Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Natl Sci Rev ; 11(2): nwad329, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38384740

RESUMO

As the cornerstone mission of the fourth phase of the Chinese Lunar Exploration Program, Chang'E-7 (CE-7) was officially approved, and implementation started in 2022, including a main probe and a communication relay satellite. The main probe, consisting of an orbiter, a lander, a rover and a mini-flying probe, is scheduled to be launched in 2026. The lander will land on Shackleton crater's illuminated rim near the lunar south pole, along with the rover and mini-flying probe. The relay satellite (named Queqiao-2) will be launched in February 2024 as an independent mission to support relay communication during scientific exploration undertaken by Chang'E-4, the upcoming Chang'E-6 in 2024 and subsequent lunar missions. The CE-7 mission is mainly aimed at scientific and resource exploration of the lunar south pole. We present CE-7's scientific objectives, the scientific payloads configuration and the main functions for each scientific payload with its key technical specifications.

2.
PLoS One ; 17(2): e0263729, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35139132

RESUMO

Due to the limited storage space of spacecraft and downlink bandwidth in the data delivery during planetary exploration, an efficient way for image compression onboard is essential to reduce the volume of acquired data. Applicable for planetary images, this study proposes a perceptual adaptive quantization technique based on Convolutional Neural Network (CNN) and High Efficiency Video Coding (HEVC). This technique is used for bitrate reduction while maintaining the subjective visual quality. The proposed algorithm adaptively determines the Coding Tree Unit (CTU) level Quantization Parameter (QP) values in HEVC intra-coding using the high-level features extracted by CNN. A modified model based on the residual network is exploited to extract the saliency map for a given image automatically. Furthermore, based on the saliency map, a CTU level QP adjustment technique combining global saliency contrast and local saliency perception is exploited to realize a flexible and adaptive bit allocation. Several quantitative performance metrics that efficiently correlate with human perception are used for evaluating image quality. The experimental results reveal that the proposed algorithm achieves better visual quality along with a maximum of 7.17% reduction in the bitrate as compared to the standard HEVC coding.


Assuntos
Compressão de Dados/métodos , Imagens de Satélites , Percepção Visual/fisiologia , Algoritmos , Humanos , Limite de Detecção , Redes Neurais de Computação , Planetas , Imagens de Satélites/métodos , Imagens de Satélites/normas , Astronave , Gravação em Vídeo/métodos , Gravação em Vídeo/normas
3.
Sci Adv ; 6(39)2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32978156

RESUMO

Human exploration of the Moon is associated with substantial risks to astronauts from space radiation. On the surface of the Moon, this consists of the chronic exposure to galactic cosmic rays and sporadic solar particle events. The interaction of this radiation field with the lunar soil leads to a third component that consists of neutral particles, i.e., neutrons and gamma radiation. The Lunar Lander Neutrons and Dosimetry experiment aboard China's Chang'E 4 lander has made the first ever measurements of the radiation exposure to both charged and neutral particles on the lunar surface. We measured an average total absorbed dose rate in silicon of 13.2 ± 1 µGy/hour and a neutral particle dose rate of 3.1 ± 0.5 µGy/hour.

4.
Natl Sci Rev ; 7(5): 913-920, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-34692112

RESUMO

Chang'E-4 landed in the South Pole-Aitken (SPA) basin, providing a unique chance to probe the composition of the lunar interior. Its landing site is located on ejecta strips in Von Kármán crater that possibly originate from the neighboring Finsen crater. A surface rock and the lunar regolith at 10 sites along the rover Yutu-2 track were measured by the onboard Visible and Near-Infrared Imaging Spectrometer in the first three lunar days of mission operations. In situ spectra of the regolith have peak band positions at 1 and 2 µm, similar to the spectral data of Finsen ejecta from the Moon Mineralogy Mapper, which confirms that the regolith's composition of the landing area is mostly similar to that of Finsen ejecta. The rock spectrum shows similar band peak positions, but stronger absorptions, suggesting relatively fresh exposure. The rock may consist of 38.1 ± 5.4% low-Ca pyroxene, 13.9 ± 5.1% olivine and 48.0 ± 3.1% plagioclase, referred to as olivine-norite. The plagioclase-abundant and olivine-poor modal composition of the rock is inconsistent with the origin of the mantle, but representative of the lunar lower crust. Alternatively, the rock crystallized from the impact-derived melt pool formed by the SPA-impact event via mixing the lunar crust and mantle materials. This scenario is consistent with fast-cooling thermal conditions of a shallow melt pool, indicated by the fine to medium-sized texture (<3 mm) of the rock and the SPA-impact melting model [Icarus 2012; 220: 730-43].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA