Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 409
Filtrar
1.
Front Immunol ; 15: 1354926, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39372399

RESUMO

Background: Severe acute pancreatitis (SAP) is characterized by inflammation, with inflammatory immune cells playing a pivotal role in disease progression. This study aims to understand variations in specific immune cell subtypes in SAP, uncover their mechanisms of action, and identify potential biological markers for predicting Acute Pancreatitis (AP) severity. Methods: We collected peripheral blood from 7 untreated SAP patients and employed single-cell RNA sequencing for the first time to construct a transcriptome atlas of peripheral blood mononuclear cells (PBMCs) in SAP. Integrating SAP transcriptomic data with 6 healthy controls from the GEO database facilitated the analysis of immune cell roles in SAP. We obtained comprehensive transcriptomic datasets from AP samples in the GEO database and identified potential biomarkers associated with AP severity using the "Scissor" tool in single-cell transcriptomic data. Results: This study presents the inaugural construction of a peripheral blood single-cell atlas for SAP patients, identifying 20 cell subtypes. Notably, there was a significant decrease in effector T cell subsets and a noteworthy increase in monocytes compared to healthy controls. Moreover, we identified a novel monocyte subpopulation expressing high levels of PPBP and PF4 which was significantly elevated in SAP. The proportion of monocyte subpopulations with high CCL3 expression was also markedly increased compared to healthy controls, as verified by flow cytometry. Additionally, cell communication analysis revealed insights into immune and inflammation-related signaling pathways in SAP patient monocytes. Finally, our findings suggest that the subpopulation with high CCL3 expression, along with upregulated pro-inflammatory genes such as S100A12, IL1B, and CCL3, holds promise as biomarkers for predicting AP severity. Conclusion: This study reveals monocytes' crucial role in SAP initiation and progression, characterized by distinct pro-inflammatory features intricately linked to AP severity. A monocyte subpopulation with elevated PPBP and CCL3 levels emerges as a potential biomarker and therapeutic target.


Assuntos
Monócitos , Pancreatite , Análise de Célula Única , Humanos , Pancreatite/imunologia , Pancreatite/genética , Pancreatite/diagnóstico , Pancreatite/sangue , Masculino , Feminino , Monócitos/imunologia , Monócitos/metabolismo , Biomarcadores , Pessoa de Meia-Idade , Transcriptoma , Adulto , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Quimiocina CCL3/genética , Quimiocina CCL3/sangue , Perfilação da Expressão Gênica , Análise de Sequência de RNA , Índice de Gravidade de Doença
2.
Acta Trop ; 260: 107417, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39383926

RESUMO

Mosquitoes, as temperature-sensitive ectothermic vectors, exhibit temperature-dependence. This study investigates Culex pipiens pallens (Cx. pallens) responses to abrupt temperature increases and their implications on mosquito physiology. First instar larvae (24hr post hatching) and newly enclosed adults (24hr post emergence) were separately exposed to heat shock regimes of 33 °C, 37 °C, and 42 °C for 3 days alongside a control temperature of 27 °C. Results showed that mortality was triggered at 42 °C within a day. Adult male mosquitoes were less tolerant to all temperatures than larvae and adult females (p < 0.05). Exposing larvae to constant temperatures for 3 days significantly decreased larvae's development time, growth rate and adult emergence (p < 0.05). Reproductive fitness was significantly reduced (p < 0.05) in males emerging from larvae exposed to 37 °C. Life table parameters showed significant increased mortality rate, kill power and decreased life expectancy at the embryonic stage (p < 0.05). Furthermore, heatwaves deactivated the Transient receptor protein ankyrin 1 at 37 °C (p < 0.05) in larvae but not adults. Calmodium, Heat shock protein 90, and small heat shock protein expression were significantly decreased in larvae at 37 °C (p < 0.05) as compared to larvae raised at 33 °C and 27 °C. In conclusion, we classified the heat waves into three categories: adaptable (33 °C), critical (37 °C), and fatal (42 °C). Prolonged exposure of Culex pallens larvae to extreme heat affects the male reproductive output. These findings may serve as an important reference for forecasting vector and pest dynamics and used to tailor mosquito prevention and control measures.

3.
J Am Heart Assoc ; 13(20): e037029, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39392138

RESUMO

BACKGROUND: Cerebral microbleeds (CMBs) are common and varied in patients receiving extracorporeal membrane oxygenation (ECMO). Here, the authors describe CMB findings in patients receiving ECMO and their association with clinical factors. METHODS AND RESULTS: A total of 138 patients receiving ECMO were enrolled and categorized as venovenous and venoarterial. Blood coagulation profiles during ECMO support and Glasgow Coma Scale (GCS) scores within 7 days were recorded. Patients with CMBs exhibited prolonged activated clotting time (P<0.001), decreased fibrinogen levels (P<0.001), reduced platelet counts (P<0.001), and extended prothrombin time (P<0.001). A significant correlation (P<0.05) was observed between the presence of CMBs and most coagulation parameters among all patients. Patients with venoarterial ECMO had significantly higher activated partial thromboplastin time, activated clotting time, and prothrombin time compared with those with venovenous ECMO (all P<0.05). Patients with a less severe CMB burden exhibited higher GCS scores and better neurological injury outcomes at both 7 and 90 days. CMB burden in all patients with ECMO was significantly correlated (P<0.05) with most blood coagulation profiles and neurological injury. CONCLUSIONS: CMB burdens after ECMO are common, varied, and associated with a variety of clinical conditions. These findings may guide ECMO management.


Assuntos
Hemorragia Cerebral , Oxigenação por Membrana Extracorpórea , Humanos , Oxigenação por Membrana Extracorpórea/efeitos adversos , Masculino , Feminino , Pessoa de Meia-Idade , Hemorragia Cerebral/etiologia , Hemorragia Cerebral/diagnóstico , Hemorragia Cerebral/sangue , Adulto , Coagulação Sanguínea , Estudos Retrospectivos , Resultado do Tratamento , Escala de Coma de Glasgow , Idoso , Fatores de Risco
4.
iScience ; 27(10): 110945, 2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39391736

RESUMO

Cerebrovascular disease (CVD) is the second leading cause of dementia worldwide. The accurate detection of vascular cognitive impairment (VCI) in CVD patients remains an unresolved challenge. We collected the clinical non-imaging data and neuroimaging data from 307 subjects with CVD. Using these data, we developed a multimodal deep learning framework that combined the vision transformer and extreme gradient boosting algorithms. The final hybrid model within the framework included only two neuroimaging features and six clinical features, demonstrating robust performance across both internal and external datasets. Furthermore, the diagnostic performance of our model on a specific dataset was demonstrated to be comparable to that of expert clinicians. Notably, our model can identify the brain regions and clinical features that significantly contribute to the VCI diagnosis, thereby enhancing transparency and interpretability. We developed an accurate and explainable clinical decision support tool to identify the presence of VCI in patients with CVD.

5.
Asian J Androl ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39225002

RESUMO

Various techniques have been described for reconstructing the skin of the penile shaft; however, no universally accepted standard exists for correcting buried penis in adults. We aimed to describe a new technique for correcting an adult-acquired buried penis through a diamond-shaped incision at the penopubic junction. We retrospectively analyzed data from patients treated with our technique between March 2019 and June 2023 in the Department of Andrology, Nanjing Drum Tower Hospital (Nanjing, China). Forty-two adult males with buried penises, with a mean (±standard deviation [s.d.]) age of 26.6 (±6.6) years, underwent surgery. All patients were obese, with an average (±s.d.) body mass index of 35.56 (±3.23) kg m-2. In addition to phalloplasty, 32 patients concurrently underwent circumcision, and 28 underwent suprapubic liposuction. The mean (±s.d.) duration of the operation was 98.02 (±13.28) min. The mean (±s.d.) duration of follow-up was 6.71 (±3.43) months. The length in the flaccid unstretched state postoperatively was significantly greater than that preoperatively (mean ± s.d: 5.55±1.19 cm vs 1.94±0.59 cm, P < 0.01). Only minor complications, such as wound disruption (7.1%) and infection (4.8%), were observed. The mean (±s.d.) score of patient satisfaction was 4.02 (±0.84) on a scale of 5. This technique provides excellent cosmetic and functional outcomes with a minimal risk of complications. However, additional clinical studies are needed to evaluate the long-term effects of this procedure.

6.
Chin Clin Oncol ; 13(Suppl 1): AB017, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39295335

RESUMO

BACKGROUND: Ferredoxin 1 (FDX1) plays key roles in promoting elesclomol-induced cuproptosis against cancer, whether it has the potential to be a new therapeutic strategy against glioblastoma has not yet been clarified. METHODS: Glioblastoma cells were treated with elesclomol (20 nM/L) and copper chloride (2 µM/L), and then cell proliferation, migration, and invasion were evaluated by CCK-8, clonogenic and transwell assay. Western blot was performed to detect the expression of cuproptosis-relating proteins FDX1, lipoylated dihydrolipoamide S-acetyltransferase (DLAT), copper transport ATPase (ATP7A), heat shock protein 70 (HSP70), apoptotic markers B cell lymphoma-2 (BCL-2) associated X protein (Bax), and BCL-2, as well as the pan-apoptotic/death markers gasdermin D (GSDMD), solute carrier family 7 member 11 (SLC7A11). The effects of knockdown and overexpression of FDX1 on cell proliferation, migration, and invasion were observed. Bioinformatic analysis was performed to predict the corresponding transcription factors regulating FDX1 expression, and verified by dual luciferase assay. The regulatory relationship between FDX1 and its transcription factors was verified by rescue experiment and further evaluated in vivo. RESULTS: Elesclomol had obvious inhibitory effects on the proliferation, migration, and invasion capacities of tumor cells in a dose-dependent manner. When combined with copper chloride, the inhibitory effects on tumor cells were significantly higher both in vitro and in vivo. FDX1 expression was negatively correlated with overall survival of patients. Nuclear factor κ-light-chain enhancer of activated B cell 1 (NFκB1) was the transcription factor of FDX1 verified by dual luciferase assay. Both FDX1 and NFκB1 were highly expressed in glioblastoma. Knockdown of FDX1 or NFκB1 down-regulated proliferation, migration, and invasion abilities of tumor cells, and increased after FDX1 overexpression. FDX1 expression decreased correspondingly after NFκB1 knockdown. Up-regulation of FDX1 promoted elesclomol-induced cuproptosis against glioblastoma both in vitro and in vivo. FDX1 knockdown can reverse the inhibitory effect of elesclomol on tumor cells. CONCLUSIONS: Elesclomol inhibits glioblastoma development via inducing cuproptosis, regulated by NFκB1/FDX1 axis.


Assuntos
Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Camundongos , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Masculino , Cobre/farmacologia
7.
Free Radic Biol Med ; 224: 405-417, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39241986

RESUMO

BACKGROUND: Sepsis is a life-threatening severe inflammatory reaction caused by the host's dysregulated response to infection. Sepsis-induced myocardial dysfunction (SIMD) has been confirmed to occur in 50 % of patients with septic shock. Currently, the pathophysiological mechanism of SIMD is complex, and there is no targeted treatment. Elabela is another endogenous ligand of Aplnr (APJ). The protective effect of APJ on the heart has been proven. Elabela (Ela) has been shown to have a variety of cardiovascular protective effects. However, there are no studies demonstrating the protective effect of Ela-APJ axis on SIMD. MATERIALS AND METHODS: In vivo, C57BL/J mice were injected subcutaneously with 1 mg/kg/d Ela for 2 weeks, and in vitro, AC16 cells were treated with 1 µM Ela for 24 h. A 7-0 thread was used to ligate the distal end of the cecum, followed by puncture with a 20-gauge needle. Once a small amount of fluid leaks out, release the cecum back into the abdominal cavity. We measured the survival rates of the mice, performed ultrasound on their hearts, and evaluated the effects of the treatments. The serum and cell supernatant were extracted to detect myocardial injury markers and pyroptosis-related indicators. Western blotting was used to detect autophagy and pyroptosis-related protein. Molecular docking and other experiments were also used to detect changes in related proteins. RESULTS: In vivo, Ela significantly improved the survival rate of septic mice, improved cardiac function, and reduced the production of myocardial injury markers, oxidative stress and pyroptosis. In vitro, Ela unblocked autophagy flow by affecting TFEB transcription. Autophagy reduces inflammation and oxidative stress by selectively degrading inflammatory bodies and ultimately alleviates pyroptosis. CONCLUSION: We had demonstrated for the first time that in sepsis, Ela promoted the degradation of inflammasomes, reduced oxidative stress, and inhibited the occurrence of pyroptosis by unblocking autophagy flow.

8.
Cell Death Discov ; 10(1): 418, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39349442

RESUMO

Tripartite motif-containing 37 (TRIM37) is reportedly a key member of the superfamily of TRIM proteins. Emerging evidence underscores the close association between dysregulated TRIM37 expression and the progression of various human malignancies. However, the precise biological functions and regulatory mechanisms of TRIM37 remain elusive. This study aimed to elucidate the impact of TRIM37 on the chemotherapy sensitivity of renal cell carcinoma (RCC) and uncover its specific molecular regulatory role. Using RT-qPCR and western blot assays, we assessed TRIM37 expression in both RCC patients and RCC cells. Through in vitro and in vivo experiments, we investigated the effects of TRIM37 silencing and overexpression on RCC cell proliferation, stemness capacity, and chemotherapy sensitivity using colony formation and sphere formation assays. Additionally, a co-immunoprecipitation (Co-IP) experiment was conducted to explore putative interacting proteins. Our results revealed elevated TRIM37 expression in both RCC patient tumor tissues and RCC cells. Functional experiments consistently demonstrated that TRIM37 silencing reduced proliferation and stemness capacity while enhancing chemotherapy sensitivity in RCC cells. Furthermore, we discovered that TRIM37 mediates the degradation of SMARCC2 via ubiquitin-proteasome pathways, thereby further activating the Wnt signaling pathway. In conclusion, this study not only sheds light on the biological role of TRIM37 in RCC progression but also identifies a potential molecular target for therapeutic intervention in RCC patients.

9.
ACS Appl Mater Interfaces ; 16(38): 51139-51149, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39265077

RESUMO

Currently, culturing Caco-2 cells in a Gut-on-a-chip (GOC) is well-accepted for developing intestinal disease models and drug screening. However, Caco-2 cells were found to overexpress surface proteins (e.g., P-gp) compared with the normal intestinal epithelial cells in vivo. To critically evaluate the challenge and suitability of Caco-2 cells, a GOC integrated with a carcinoembryonic antigen (CEA) biosensor was developed. This three-electrode system electrochemical sensor detects CEA by antigen-antibody specific binding, and it exhibits high selectivity, excellent stability, and good reproducibility. Under dynamic culturing in the GOC, Caco-2 cells exhibited an intestinal villus-like structure and maintained tissue barrier integrity. Meanwhile, CEA was discovered to be secreted from 0 to 0.22 ng/mL during the 10-day culturing of Caco-2 cells. Especially, CEA secretion increased significantly with the differentiation of Caco-2 cells after 6 days of culturing. The sustained high-level CEA secretion may induce cells to avoid apoptotic stimuli, which faithfully reflects the efficacy of a new drug and the mechanism of intestinal disease. Different kinds of cell types (e.g., intestinal primary cells, stem cell-induced differentiation) in the GOC should be attempted for drug screening in the future.


Assuntos
Antígeno Carcinoembrionário , Dispositivos Lab-On-A-Chip , Humanos , Células CACO-2 , Antígeno Carcinoembrionário/metabolismo , Técnicas Biossensoriais/métodos , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Diferenciação Celular/efeitos dos fármacos
10.
Cell Mol Life Sci ; 81(1): 391, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39254854

RESUMO

Human spermatogonial stem cells (SSCs) have significant applications in reproductive medicine and regenerative medicine because of their great plasticity. Nevertheless, it remains unknown about the functions and mechanisms of long non-coding RNA (LncRNA) in regulating the fate determinations of human SSCs. Here we have demonstrated that LncRNA ACVR2B-as1 (activin A receptor type 2B antisense RNA 1) controls the self-renewal and apoptosis of human SSCs by interaction with ALDOA via glycolysis activity. LncRNA ACVR2B-as1 is highly expressed in human SSCs. LncRNA ACVR2B-as1 silencing suppresses the proliferation and DNA synthesis and enhances the apoptosis of human SSCs. Mechanistically, our ChIRP-MS and RIP assays revealed that ACVR2B-as1 interacted with ALDOA in human SSCs. High expression of ACVR2B-as1 enhanced the proliferation, DNA synthesis, and glycolysis of human SSCs but inhibited their apoptosis through up-regulation of ALDOA. Importantly, overexpression of ALDOA counteracted the effect of ACVR2B-as1 knockdown on the aforementioned biological processes. Collectively, these results indicate that ACVR2B-as1 interacts with ALDOA to control the self-renewal and apoptosis of human SSCs by enhancing glycolysis activity. This study is of great significance because it sheds a novel insight into molecular mechanisms underlying the fate decisions of human SSCs and it may offer innovative approaches to address the etiology of male infertility.


Assuntos
Apoptose , Proliferação de Células , Glicólise , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Apoptose/genética , Glicólise/genética , Masculino , Proliferação de Células/genética , Receptores de Activinas Tipo II/metabolismo , Receptores de Activinas Tipo II/genética , Espermatogônias/metabolismo , Espermatogônias/citologia , Células-Tronco Germinativas Adultas/metabolismo , Autorrenovação Celular/genética , Células Cultivadas
11.
Pak J Med Sci ; 40(8): 1729-1734, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39281215

RESUMO

Objective: To evaluate the clinical effect of probiotics combined with Ulinastatin and Somatostatin in the treatment of severe acute pancreatitis. Methods: A retrospective study was conducted on 160 patients with severe acute pancreatitis treated in the First Affiliated Hospital of Bengbu Medical College from July 2021 to June 2023. There were 78 patients received Ulinastatin and Somatostatin treatment (Control group), and 82 patients received probiotics in addition to Ulinastatin and Somatostatin treatment (Observation group). The treatment effect and the time required to alleviate clinical symptoms were compared between the two groups. Serum levels of inflammatory factors, intestinal mucosal indexes and the incidence of adverse reactions before and after treatment were analyzed. Results: The total efficacy of the Observation group (95.12%) was higher than that of the Control group (85.90%) (P<0.05). Combined probiotic/Ulinastatin + Somatostatin treatment was associated with shorter time to remission of the clinical symptoms (P<0.05). After the treatment, serum levels of inflammatory factors in the two groups were decreased, and was significantly lower in the Observation group compared to the Control group (P<0.05). Similarly, post-treatment serum levels of intestinal mucosal indexes in the two groups were lower than before the treatment, and significantly lower in the Observation group (P<0.05). There was no significant difference in the incidence of adverse reactions between the groups (P>0.05). Conclusions: A combined regimen of probiotics, Ulinastatin and Somatostatin is safe and can more effectively relieve clinical symptoms in patients with severe acute pancreatitis, reduce levels of inflammatory factors, lower intestinal mucosal damage and improve the overall treatment effect compared to Ulinastatin and Somatostatin regimen alone.

12.
J Biomed Res ; : 1-22, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39314046

RESUMO

Parasitic helminths, taxonomically comprising trematodes, cestodes, and nematodes, are multicellular invertebrates widely disseminated in nature and have afflicted people continuously for a long time. Helminths play potent roles in the host through generating a variety of novel molecules, including some excretory/secretory products and others that are involved in intracellular material exchange and information transfer as well as the initiation or stimulation of immune and metabolic activation. The helminth-derived molecules have developed powerful and diverse immunosuppressive effects to achieve immune evasion for parasite survival and establish chronic infections. However, they also improve autoimmune and allergic inflammatory responses and promote metabolic homeostasis by promoting metabolic reprogramming of various immune functions, and then inducing alternatively activated macrophages, T helper 2 cells, and regulatory T cells-mediated immune responses. Therefore, a deeper exploration of the immunopathogenic mechanism and immune regulatory mechanisms of helminth-derived molecules exerted in the host is crucial for understanding host-helminth interactions as well as the development of therapeutic drugs for infectious or non-infectious diseases. In this review, we focus on the properties of helminth-derived molecules to give an overview of the most recent scientific knowledge about their pathogenic and pharmacopeial roles in immune-metabolic homeostasis.

13.
Cell Rep ; 43(10): 114787, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39321022

RESUMO

Maternal immune activation (MIA) is critical for imparting neuropathology and altered behaviors in offspring; however, maternal-fetal immune cell populations have not been thoroughly investigated in MIA-induced autism spectrum disorders (ASDs). Here, we report the single-cell transcriptional landscape of placental cells in both PBS- and poly(I:C)-induced MIA dams. We observed a decrease in regulatory T (Treg) cells but an increase in the M1 macrophage population at the maternal-fetal interface in MIA dams. Based on the Treg-targeting approach, we investigate an immunoregulatory protein, the helminth-derived heat shock protein 90α (Sjp90α), that induces maternal Treg cells and subsequently rescues the autism-like behaviors in adult offspring. Furthermore, in vivo depletion of maternal macrophages attenuates placental inflammatory reaction and reverses behavioral abnormalities in adult offspring. Notably, Sjp90α induces CD4+ T cell differentiation via scavenger receptor A (SR-A) on the macrophage in vitro. Our findings suggest a maternal Treg-targeted approach to alleviate MIA-induced autism-like behavior in adult offspring.

14.
RSC Adv ; 14(38): 27789-27798, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39224652

RESUMO

The study of the magnetism of tightly arranged nitronyl nitroxide (NN) radicals via Au-S self-assembly is interesting. In this study, a series of radicals (S-NN, D-NN, BS-NN, BD-NN) along with two types of nanomaterials (S-NPs, D-NPs) were synthesized. NN was chosen for the magnetic units. Their structures have been successfully synthesized and analyzed. The spin magnetic properties were characterized by electron paramagnetic resonance (EPR) and superconducting quantum interference device (SQUID) measurement. The analysis revealed that the self-assembled NN formed via Au-S bonds exhibits high packing density. Furthermore, it was gratifying to observe that the AuNPs exhibit ferromagnetism after the surface modification by NN. This results in strong ferromagnetic exchange interactions of S-NPs and D-NPs : J S-NPs = +279.715 K and J D-NPs = +254.913 K, respectively.

15.
J Cancer Res Ther ; 20(4): 1241-1250, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39206986

RESUMO

AIMS: Papillary thyroid cancer (PTC) is a serious threat to human health worldwide, while metastasis in the early phase limits therapeutic success and leads to poor survival outcomes. The CXC chemokine receptor type 4 (CXCR4) plays an important role in many cellular movements such as transcriptional modulation, cell skeleton rearrangement, and cell migration, and the change in CXCR4 levels are crucial in various diseases including cancer. In this study, we explored the role of CXCR4 in the migration and invasion of PTC and investigated the potential mechanisms underlying its effects. SUBJECTS AND METHODS: We analyzed the expression levels of CXCR4 in PTC tissues and cell lines. Would healing migration, Transwell invasion assay in vitro, and tail-vein lung metastasis assay In vivo were performed to evaluated the migration and invasion abilities of PTC cells with stable CXCR4 knockdown or overexpression. Signal transducers and activators of transcription (STAT3) signaling pathway-related protein expressions were examined by Western blotting assays. RESULTS: The results showed that CXCR4 was highly expressed in PTC cell lines and PTC tissues. CXCR4 knockdown in PTC cells dampened the migration, invasion, and epithelial-mesenchymal transition (EMT), whereas CXCR4 overexpression enhanced these properties. In vivo, we also found that CXCR4 promoted the metastasis of PTC. Mechanistic studies showed that CXCR4 played these vital roles through the STAT3 signaling pathway. Furthermore, PTC patients with high CXCR4 or p-STAT3 expression correlated with aggressive clinical characteristics such as extrathyroidal extension (ETE), and lymph node metastasis (LNM). CONCLUSIONS: We provided evidence that CXCR4 might activate the STAT3 signaling pathway and further promote PTC development. Thus, CXCR4 might be a novel therapeutic target for PTC.


Assuntos
Movimento Celular , Transição Epitelial-Mesenquimal , Invasividade Neoplásica , Receptores CXCR4 , Transdução de Sinais , Câncer Papilífero da Tireoide , Neoplasias da Glândula Tireoide , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Receptores CXCR4/metabolismo , Receptores CXCR4/genética , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Câncer Papilífero da Tireoide/patologia , Câncer Papilífero da Tireoide/metabolismo , Câncer Papilífero da Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/genética , Ensaios Antitumorais Modelo de Xenoenxerto
16.
J Phys Chem Lett ; 15(35): 8956-8963, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39185714

RESUMO

Graphene has demonstrated potential for use in neuromorphic electronics due to its superior electrical properties. However, these devices are all based on graphene sheets without patterning, restricting its applications. Here, we demonstrate a graphene nanoribbon synaptic transistor (GNST), with the graphene nanoribbon (GNR) channels fabricated using an electro-hydrodynamically printed nanowire array as lithographic masks for scalable fabrication. The GNST shows tunable synaptic plasticity by spike duration, frequency, and number. Moreover, the device is energy-efficient and ambipolar and shows a regulated response by nanoribbon width. The characteristics of GNSTs are applicable to pattern recognition, showing an accuracy of 84.5%. The device is applicable to Pavlov's classical conditioning. This study reports the first synaptic transistor based on GNRs, providing new insights into future neuromorphic electronics.

17.
Acta Otolaryngol ; 144(5-6): 384-391, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39126308

RESUMO

BACKGROUND: Cervical necrotizing fasciitis (CNF) is a life-threatening bacterial infection with a diagnostic challenge. Currently, there is insufficient evidence on the diagnostic accuracy of inflammatory indicators in CNF. OBJECTIVE: This study aims to identify key inflammatory indicators and assess their diagnostic accuracy for CNF. METHODS: A diagnostic case-control study was conducted at a tertiary healthcare facility from January 2020 to December 2023. Laboratory data from patients with CNF and non-CNF at admission were evaluated. Key inflammatory indicators were identified through consistent outcomes from multivariable logistic regression and receiver operating characteristic curves analyses. The diagnostic accuracy of these indicators, with the results of combined tests, were calculated. RESULTS: CNF was confirmed in 21 of the 67 patients investigated. C-reactive protein (CRP) and neutrophil-to-lymphocyte ratio (NLR) were identified as key inflammatory indicators, with sensitivities of 0.905 and 0.810, and specificities of 0.870 and 0.913, respectively, at CRP threshold of 165.0 mg/L and NLR of 15.8. Combining CRP and NLR in parallel and serial tests increased sensitivity to 0.952 and specificity to 1.0, respectively. CONCLUSIONS AND SIGNIFICANCE: CRP and NLR have been verified as key inflammatory indicators with satisfactory diagnostic abilities for CNF diagnosis, providing a strong foundation for future studies.


Assuntos
Proteína C-Reativa , Fasciite Necrosante , Neutrófilos , Humanos , Fasciite Necrosante/diagnóstico , Fasciite Necrosante/sangue , Proteína C-Reativa/análise , Masculino , Feminino , Pessoa de Meia-Idade , Estudos de Casos e Controles , Idoso , Linfócitos , Adulto , Biomarcadores/sangue , Contagem de Linfócitos , Estudos Retrospectivos , Pescoço , Curva ROC , Sensibilidade e Especificidade
18.
Transl Cancer Res ; 13(7): 3575-3588, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39145061

RESUMO

Background: The relationship between lipid metabolism, immune response, and immunotherapy in prostate cancer (PCa) is closely intertwined, and targeted intervention in lipid metabolism may facilitate the success of anticancer immunotherapy. This research attempted to explore effective immunotherapy for PCa. Methods: We obtained RNA sequencing (RNA-seq) data for PCa patients from the UCSC Xena platform. Data analysis of differentially expressed genes (DEGs) was performed using package limma in R. Then, DEGs were subjected to enrichment analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The Human Protein Atlas (HPA) database was conducted to validate the protein expression of the up-regulated lipid metabolism related genes (LMRGs) between PCa tissues and normal prostate tissues. And then we identified critical transcription factors (TFs), LMRGs and miRNA by constructing a regulatory network of TF-gene-miRNA. Furthermore, we determined the high and low groups based on the score of lipid metabolism enrichment. The hallmark gene sets were derived from gene expression profiles using the gene set variation analysis (GSVA) R package. Finally, we conducted immune infiltration analysis and drug sensitivity analysis. Results: Immune response and lipid metabolism have undergone significant changes in PCa and paracancerous tissues compared to normal tissues. A total of 21 LMRGs were differentially up-regulated in PCa. The TF-gene-miRNA network showed that PLA2G7, TWIST1, and TRIB3 may be the key genes that elevated lipid metabolism in PCa. The high group had more infiltration of B cell memory, macrophage M0, macrophage M1, and myeloid dendritic cell resting, and the low group had more infiltration of B cell plasma, monocyte, myeloid dendritic cell activated, and mast cell resting. The majority of checkpoint genes exhibited high expression levels in the low group. Lipid metabolism was remarkedly correlated with drug sensitivity. Conclusions: The analysis of lipid metabolism and related genes has revealed a complex regulatory mechanism that has a significant influence on immune response, immunotherapy, and medication guidance for patients with PCa. Keywords: Prostate cancer (PCa); lipid metabolism; cancer immune; RNA sequencing (RNA-seq).

19.
Chem Sci ; 15(30): 12017-12025, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39092128

RESUMO

Herein, we present an attractive organocatalytic asymmetric addition of P-nucleophiles to five-membered cyclic N-sulfonyl imines facilitated by phosphonium salt catalysis, enabling the highly enantioselective synthesis of tri- and tetra-substituted cyclic phosphorus-containing benzosultams. With this protocol, various cyclic α-aminophosphonates were efficiently synthesized with high yields and exceptional enantioselectivities (up to >99% ee) under mild reaction conditions. The utility and practicality of this method were demonstrated through gram-scale reactions and straightforward elaborations. Notably, the success of this approach relies on the deliberate selection of a synergistic organocatalytic system, which helps circumvent foreseeable side effects while handling secondary phosphine oxides (SPOs). Systematic mechanistic studies, incorporating experiments and DFT calculations, have revealed the critical importance of judiciously selecting bifunctional phosphonium salt catalysts for effectively activating P-nucleophiles while stereoselectively controlling the P-attack process.

20.
Nano Lett ; 24(30): 9311-9321, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39023921

RESUMO

The doping of perovskites with mixed cations and mixed halides is an effective strategy to optimize phase stability. In this study, we introduce a cubic black phase perovskite CsyFA(1-y)Pb(BrxI(1-x))3 artificial synapse, using phase engineering by adjusting the cesium-bromide content. Low-bromine mixed perovskites are suitable to improve the electric pulse excitation sensitivity and stability of the device. Specifically, the low-bromine and low-cesium mixed perovskite (x = 0.15, y = 0.22) annealed at 373 K allows the device to maintain logic response even after 1000 mechanical flex/flat cycles. The device also shows good thermal stability up to temperatures of 333 K. We have demonstrated reflex-arc behavior with MCMHP synaptic units, capable of making sensory warnings at high frequency. This compositionally engineered, dual-mixed perovskite synaptic device provides significant potential for perceptual soft neurorobotic systems and prostheses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA