RESUMO
OBJECTIVE: This study aims to evaluate the long-term outcomes of compensatory hyperhidrosis (CH) after thoracoscopic sympathectomy and explore the risk factors affecting postoperative CH in primary palmar hyperhidrosis(PPH) patients. METHOD: A retrospective analysis was conducted on patients who underwent thoracoscopic sympathectomy in the thoracic surgery department of our hospital from January 2015 to May 2022. Long-term follow-up surveys was conducted to collect data on post-operative satisfaction, PPH recurrence, and CH occurrence. Postoperative CH outcomes were assessed using the HDSS and satisfaction scores scale. Univariate and multivariate logistic regression analyses were used to identify independent risk factors for postoperative CH. RESULT: A total of 152 patients was included in the final study, with 113 cases in the CH group and 39 cases in the nCH group. The incidence of postoperative CH was 74.3% (113/152), within which 33.6% (38/113) were severe CH. The median follow-up time was 3.1 years(2.5-5.5y) and the median interval of CH onset after surgery was 30 days (14-90d). Univariate analysis showed that body mass index(BMI), surgical time, and transected nerve level are correlated with CH, with statistically significant differences. Multivariate logistic regression analysis indicated a higher BMI (OR = 0.864, 95% CI 0.755-0.989, P < 0.05) is the independent risk factor for the occurrence of CH. There was no statistically significant difference in HDSS scores among CH patients at 1 month, 1 year, and 3 years after surgery. CONCLUSION: A higher BMI is the independent risk factor for postoperative CH after thoracoscopic sympathectomy. The incidence and severity of postoperative CH kept stable during a long term follow up.
Assuntos
Hiperidrose , Simpatectomia , Humanos , Hiperidrose/cirurgia , Simpatectomia/métodos , Simpatectomia/efeitos adversos , Feminino , Masculino , Estudos Retrospectivos , Adulto , Fatores de Risco , Adulto Jovem , Toracoscopia/métodos , Toracoscopia/efeitos adversos , Resultado do Tratamento , Seguimentos , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Fatores de Tempo , AdolescenteRESUMO
BACKGROUND: Primary hepatic lymphoma (PHL) is a lymphoproliferative disorder confined to the liver without peripheral lymph node involvement and bone marrow invasion. PHL is extremely rare in clinical practice. The etiology and pathogenesis of PHL are largely unknown. There are no common standard protocols or guidelines for the treatment of PHL. CASE SUMMARY: We report the case of a 66-year-old man who presented with fever and abdominal pain for three weeks. Computed tomography and magnetic resonance imaging scans showed a pyogenic liver abscess. The patient underwent a right posterior hepatectomy. The surgical pathology revealed aggressive B-cell lymphoma, with a primary consideration of diffuse large B-cell lymphoma of non-germinal center origin. CONCLUSION: This article reviews the characteristics, mechanism and treatment of PHL and provides insight into the diagnosis of PHL.
RESUMO
Automatic mucosal lesion segmentation is a critical component in computer-aided clinical support systems for endoscopic image analysis. Image segmentation networks currently rely mainly on convolutional neural networks (CNNs) and Transformers, which have demonstrated strong performance in various applications. However, they cannot cope with blurred lesion boundaries and lesions of different scales in gastrointestinal endoscopy images. To address these challenges, we propose a new Transformer-based network, named GLGFormer, for the task of mucosal lesion segmentation. Specifically, we design the global guidance module to guide single-scale features patch-wise, enabling them to incorporate global information from the global map without information loss. Furthermore, a partial decoder is employed to fuse these enhanced single-scale features, achieving single-scale to multi-scale enhancement. Additionally, the local guidance module is designed to refocus attention on the neighboring patch, thus enhancing local features and refining lesion boundary segmentation. We conduct experiments on a private atrophic gastritis segmentation dataset and four public gastrointestinal polyp segmentation datasets. Compared to the current lesion segmentation networks, our proposed GLGFormer demonstrates outstanding learning and generalization capabilities. On the public dataset ClinicDB, GLGFormer achieved a mean intersection over union (mIoU) of 91.0% and a mean dice coefficient (mDice) of 95.0%. On the private dataset Gastritis-Seg, GLGFormer achieved an mIoU of 90.6% and an mDice of 94.6%.
RESUMO
Pulmonary mucormycosis (PM) is an invasive and potentially fatal fungal infection, with Rhizopus microsporus (R. microsporus) being the most common pathogen. The routine therapy for this infection includes surgery and antifungal agents. However, the therapeutic effects of single agents are unsatisfactory due to the rapid progression of mucormycosis, while not all patients can tolerate surgery. Innovative treatment methods like combination therapy await validations of their clinical efficacy. We report a case of PM that was diagnosed via metagenomics next-generation sequencing (mNGS) of black drainage fluid from the patient's lung. The patient eventually recovered and was discharged after a combination therapy of oral isavuconazole, inhaled amphotericin B, and local perfusion of amphotericin B through bronchoscopy, which may be a promising strategy for the treatment of PM, especially for cases where surgery is not possible. A retrospective study of 297 cases in a literature review highlights the different treatment methods used in clinical practice.
RESUMO
Totally implanted venous access ports (TIVAPs), which are typically used in oncological chemotherapy and parenteral nutritional support, are convenient and safe, and thus offer patients a higher quality of life. However, insertion or removal of the device requires a minor surgical operation. Long-term complications (>30 days post insertion), such as catheter migration, catheter-related thrombosis and infection, are major reasons for TIVAP removal and are associated with a number of factors such as body mass index and hemoglobin count. Since management of complications is typically time-consuming and costly, a predictive model of such events may be of great value. Therefore, in the present study, a predictive model for long-term complications following TIVAP implantation in patients with lung cancer was developed. After excluding patients with a large amount of missing data, 902 patients admitted to The First Affiliated Hospital with Nanjing Medical University (Nanjing, China) were ultimately included in the present study. Of the included patients, 28 had complications, indicating an incidence rate of 3.1%. Patients were randomly divided into training and test cohorts (7:3), and three machine learning-based anomaly detection algorithms, namely, the Isolation Forest, one-class Support Vector Machines (one-class SVM) and Local Outlier Factor, were used to construct a model. The performance of the model was initially evaluated by the Matthew's correlation coefficient (MCC), area under curve (AUC) and accuracy. The one-class SVM model demonstrated the highest performance in classifying the risk of complications associated with the use of the intracavitary electrocardiogram method for TIVAP implantation in patients with lung cancer (MCC, 0.078; AUC, 0.62; accuracy, 66.0%). In conclusion, the predictive model developed in the present study may be used to improve the early detection of TIVAP-related complications in patients with lung cancer, which could lead to the conservation of medical resources and the promotion of medical advances.
RESUMO
We aimed to investigate the expression and clinic significance of Rac GTPase Activating Protein 1 (RACGAP1) in human lung adenocarcinoma (LUAD). Online database analysis revealed a significant increase in RACGAP1 mRNA expression among 26 types of tumor tissues, including LUAD tissues. Online database and tissue microarray analyses indicated that RACGAP1 expression was significantly upregulated in LUAD tissues. Genetic variation analysis identified four different genetic variations of RACGAPs in LUAD. Moreover, online database analysis showed that RACGAP1 upregulation was correlated with shorter survival in patients with LUAD. After silencing RACGAP1 expression in A549 cells using siRNA and assessing its protein levels via Western blotting, we found that RACGAP1 knockdown inhibited cell growth and induced apoptosis determined using the Cell Counting Kit-8 assay, colony formation assay, and flow cytometry. Mechanistically, western blot analysis indicated that Bax expression increased, whereas Bcl-2 expression decreased. Moreover, RACGAP1 knockdown attenuated PI3K/AKT pathway activation in lung cancer cells. Taken together, our findings showed that RACGAP1 was overexpressed in LUAD tissues and played an important role in lung cancer by increasing cell growth through the PI3K/AKT signaling pathway. This study suggests recommends evaluating RACGAP1 in clinical settings as a novel biomarker and potential therapeutic target for lung cancer.
Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Adenocarcinoma de Pulmão/patologia , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Movimento Celular/genéticaRESUMO
BACKGROUND: Electrocardiography (ECG) and 24 hours Holter monitoring (24 h-Holter) provided valuable information for premature ventricular and supraventricular contractions (PVC and PSVC). Currently, artificial intelligence (AI) based 2 hours single-lead Holter (2 h-Holter) monitoring may provide an improved strategy for PSVC/PVC diagnosis. HYPOTHESIS: AI combined with single-lead Holter monitoring improves PSVC/PVC detection. METHODS: In total, 170 patients were enrolled between August 2022 and 2023. All patients wore both devices simultaneously; then, we compared diagnostic efficiency, including the sensitivity/specificity/positive predictive-value (PPV) and negative predictive-value (NPV) in detecting PSVC/PVC by 24 h-Holter and 2 h-Holter. RESULTS: The PPV and NPV in patients underwent 2 h-Holter were 76.00%/87.50% and 96.35%/98.55, respectively, and the sensitivity and specificity were 79.17%/91.30%, and 95.65%/97.84% in PSVC/PVC detection compared with 24 h-Holter. The areas under the ROC curves (AUCs) for PSVC and PVC were 0.885 and 0.741, respectively (p < .0001). CONCLUSIONS: The potential advantages of the 2 h-Holter were shortened wearing period, improved convenience, and excellent consistency of diagnosis.
Assuntos
Eletrocardiografia Ambulatorial , Complexos Ventriculares Prematuros , Humanos , Inteligência Artificial , Complexos Ventriculares Prematuros/diagnóstico , Eletrocardiografia , Valor Preditivo dos TestesRESUMO
BACKGROUND: Epithelial ovarian cancer (EOC) heavily relies on oxidative phosphorylation (OXPHOS) and exhibits distinct mitochondrial metabolic reprogramming. Up to now, the evolutionary pattern of somatic mitochondrial DNA (mtDNA) mutations in EOC tissues and their potential roles in metabolic remodelling have not been systematically elucidated. METHODS: Based on a large somatic mtDNA mutation dataset from private and public EOC cohorts (239 and 118 patients, respectively), we most comprehensively characterised the EOC-specific evolutionary pattern of mtDNA mutations and investigated its biological implication. RESULTS: Mutational profiling revealed that the mitochondrial genome of EOC tissues was highly unstable compared with non-cancerous ovary tissues. Furthermore, our data indicated the delayed heteroplasmy accumulation of mtDNA control region (mtCTR) mutations and near-complete absence of mtCTR non-hypervariable segment (non-HVS) mutations in EOC tissues, which is consistent with stringent negative selection against mtCTR mutation. Additionally, we observed a bidirectional and region-specific evolutionary pattern of mtDNA coding region mutations, manifested as significant negative selection against mutations in complex V (ATP6/ATP8) and tRNA loop regions, and potential positive selection on mutations in complex III (MT-CYB). Meanwhile, EOC tissues showed higher mitochondrial biogenesis compared with non-cancerous ovary tissues. Further analysis revealed the significant association between mtDNA mutations and both mitochondrial biogenesis and overall survival of EOC patients. CONCLUSIONS: Our study presents a comprehensive delineation of EOC-specific evolutionary patterns of mtDNA mutations that aligned well with the specific mitochondrial metabolic remodelling, conferring novel insights into the functional roles of mtDNA mutations in EOC tumourigenesis and progression.
Assuntos
DNA Mitocondrial , Neoplasias Ovarianas , Feminino , Humanos , DNA Mitocondrial/genética , Carcinoma Epitelial do Ovário/genética , Mutação/genética , Neoplasias Ovarianas/genética , Estresse OxidativoRESUMO
Synergistic morphology and defects management at the buried perovskite interface are challenging but crucial for the further improvement of inverted perovskite solar cells (PerSCs). Herein, an amphoteric organic salt, 2-(4-fluorophenyl)ethylammonium-4-methyl benzenesulfonate (4FPEAPSA), is designed to optimize the film morphology and energy level alignment at the perovskite buried interface. 4FPEAPSA treatment promotes the growth of a void-free, coarse-grained, and hydrophobic film by inducing the crystal orientation. Besides, the dual-functional 4FPEAPSA can chemically interact with the perovskite film, and passivate the defects of iodine and formamidine vacancies, tending to revert the fermi level of perovskite to its defect-free state. Meanwhile, the formation of a p-type doping buried interface can facilitate the interfacial charge extraction and transport of PerSCs for reduced carrier recombination loss. Consequently, 4FPEAPSA treatment improves the efficiency of the perovskite devices to 25.03% with better storage, heat, and humidity stability. This work contributes to strengthening the systematic understanding of the perovskite buried interface, providing a synergetic approach to realize precise morphology control, effective defect suppression, and energy level alignment for efficient PerSCs.
RESUMO
Enantiomeric excess (ee) is an essential indicator of chiral drug purification in the pharmaceutical industry. However, to date the ee determination of unknown concentration enantiomers generally involves two separate techniques for chirality and concentration measurement. Here, a whispering-gallery mode (WGM) based optofluidic microlaser near exceptional point to achieve the ee determination under unknown concentration with a single technique is proposed. Exceptional point induces the unidirectional WGM lasing, providing the optofluidic microlaser with the novel capability to measure chirality by polarization, in addition to wavelength-based concentration detection. The dual-parameters detection of optofluidic microlaser empowers it to achieve ee determination of various unknown enantiomers without additional concentration measurements, a feat that is challenging to accomplish with other methods. Featuring the sensitivity enhancement and miniature structure of the WGM sensors, the obtained chiroptical response of the present approach is ≈30-fold higher than that of the conventional optical rotation-based polarimeter, and the reagent consumption is reduced by three orders of magnitude.
RESUMO
This research investigates the hybridized plasmonic response of silver film combined with dispersed silver (Ag) nanowires (NWs) to random laser emission. The mixture of Rhodamine B (RhB) dye and polyvinyl alcohol (PVA) matrix is taken as the gain medium for random lasing, and the silver combination provides feedback mechanisms for light trapping. Importantly, film roughness and the coupling between localized and extended (delocalized) surface plasmons play a vital role in RL performance evaluation. The laser threshold is strongly influenced by film thickness attributed to surface roughness. Furthermore, the variation in film thickness also supports the wavelength modulation of 9â nm (597â nm to 606â nm), which results from the reabsorption of RhB. Additionally, the intriguing capability of emission wavelength tuning under the variation of temperature facilitates exciting prospects for precise wavelength control in plasmonic devices.
RESUMO
Combining phase-transition materials with optical microcavities may advance the applications of whispering-gallery mode (WGM) lasing in performance customization, sensing, and optical switching. In this study, switchable WGM lasing based on phase transition is reported. The device is designed by introducing the phase-transition hydrogel into the capillary microcavity. After approaching the phase-transition point in hydrogel, the number of WGM lasing modes decreases sharply with a significant blueshift in the wavelength. The phenomenon is caused by the increase in light scattering and decrease in effective refractive index of the device. Furthermore, single-mode lasing is obtained by manipulating the phase transition, which exhibits superior reversibility. This study may pave the way for designing and multifunctioning of novel WGM lasing in photonic devices.
RESUMO
Rational selection and design of recombination electrodes (RCEs) are crucial to enhancing the power conversion efficiency (PCE) and stability of monolithic tandem solar cells (TSCs). Sputtered indium tin oxide (ITO) with high conductivity and excellent transmittance is introduced as RCE in perovskite/organic TSCs. To prevent high-energy ITO particles destroy the underlying material during sputtering, dual-functional transport and protective layer (C1) is employed. The styryl group in C1 can be thermally crosslinked to serve as a sputtering protective layer. Meanwhile, the conjugated phenanthroline skeleton in C1 shows high electron mobility and hole blocking capability to promote the electron transport process at the interfaces and effectively reduce charge accumulation. Monolithic perovskite/organic TSC with high PCE of 24.07% and excellent stability is demonstrated by stacking a 1.77 eV bandgap perovskite layer and a 1.35 eV bandgap organic active layer. This strategy provides new insights for overcoming the fundamental efficiency limits of single-junction devices and promotes the further development of TSC devices.
RESUMO
Ovarian cancer (OC) is the most lethal gynecologic tumor and is characterized by a high rate of metastasis. Challenges in accurately delineating the metastatic pattern have greatly restricted the improvement of treatment in OC patients. An increasing number of studies have leveraged mitochondrial DNA (mtDNA) mutations as efficient lineage-tracing markers of tumor clonality. We applied multiregional sampling and high-depth mtDNA sequencing to determine the metastatic patterns in advanced-stage OC patients. Somatic mtDNA mutations were profiled from a total of 195 primary and 200 metastatic tumor tissue samples from 35 OC patients. Our results revealed remarkable sample-level and patient-level heterogeneity. In addition, distinct mtDNA mutational patterns were observed between primary and metastatic OC tissues. Further analysis identified the different mutational spectra between shared and private mutations among primary and metastatic OC tissues. Analysis of the clonality index calculated based on mtDNA mutations supported a monoclonal tumor origin in 14 of 16 patients with bilateral ovarian cancers. Notably, mtDNA-based spatial phylogenetic analysis revealed distinct patterns of OC metastasis, in which a linear metastatic pattern exhibited a low degree of mtDNA mutation heterogeneity and a short evolutionary distance, whereas a parallel metastatic pattern showed the opposite trend. Moreover, a mtDNA-based tumor evolutionary score (MTEs) related to different metastatic patterns was defined. Our data showed that patients with different MTESs responded differently to combined debulking surgery and chemotherapy. Finally, we observed that tumor-derived mtDNA mutations were more likely to be detected in ascitic fluid than in plasma samples. Our study presents an explicit view of the OC metastatic pattern, which sheds light on efficient treatment for OC patients.
Assuntos
Neoplasias Ovarianas , Humanos , Feminino , Filogenia , Mutação , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , DNA Mitocondrial/genéticaRESUMO
AIM: We aimed to assess the effects of cerebral glucagon-like peptide-1 receptor (GLP-1R) activation on the glymphatic system and whether this effect was therapeutic for traumatic brain injury (TBI). METHODS: Immunofluorescence was employed to evaluate glymphatic system function. The blood-brain barrier (BBB) permeability, microvascular basement membrane, and tight junction expression were assessed using Evans blue extravasation, immunofluorescence, and western blot. Immunohistochemistry was performed to assess axonal damage. Neuronal apoptosis was evaluated using Nissl staining, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining, and western blot. Cognitive function was assessed using behavioral tests. RESULTS: Cerebral GLP-1R activation restored glymphatic transport following TBI, alleviating BBB disruption and neuronal apoptosis, thereby improving cognitive function following TBI. Glymphatic function suppression by treatment using aquaporin 4 inhibitor TGN-020 abolished the protective effect of the GLP-1R agonist against cognitive impairment. CONCLUSION: Cerebral GLP-1R activation can effectively ameliorate neuropathological changes and cognitive impairment following TBI; the underlying mechanism could involve the repair of the glymphatic system damaged by TBI.
Assuntos
Lesões Encefálicas Traumáticas , Sistema Glinfático , Animais , Camundongos , Apoptose/fisiologia , Barreira Hematoencefálica/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Modelos Animais de Doenças , Receptor do Peptídeo Semelhante ao Glucagon 1 , Sistema Glinfático/metabolismoRESUMO
BACKGROUND: At present, there is no objective prognostic index available for patients with esophageal squamous cell carcinoma (ESCC) who underwent intensity-modulated radiotherapy (IMRT). This study is to develop a nomogram based on hematologic inflammatory indices for ESCC patients treated with IMRT. METHODS: 581 patients with ESCC receiving definitive IMRT were enrolled in our retrospective study. Of which, 434 patients with treatment-naïve ESCC in Fujian Cancer Hospital were defined as the training cohort. Additional 147 newly diagnosed ESCC patients were used as the validation cohort. Independent predictors of overall survival (OS) were employed to establish a nomogram model. The predictive ability was evaluated by time-dependent receiver operating characteristic curves, the concordance index (C-index), net reclassification index (NRI), and integrated discrimination improvement (IDI). Decision curve analysis (DCA) was performed to assess the clinical benefits of the nomogram model. The entire series was divided into 3 risk subgroups stratified by the total nomogram scores. RESULTS: Clinical TNM staging, primary gross tumor volume, chemotherapy, neutrophil-to-lymphocyte ratio and platelet lymphocyte ratio were independent predictors of OS. Nomogram was developed incorporating these factors. Compared with the 8th American Joint Committee on Cancer (AJCC) staging, the C-index for 5-year OS (.627 and .629) and the AUC value of 5-year OS (.706 and .719) in the training and validation cohorts (respectively) were superior. Furthermore, the nomogram model presented higher NRI and IDI. DCA also demonstrated that the nomogram model provided greater clinical benefit. Finally, patients with <84.8, 84.8-151.4, and >151.4 points were categorized into low-risk, intermediate-risk, and high-risk groups. Their 5-year OS rates were 44.0%, 23.6%, and 8.9%, respectively. The C-index was .625, which was higher than the 8th AJCC staging. CONCLUSIONS: We have developed a nomogram model that enables risk-stratification of patients with ESCC receiving definitive IMRT. Our findings may serve as a reference for personalized treatment.
Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Radioterapia de Intensidade Modulada , Humanos , Nomogramas , Prognóstico , Carcinoma de Células Escamosas do Esôfago/radioterapia , Estudos RetrospectivosRESUMO
Large open-circuit voltage (Voc) loss is the main issue limiting the efficiency improvement in wide bandgap perovskite solar cells (PerSCs). Herein, a facile buried interface treatment by hexachlorotriphosphazene is developed to suppress the Voc loss. The PerSCs include a [Cs0.22FA0.78Pb(I0.85Br0.15)3]0.97(MAPbCl3)0.03 (1.67 eV) absorber and deliver an efficiency of 21.47% and a Voc of 1.21 V (Voc loss of 0.46 V). More importantly, the unencapsulated PerSCs maintain 90% of the initial efficiency after aging 500 h in N2.
RESUMO
OBJECTIVE: To investigate the long-term outcomes for Mayer-Rokitansky-Küster-Hauser syndrome (MRKH) patients undergoing vaginoplasty using acellular porcine small intestinal submucosa grafts (SIS). DESIGN: A case series. POPULATION: Seventy-eight MRKH syndrome patients and a post-SIS patient who delivered a baby following the world's first robot-assisted uterus transplantation. METHODS: Mayer-Rokitansky-Küster-Hauser syndrome patients were grouped based on the postoperative time and the diagnosis-surgery interval. Outcomes of sexual function and psychological status were assessed using the female sexual function index (FSFI), self-rating scale of body image (SSBI) and self-acceptance questionnaire (SAQ). Anatomical outcomes were measured by clinicians. MAIN OUTCOME MEASURES: The primary outcome was restoration of sexual function, defined by an FSFI score in the 'good' range. Anatomical and psychological outcomes were also analysed. RESULTS: Sexual function was restored in 42.3% (33/78) of patients and the total FSFI score was 23.44 ± 4.43. Three factors (body defect, recognition of physical appearance and willingness to change physical appearance scores) in the SSBI and two in the SAQ decreased as the postoperative time increased. Based on the interval between diagnosis and surgery, the total SSBI score was lower in the short-interval group than in the long-interval group (7.25 ± 5.55 versus 12.04 ± 10.21, p = 0.038). CONCLUSIONS: Nearly half of MRKH patients in our study had good long-term sexual function after SIS vaginoplasty. Sexual function and psychological status improved as postoperative time increased. In addition, reducing the diagnosis to surgery interval was associated with improved psychological function.
Assuntos
Transtornos 46, XX do Desenvolvimento Sexual , Anormalidades Congênitas , Procedimentos de Cirurgia Plástica , Feminino , Suínos , Animais , Humanos , Vagina/cirurgia , Transtornos 46, XX do Desenvolvimento Sexual/cirurgia , Útero/cirurgia , Anormalidades Congênitas/cirurgiaRESUMO
The oomycete pathogen Phytophthora sojae is a causal agent of soybean root rot. Upon colonization of soybeans, P. sojae secretes various RXLR effectors to suppress host immune responses, supporting successful infection. Previous research has demonstrated that the RXLR effector Avh94 functions as a virulence effector, but the molecular mechanism underlying its role in virulence remains unknown. Here, we demonstrate that Avh94 overexpression in plants and pathogens promotes Phytophthora infection. Avh94 interacts with soybean JAZ1/2, which is a repressor of jasmonic acid (JA) signaling. Avh94 stabilizes JAZ1/2 to inhibit JA signaling and silencing of JAZ1/2 enhances soybean resistance against P. sojae. Moreover, P. sojae lines overexpressing Avh94 inhibit JA signaling. Furthermore, exogenous application of methyl jasmonate improves plant resistance to Phytophthora. Taken together, these findings suggest that P. sojae employs an RXLR effector to hijack JA signaling and thereby promote infection.
Assuntos
Phytophthora , Doenças das Plantas , Glycine max/genética , VirulênciaRESUMO
An all-optical tunable whispering gallery mode (WGM) laser pumped by a laser diode is proposed. The laser is fabricated by filling a silica capillary with a light-emitting conjugated polymer solution. Based on the thermo-optic effect of the hydroxyl groups in the polymer and capillary, the effective refractive index of the WGM cavity changes by the auxiliary irradiation of the laser, and the wavelength of the WGM mode shifts correspondingly. The emission wavelength was continuously tuned over 13 nm with the irradiation power intensity changing from 0 to 22.41 W cm-2, showing a corresponding tuning rate of 0.58 nm W-1 cm-2. The wavelength tuning process has a fast response time that is within 2.8 s. It shows strong stability, with the output intensity showing no obvious attenuation after 100 minutes of operation. The proposed laser exhibits good repeatability, stability and high tuning efficiency, and could be applied as a light source for on-chip devices.