from a typical VOC control regime to a mixed regime from May to July, which can be explained by the significant increase of ROx production, resulting in the transition of environment from NOx saturation to radical saturation with respect to O3 production. The optimal O3 control strategy should be dynamically changed depending on the transition of control regime. Under NOx saturation condition, minimizing the proportion of NOx in reduction could lead to better achievement of O3 alleviation. Under mixed control regime, the cut percentage gets the top priority for the effectiveness of O3 control. Five VOCs sources were identified: temperature dependent source (28.1%), vehicular exhausts (19.9%), petrochemical industries (7.2%), solvent & gasoline usage (32.3%) and manufacturing industries (12.6%). The increase of temperature and radiation would enhance the evaporation related VOC emissions, resulting in the increase of VOC concentration and the change of ROx circulation. Our results highlight determination of the optimal control strategies for O3 pollution in a typical YRD industrial city.


Assuntos
Poluentes Atmosféricos , Ozônio , Temperatura , Compostos Orgânicos Voláteis , Ozônio/química , Compostos Orgânicos Voláteis/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Poluição do Ar/prevenção & controle , Emissões de Veículos/análise
2.
J Environ Sci (China) ; 138: 684-696, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38135431

RESUMO

Aerosol liquid water content (ALWC) plays an important role in secondary aerosol formation. In this study, a whole year field campaign was conducted at Shanxi in north Zhejiang Province during 2021. ALWC estimated by ISORROPIA-II was then investigated to explore its characteristics and relationship with secondary aerosols. ALWC exhibited a highest value in spring (66.38 µg/m3), followed by winter (45.08 µg/m3), summer (41.64 µg/m3), and autumn (35.01 µg/m3), respectively. It was supposed that the secondary inorganic aerosols (SIA) were facilitated under higher ALWC conditions (RH > 80%), while the secondary organic species tended to form under lower ALWC levels. Higher RH (> 80%) promoted the NO3- formation via gas-particle partitioning, while SO42- was generated at a relative lower RH (> 50%). The ALWC was more sensitive to NO3- (R = 0.94) than SO42- (R = 0.90). Thus, the self-amplifying processes between the ALWC and SIA enhanced the particle mass growth. The sensitivity of ALWC and OX (NO2 + O3) to secondary organic carbon (SOC) varied in different seasons at Shanxi, more sensitive to aqueous-phase reactions (daytime R = 0.84; nighttime R = 0.54) than photochemical oxidation (daytime R = 0.23; nighttime R = 0.41) in wintertime with a high level of OX (daytime: 130-140 µg/m3; nighttime: 100-140 µg/m3). The self-amplifying process of ALWC and SIA and the aqueous-phase formation of SOC will enhance aerosol formation, contributing to air pollution and reduction of visibility.


Assuntos
Poluentes Atmosféricos , Material Particulado , Material Particulado/análise , Poluentes Atmosféricos/análise , Água/química , Rios/química , Monitoramento Ambiental , Estações do Ano , Carbono/análise , Aerossóis/análise , China
3.
Sci Total Environ ; 857(Pt 3): 159674, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36283529

RESUMO

Continuous measurement of 98 volatile organic compounds (VOCs) was conducted during 2017-2019 at a regional background site (Shanxi) located at northeast of Zhejiang Province, YRD region, China. The average concentration of total VOCs (TVOCs) was 25.4 ± 18.4 ppbv, and an increasing trend (+12.2 %) was observed. Alkanes were the most abundant VOC group among all seasons, accounting for 43.5 % of TVOCs. Oxygenated VOCs (OVOCs), aromatics, halides and alkenes contributed 15.9 %, 15.7 %, 11.7 % and 10.3 % of TVOCs concentration, respectively. Biogenic VOCs (BVOCs) and OVOCs showed distinguished diurnal cycle from primary anthropogenic VOCs. Photochemical reactivity analysis based on ozone formation potential (OFP) and OH loss rate (LOH) indicated that aromatics and alkenes were the most significant contributor, respectively. Toluene, xylene (m/p- and o-), ethene and propene were the largest contributor of annual OFP, with the mean OFP being 33.8 ± 44.3 µg·m-3, 31.9 ± 32.1 µg·m-3, 9.29 ± 11.4 µg·m-3, 22.1 ± 21.3 µg·m-3 and 12.8 ± 19.5 µg·m-3, respectively. Seven sources were identified with positive matrix factorization (PMF): petrochemical industry (13.8 %), biogenic emission (1.0 %), solvent usage-toluene (16.9 %), vehicular exhaust (43.8 %), Integrated circuits industry (3.8 %), solvent usage-C8 aromatics (10.9 %), and gasoline evaporation (9.8 %). Vehicular exhaust was the most significant source (43.8 %) during the whole measurement period. Solvent usage, petrochemical industry, and gasoline evaporation showed high temperature dependency. The integrated contribution of solvent usage and industrial processes were higher than vehicular exhaust during hot months. These sources also have higher chemical reactivities and can contribute more on O3 formation. Our results are helpful on determining the control strategies aiming at alleviating O3 pollution.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Poluentes Atmosféricos/análise , Solventes/análise , Gasolina/análise , Monitoramento Ambiental/métodos , Emissões de Veículos/análise , Ozônio/análise , Alcenos/análise , China , Tolueno/análise
4.
Environ Sci Technol ; 55(10): 6665-6676, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33960763

RESUMO

Gaseous sulfuric acid (H2SO4) is a crucial precursor for secondary aerosol formation, particularly for new particle formation (NPF) that plays an essential role in the global number budget of aerosol particles and cloud condensation nuclei. Due to technology challenges, global-wide and long-term measurements of gaseous H2SO4 are currently very challenging. Empirical proxies for H2SO4 have been derived mainly based on short-term intensive campaigns. In this work, we performed comprehensive measurements of H2SO4 and related parameters in the polluted Yangtze River Delta in East China during four seasons and developed a physical proxy based on the budget analysis of gaseous H2SO4. Besides the photo-oxidation of SO2, we found that primary emissions can contribute considerably, particularly at night. Dry deposition has the potential to be a non-negligible sink, in addition to condensation onto particle surfaces. Compared with the empirical proxies, the newly developed physical proxy demonstrates extraordinary stability in all the seasons and has the potential to be widely used to improve the understanding of global NPF fundamentally.


Assuntos
Poluentes Atmosféricos , Material Particulado , Poluentes Atmosféricos/análise , China , Monitoramento Ambiental , Tamanho da Partícula , Material Particulado/análise , Rios , Ácidos Sulfúricos
5.
Sci Total Environ ; 633: 1007-1011, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-29758853

RESUMO

Fireworks have been identified as one ozone source by photolyzing NO2 or O2 and are believed to potentially be important for the nighttime ozone during firework events. In this study, we conducted both lab and field experiments to test two types of fireworks with low and high energy with the goal to distinguish whether the visible ozone signal during firework displays is real. The results suggest that previous understanding of the ozone formation mechanism during fireworks is misunderstood. Ultraviolet ray (UV)-based ozone monitors are interfered by aerosols and some specific VOCs. High-energy fireworks emit high concentrations of particular matters and low VOCs that the artificial ozone can be easily removed by an aerosol filter. Low-energy fireworks emit large amounts of VOCs mostly from the combustion of the cardboard from fireworks that largely interferes with the ozone monitor. Benzene and phenol might be major contributors to the artificial ozone signal. We further checked the nighttime ozone concentration in Jinan and Beijing, China, during Chinese New Year, a period with intense fireworks. A signal of 3-8ppbv ozone was detected and positively correlated to NO and SO2, suggesting a considerable influence of these chemicals in interfering with ambient ozone monitoring.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA