Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 517
Filtrar
1.
J Sci Food Agric ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38932571

RESUMO

BACKGROUND: α-l-Fucose confers unique functions for fucose-containing biomolecules such as human milk oligosaccharides. α-l-Fucosidases can serve as desirable tools in the application of fucosylated saccharides. Discovering novel α-l-fucosidases and elucidating their enzyme properties are always worthy tasks. RESULTS: A GH95 family α-l-fucosidase named Afc95A_Wf was cloned from the genome of the marine bacterium Wenyingzhuangia fucanilytica and expressed in Escherichia coli. It exhibited maximum activity at 40 °C and pH 7.5. Afc95A_Wf defined a different substrate specificity among reported α-l-fucosidases, which was capable of hydrolyzing α-fucoside in CNP-fucose, Fucα1-2Galß1-4Glc and Galß1-4(Fucα1-3)Glc, and showed a preference for α1,2-fucosidic linkage. It adopted Asp residue in the amino acid sequence at position 391, which was distinct from the previously acknowledged residue of Asn. The predicted tertiary structure and site-directed mutagenesis revealed that Asp391 participates in the catalysis of Afc95A_Wf. The differences in the substrate specificity and catalytic site shed light on that Afc95A_Wf adopted a novel mechanism in catalysis. CONCLUSION: A GH95 family α-l-fucosidase (Afc95A_Wf) was cloned and expressed. It showed a cleavage preference for α1,2-fucosidic linkage to α1,3-fucosidic linkage. Afc95A_Wf demonstrated a different substrate specificity and a residue at an important catalytic site compared with known GH95 family proteins, which revealed the occurrence of diversity on catalytic mechanisms in the GH95 family. © 2024 Society of Chemical Industry.

2.
Foods ; 13(12)2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38928758

RESUMO

This study evaluated the potential of using combined relaxation (CRelax) spectra within time-domain nuclear magnetic resonance (TD-NMR) measurements to predict meat quality. Broiler fillets affected by different severities of the wooden breast (WB) conditions were used as case-study samples because of the broader ranges of meat-quality variations. Partial least squares regression (PLSR) models were established to predict water-holding capacity (WHC) and meat texture, demonstrating superior CRelax capabilities for predicting meat quality. Additionally, a partial least squares discriminant analysis (PLS-DA) model was developed to predict WB severity based on CRelax spectra. The models exhibited high accuracy in distinguishing normal fillets from those affected by the WB condition and demonstrated competitive performance in classifying WB severity. This research contributes innovative insights into advanced spectroscopic techniques for comprehensive meat-quality evaluation, with implications for enhancing precision in meat applications.

3.
Food Chem ; 456: 139975, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38852456

RESUMO

To enhance the bioavailability of bioactives with varying efficacy in the gastrointestinal tract (GIT), a co-delivery system of solid-in-oil-in-water (S/O/W) emulsion was designed for the co-encapsulation of two bioactives in this paper. S/O/W emulsions were fabricated utilizing fucoxanthin (FUC)-loaded nanoparticles (NPs) as the solid phase, coconut oil containing curcumin (Cur) as the oil phase, and carboxymethyl starch (CMS)/propylene glycol alginate (PGA) complex as the aqueous phase. The high entrapment efficiency of Cur (82.3-91.3%) and FUC (96.0-96.1%) was found in the CMS/PGA complex-stabilized S/O/W emulsions. Encapsulation of Cur and FUC within S/O/W emulsions enhanced their UV and thermal stabilities. In addition, S/O/W emulsions prepared with CMS/PGA complexes displayed good stability. More importantly, the formed S/O/W emulsion possessed programmed sequential release characteristics, delivering Cur and FUC to the small intestine and colon, respectively. These results contributed to designing co-delivery systems for the programmed sequential release of two hydrophobic nutrients in the GIT.

4.
Heliyon ; 10(11): e31649, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38832270

RESUMO

Customers are increasingly opting for ready-to-eat and easy-to-prepare food products, such as cooked crayfish. It is highly valued for its unique taste, tender meat, and nutritional properties. Therefore, we conducted an investigation into its quality parameters over an 8-week period at -20 °C. Parameters such as water distribution, oxidation reactions, color, microstructure, texture properties, and physicochemical parameters were examined. The physicochemical results indicated that as the storage time increased, the levels of pH and TVB-N (total volatile basic nitrogen) showed a significant increase, while the water holding capacity decreased significantly (P < 0.05). After two months of frozen storage, the carbonyl content and TBARS (thiobarbituric acid reactive substances) increased to 4.15 ± 0.16 nmol/mg protein and 1.6 ± 0.00 mg/kg, respectively. Additionally, the total sulfhydryl content decreased to 4.91 ± 0.10 mol/105 g protein, which had an impact on the quality of the crayfish. Electron microscopy revealed that with increasing storage time, the fiber structure gradually deteriorated due to water crystallization, leading to severe damage and breakage of muscle fibers. Interestingly, these changes related to storage affected color and texture parameters, thereby influencing the overall quality of the crayfish.

5.
Carbohydr Polym ; 341: 122345, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38876715

RESUMO

Sulfated fucan from sea cucumber is mainly consists of L-fucose and sulfate groups. Recent studies have confirmed that the structure of sulfated fucan mainly consists of repeating units, typically tetrasaccharides. However, there is growing evidence indicating the presence of irregular domains with heterogeneous units that have not been extensively explored. Moreover, as a key contributor to the nutritional benefits of sea cucumbers, sulfated fucan demonstrates a range of biological activities, such as anti-inflammatory, anticancer, hypolipidemic, anti-hyperglycemic, antioxidant, and anticoagulant properties. These biological activities are profoundly influenced by the structural features of sulfated fucan including molecular weight and distribution patterns of sulfate groups. The latest research indicates that sulfated fucan is dispersed in the extracellular matrix of the body wall of sea cucumbers. This article aimed to review the research progress on the in-situ distribution, structures, structural elucidation strategies, functions, and structure-activity relationships of sulfated fucan, especially in the last decade. It also provided insights into the major challenges and potential solutions in the research and development of sulfated fucan. Moreover, the fucanase and carbohydrate binding modules are anticipated to play pivotal roles in advancing this field.


Assuntos
Polissacarídeos , Pepinos-do-Mar , Pepinos-do-Mar/química , Animais , Polissacarídeos/química , Polissacarídeos/farmacologia , Relação Estrutura-Atividade , Sulfatos/química , Anticoagulantes/química , Anticoagulantes/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Humanos , Antineoplásicos/química , Antineoplásicos/farmacologia , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia
6.
J Sci Food Agric ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38843481

RESUMO

BACKGROUND: Lack of n-3 polyunsaturated fatty acids during the period of maternity drastically lowers the docosahexaenoic acid (DHA) level in the brain of offspring and studies have demonstrated that different molecular forms of DHA are beneficial to brain development. The aim of this study was to investigate the effect of short-term supplementation with DHA-enriched phosphatidylserine (PS) and phosphatidylcholine (PC) on DHA levels in the liver and brain of congenital n-3-deficient mice. RESULTS: Dietary supplementation with DHA significantly changed the fatty acid composition of various phospholipid molecules in the cerebral cortex and liver while DHA-enriched phospholipid was more effective than DHA triglyceride (TG) in increasing brain and liver DHA. Both DHA-PS and DHA-PC could effectively increase the DHA levels, but DHA in the PS form was superior to PC in the contribution of DHA content in the brain ether-linked PC (ePC) and liver lyso-phosphatidylcholine molecular species. DHA-PC showed more significant effects on the increase of DHA in liver TG, PC, ePC, phosphatidylethanolamine (PE) and PE plasmalogen (pPE) molecular species and decreasing the arachidonic acid level in liver PC plasmalogen, ePC, PE and pPE molecular species compared with DHA-PS. CONCLUSION: The effect of dietary interventions with different molecular forms of DHA for brain and liver lipid profiles is different, which may provide theoretical guidance for dietary supplementation of DHA for people. © 2024 Society of Chemical Industry.

7.
J Agric Food Chem ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38885200

RESUMO

Trimethylamine N-oxide (TMAO), a characteristic nonprotein nitrogen compound, is widely present in seafood, which exhibits osmoregulatory effects for marine organisms in vivo and plays an important role in aquaculture and aquatic product preservation. However, much attention has been focused on the negative effect of TMAO since it has recently emerged as a putative promoter of chronic diseases. To get full knowledge and maximize our ability to balance the positive and negative aspects of TMAO, in this review, we comprehensively discuss the TMAO in aquatic products from the aspects of physiological functions for marine organisms, flavor, quality, the conversion of precursors, the influences on human health, and the seafood ingredients interaction consideration. Though the circulating TMAO level is inevitably enhanced after seafood consumption, dietary seafood still exhibits beneficial health effects and may provide nutraceuticals to balance the possible adverse effects of TMAO.

8.
Carbohydr Polym ; 338: 122201, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38763726

RESUMO

Agarans represent a group of galactans extracted from red algae. Funoran and agarose are the two major types and commercially applied polysaccharides of agaran. Although the glycoside hydrolases targeting ß-glycosidic bonds of agaran have been widely investigated, those capable of degrading α-glycosidic bonds of agarose were limited, and the enzyme degrading α-linkages of funoran has not been reported till now. In this study, a GH96 family enzyme BiAF96A_Aq from a marine bacterium Aquimarina sp. AD1 was heterologously expressed in Escherichia coli. BiAF96A_Aq exhibited dual activities towards the characteristic structure of funoran and agarose, underscoring the multifunctionality of GH96 family members. Glycomics and NMR analysis revealed that BiAF96A_Aq hydrolyzed the α-1,3 glycosidic bonds between 3,6-anhydro-α-l-galactopyranose (LA) and ß-d-galactopyranose-6-sulfate (G6S) of funoran, as well as LA and ß-d-galactopyranose (G) of agarose, through an endo-acting manner. The end products of BiAF96A_Aq were majorly composed of disaccharides and tetrasaccharides. The identification of the activity of BiAF96A_Aq on funoran indicated the first discovery of the funoran hydrolase for α-1,3 linkage. Considering the novel catalytic reaction, we proposed to name this activity as "α-funoranase" and recommended the assignment of a dedicated EC number for its classification.


Assuntos
Glicosídeo Hidrolases , Sefarose , Sefarose/química , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Glicosídeo Hidrolases/genética , Hidrólise , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Galactanos/química , Galactanos/metabolismo
9.
Int J Biol Macromol ; 271(Pt 1): 132518, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38777025

RESUMO

Chondroitinases play important roles in structural and functional studies of chondroitin sulfates. Carbohydrate-binding module (CBM) is generally considered as an accessory module in carbohydrate-active enzymes, which promotes the association of the appended enzyme with the substrate and potentiates the catalytic activity. However, the role of natural CBM in chondroitinases has not been investigated. Herein, a novel chondroitinase ChABC29So containing an unknown domain with a predicted ß-sandwich fold was discovered from Segatella oris. Recombinant ChABC29So showed enzyme activity towards chondroitin sulfates and hyaluronic acid and acted in a random endo-acting manner. The unknown domain exhibited a chondroitin sulfate-binding capacity and was identified as a CBM. Biochemical characterization of ChABC29So and the CBM-truncated enzyme revealed that the CBM enhances the catalytic activity, thermostability, and disaccharide proportion in the final enzymatic products of ChABC29So. These findings demonstrate the role of the natural CBM in a chondroitinase and will guide future modification of chondroitinases.


Assuntos
Condroitina ABC Liase , Sulfatos de Condroitina , Condroitina ABC Liase/química , Condroitina ABC Liase/metabolismo , Condroitina ABC Liase/genética , Sulfatos de Condroitina/química , Sulfatos de Condroitina/metabolismo , Especificidade por Substrato , Estabilidade Enzimática , Ligação Proteica , Sequência de Aminoácidos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Ácido Hialurônico/química , Ácido Hialurônico/metabolismo
10.
Int J Biol Macromol ; 271(Pt 1): 132622, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38795894

RESUMO

BACKGROUND: Sulfated fucan has gained interest due to its various physiological activities. Endo-1,3-fucanases are valuable tools for investigating the structure and establishing structure-activity relationships of sulfated fucan. However, the substrate recognition mechanism of endo-1,3-fucanases towards sulfated fucan remains unclear, limiting the application of endo-1,3-fucanases in sulfated fucan research. SCOPE AND APPROACH: This study presented the first crystal structure of endo-1,3-fucanase (Fun168A) and its complex with the tetrasaccharide product, utilizing X-ray diffraction techniques. The novel subsite specificity of Fun168A was identified through glycomics and nuclear magnetic resonance (NMR). KEY FINDINGS AND CONCLUSIONS: The structure of Fun168A was determined at 1.92 Å. Residues D206 and E264 acted as the nucleophile and general acid/base, respectively. Notably, Fun168A strategically positioned a series of polar residues at the subsites ranging from -2 to +3, enabling interactions with the sulfate groups of sulfated fucan through salt bridges or hydrogen bonds. Based on the structure of Fun168A and its substrate recognition mechanisms, the novel subsite specificities at the -2 and +2 subsites of Fun168A were identified. Overall, this study provided insight into the structure and substrate recognition mechanism of endo-1,3-fucanase for the first time and offered a valuable tool for further research and development of sulfated fucan.


Assuntos
Polissacarídeos , Polissacarídeos/química , Especificidade por Substrato , alfa-L-Fucosidase/química , alfa-L-Fucosidase/metabolismo , Modelos Moleculares , Cristalografia por Raios X , Sulfatos/química , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Relação Estrutura-Atividade
11.
J Agric Food Chem ; 72(23): 13196-13204, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38805590

RESUMO

Chondroitin sulfate (CS) is the predominant glycosaminoglycan within the human body and is widely applied in various industries. Carbohydrate-binding modules (CBMs) possessing the capacity for carbohydrate recognition are verified to be important tools for polysaccharide investigation. Only one CS-specific CBM, PhCBM100, has hitherto been characterized. In the present study, two CBM96 domains present in the same putative PL8_3 chondroitin AC lyase were discovered and recombinantly expressed. The results of microtiter plate assays and affinity gel electrophoresis assays showed that the two corresponding proteins, DmCBM96-1 and DmCBM96-2, bind specifically to CSs. The crystal structure of DmCBM96-1 was determined at a 2.20 Å resolution. It adopts a ß-sandwich fold comprising two antiparallel ß-sheets, showing structural similarities to TM6-N4, which is the founding member of the CBM96 family. Site mutagenesis analysis revealed that the residues of Arg27, Lys45, Tyr51, Arg53, and Arg157 are critical for CS binding. The characterization of the two CBM96 proteins demonstrates the diverse ligand specificity of the CBM96 family and provides promising tools for CS investigation.


Assuntos
Sulfatos de Condroitina , Ligação Proteica , Sulfatos de Condroitina/química , Sulfatos de Condroitina/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Sequência de Aminoácidos , Alinhamento de Sequência , Condroitina Liases/química , Condroitina Liases/metabolismo , Condroitina Liases/genética
12.
Talanta ; 276: 126259, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38761664

RESUMO

Hypoxanthine is a promising index for evaluating the freshness of various aquatic products. Combined the hydrogels containing upconversion nanoparticles (UCNPs), Co3O4 NPs, and N-ethyl-N-(3-sulfopropyl)-3-methylaniline sodium salt/4-amino-antipyrine (TOPS/4-AAP) with a smartphone, a portable sensor was developed for the convenient, sensitive detection of hypoxanthine. With the H2O2 from xanthine oxidase (XOD)-catalyzed reactions of hypoxanthine, the fluorescence of UCNPs was effectively quenched by the purple product produced from the oxidization of TOPS/4-AAP catalyzed by Co3O4 NPs exhibiting peroxidase activity, among which the color change could be transformed into digital signals for quantification of hypoxanthine. The Green value in the RGB analysis of the fluorescence image was negatively proportional to hypoxanthine concentration in the range of 2.5-20 mg/L with a detection limit of 0.69 mg/L and a quantitation limit of 2.30 mg/L. Finally, this sensor was applied for hypoxanthine detection in real aquatic products, showing potential application for freshness evaluation of aquatic products.


Assuntos
Cobalto , Hidrogéis , Hipoxantina , Óxidos , Smartphone , Hipoxantina/análise , Hidrogéis/química , Óxidos/química , Cobalto/química , Fluorescência , Limite de Detecção , Nanopartículas/química , Animais , Espectrometria de Fluorescência/métodos , Peróxido de Hidrogênio/análise , Peróxido de Hidrogênio/química
13.
Int J Biol Macromol ; 270(Pt 1): 132093, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38710247

RESUMO

Long-term and excessive alcohol consumption can lead to the development of alcoholic liver disease (ALD), characterized by oxidative damage, intestinal barrier injury, and disruption of intestinal microbiota. In this study, we extracted fucoidan (Aj-FUC) from Apostichopus japonicus using enzymatic methods and characterized its structure. The ALD model was established in male Balb/c mice using 56° Baijiu, with silymarin as a positive control. Mice were orally administered 100 mg/kg·bw and 300 mg/kg·bw of Aj-FUC for 28 days to evaluate its effects on liver injury in ALD mice and explore its potential role in modulating the gut-liver axis. The results showed significant improvements in histopathological changes and liver disease in the Aj-FUC group. Aj-FUC treatment significantly increased the levels of glutathione (GSH) and glutathione peroxidase (GSH-Px) while weakly reduced the elevation of malondialdehyde (MDA) induced by ALD. It also regulated the Nrf2/HO-1 signaling pathway, collectively alleviating hepatic oxidative stress. Aj-FUC intervention upregulated the expression of ZO-1 and Occludin, thus contributing to repair the intestinal barrier. Additionally, Aj-FUC increased the content of short-chain fatty acids (SCFAs) and regulated the imbalance in gut microbiota. These results suggested that Aj-FUC alleviates ALD by modulating the gut-liver axis homeostasis. It may prove to be a useful dietary supplement in the treatment of alcoholic liver damage.


Assuntos
Homeostase , Hepatopatias Alcoólicas , Fígado , Estresse Oxidativo , Polissacarídeos , Stichopus , Animais , Hepatopatias Alcoólicas/tratamento farmacológico , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/patologia , Polissacarídeos/farmacologia , Polissacarídeos/química , Camundongos , Masculino , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Homeostase/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Stichopus/química , Camundongos Endogâmicos BALB C , Malondialdeído/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Glutationa/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Modelos Animais de Doenças , Glutationa Peroxidase/metabolismo
14.
Foods ; 13(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38731757

RESUMO

The traditional fermentation process of soy sauce employs a hyperhaline model and has a long fermentation period. A hyperhaline model can improve fermentation speed, but easily leads to the contamination of miscellaneous bacteria and fermentation failure. In this study, after the conventional koji and moromi fermentation, the fermentation broth was pasteurized and diluted, and then inoculated with three selected microorganisms including Corynebacterium glutamicum, Corynebacterium ammoniagenes, and Lactiplantibacillus plantarum for secondary fermentation. During this ten-day fermentation, the pH, free amino acids, organic acids, nucleotide acids, fatty acids, and volatile compounds were analyzed. The fermentation group inoculated with C. glutamicum accumulated the high content of amino acid nitrogen of 0.92 g/100 mL and glutamic acid of 509.4 mg/100 mL. The C. ammoniagenes group and L. plantarum group were rich in nucleotide and organic acid, respectively. The fermentation group inoculated with three microorganisms exhibited the best sensory attributes, showing the potential to develop a suitable fermentation method. The brewing speed of the proposed process in this study was faster than that of the traditional method, and the umami substances could be significantly accumulated in this low-salt fermented model (7% w/v NaCl). This study provides a reference for the low-salt and rapid fermentation of seasoning.

15.
Food Res Int ; 186: 114356, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729722

RESUMO

The quality of Pacific oyster (Crassostrea gigas) can be affected by many factors during depuration, in which temperature is the major element. In this study, we aim to determine the quality and plasmalogen changes in C. gigas depurated at different temperatures. The quality was significantly affected by temperature, represented by varying survival rate, glycogen content, total antioxidant capacity, alkaline phosphatase activity between control and stressed groups. Targeted MS analysis demonstrated that plasmalogen profile was significantly changed during depuration with PUFA-containing plasmalogen species being most affected by temperature. Proteomics analysis and gene expression assay further verified that plasmalogen metabolism is regulated by temperature, specifically, the plasmalogen synthesis enzyme EPT1 was significantly downregulated by high temperature and four plasmalogen-related genes (GPDH, PEDS, Pex11, and PLD1) were transcriptionally regulated. The positive correlations between the plasmalogen level and quality characteristics suggested plasmalogen could be regarded as a quality indicator of oysters during depuration.


Assuntos
Crassostrea , Plasmalogênios , Temperatura , Animais , Plasmalogênios/metabolismo , Plasmalogênios/análise , Crassostrea/genética , Crassostrea/metabolismo , Frutos do Mar/análise , Proteômica/métodos , Antioxidantes/metabolismo , Antioxidantes/análise , Fosfatase Alcalina/metabolismo , Qualidade dos Alimentos
16.
Food Res Int ; 186: 114396, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729738

RESUMO

Cell culture meat is based on the scaled-up expansion of seed cells. The biological differences between seed cells from large yellow croakers in the two-dimensional (2D) and three-dimensional (3D) culture systems have not been explored. Here, satellite cells (SCs) from large yellow croakers (Larimichthys crocea) were grown on cell climbing slices, hydrogels, and microcarriers for five days to analyze the biological differences of SCs on different cell scaffolds. The results exhibited that SCs had different cell morphologies in 2D and 3D cultures. Cell adhesion receptors (Itgb1andsdc4) and adhesion spot markervclof the 3D cultures were markedly expressed. Furthermore, myogenic decision markers (Pax7andmyod) were significantly enhanced. However, the expression of myogenic differentiation marker (desmin) was significantly increased in the microcarrier group. Combined with the transcriptome data, this suggests that cell adhesion of SCs in 3D culture was related to the integrin signaling pathway. In contrast, the slight spontaneous differentiation of SCs on microcarriers was associated with rapid cell proliferation. This study is the first to report the biological differences between SCs in 2D and 3D cultures, providing new perspectives for the rapid expansion of cell culture meat-seeded cells and the development of customized scaffolds.


Assuntos
Adesão Celular , Técnicas de Cultura de Células , Diferenciação Celular , Proliferação de Células , Hidrogéis , Células Satélites de Músculo Esquelético , Alicerces Teciduais , Animais , Células Satélites de Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/citologia , Hidrogéis/química , Alicerces Teciduais/química , Técnicas de Cultura de Células em Três Dimensões/métodos , Células Cultivadas , Desmina/metabolismo , Fator de Transcrição PAX7/metabolismo , Fator de Transcrição PAX7/genética , Desenvolvimento Muscular
17.
J Agric Food Chem ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38817042

RESUMO

To achieve effective separation and enrichment of bacteria, a novel synthetic scheme was developed to synthesize star-style boronate-functionalized copolymers with excellent hydrophilicity and temperature and pH responsiveness. A hydrophilic copolymer brush was synthesized by combining surface-initiated atom-transfer radical polymerization with amide reaction using bovine serum albumin as the core. The copolymer brush was further modified by introducing and immobilizing fluorophenylboronic acids through an amide reaction, resulting in the formation of boronate affinity material BSA@poly(NIPAm-co-AGE)@DFFPBA. The morphology and organic content of BSA@poly(NIPAm-co-AGE)@DFFPBA were systematically characterized. The BSA-derived composites demonstrated a strong binding capacity to both Gram-positive and Gram-negative bacteria. The binding capabilities of the affinity composite to Staphylococcus aureus and Salmonella spp. were 195.8 × 1010 CFU/g and 79.2 × 1010 CFU/g, respectively, which indicates that the novel composite exhibits a high binding capability to bacteria and shows a particularly more significant binding capacity toward Gram-positive bacteria. The bacterial binding of BSA@poly(NIPAm-co-AGE)@DFFPBA can be effectively altered by adjusting the pH and temperature. This study demonstrated that the star-shaped affinity composite had the potential to serve as an affinity material for the rapid separation and enrichment of bacteria in complex samples.

18.
Anal Bioanal Chem ; 416(15): 3501-3508, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38658402

RESUMO

Alginate is a commercially important polysaccharide composed of mannuronic acid and its C5 differential isomer guluronic acid. Comprehensive research on alginate and alginate lyases requires efficient and precise analytical methods for alginate oligosaccharides. In this research, high-performance anion exchange chromatography (HPAEC) in parallel with pulsed amperometric detection (PAD) and mass spectrometry (MS) was applied to the analysis of oligosaccharides obtained by alginate lyase. By optimizing the chromatographic conditions including mobile phase concentration, flow rate, and elution gradient, the analysis of a single sample could be completed in 30 min. Seven unsaturated alginate oligosaccharides were separated and identified through their analysis time observed with PAD, including all structurally different unsaturated disaccharides and trisaccharides. The quantitative analysis of seven oligosaccharides was performed based on the quantitative capability of PAD. The method exhibited adequate linearity and precision parameters. All the calibration curves showed good linearity at least in the concentration range of 0.002 to 0.1 mg/mL. The HPAEC-PAD/MS method provides a general and efficient online method to analyze alginate oligosaccharides.


Assuntos
Alginatos , Espectrometria de Massas , Oligossacarídeos , Alginatos/química , Oligossacarídeos/análise , Oligossacarídeos/química , Cromatografia por Troca Iônica/métodos , Espectrometria de Massas/métodos , Cromatografia Líquida de Alta Pressão/métodos , Polissacarídeo-Liases/química , Polissacarídeo-Liases/metabolismo , Ácidos Hexurônicos/química , Ácidos Hexurônicos/análise , Limite de Detecção
19.
Nutr Cancer ; 76(6): 529-542, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38567899

RESUMO

Astaxanthin (AST) is a natural marine carotenoid with a variety of biological activities. This study aimed to demonstrate the possible mechanisms by which AST improves skeletal muscle atrophy in cancer cachexia. In this study, the effects of different doses of AST (30 mg/kg b.w., 60 mg/kg b.w. and 120 mg/kg b.w.) on skeletal muscle functions were explored in mice with cancer cachexia. The results showed that AST (30, 60 and 120 mg/kg b.w.) could effectively protect cachexia mice from body weight and skeletal muscle loss. AST dose-dependently ameliorated the decrease in myofibres cross-sectional area and increased the expression of myosin heavy chain (MHC). AST treatment decreased both the serum and muscle level of IL-6 but not TNF-α in C26 tumor-bearing cachexia mice. Moreover, AST alleviated skeletal muscle atrophy by decreasing the expression of two muscle-specific E3 ligases MAFBx and MuRF-1. AST improved mitochondrial function by downregulating the levels of muscle Fis1, LC3B and Bax, upregulating the levels of muscle Mfn2 and Bcl-2. In conclusion, our study show that AST might be expected to be a nutritional supplement for cancer cachexia patients.


Assuntos
Caquexia , Músculo Esquelético , Atrofia Muscular , Xantofilas , Animais , Xantofilas/farmacologia , Caquexia/tratamento farmacológico , Caquexia/etiologia , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/etiologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Camundongos , Masculino , Proteínas Musculares/metabolismo , Interleucina-6/metabolismo , Camundongos Endogâmicos BALB C , Proteínas Ligases SKP Culina F-Box/metabolismo , Proteínas Ligases SKP Culina F-Box/genética , Neoplasias/complicações , Neoplasias/tratamento farmacológico , Fator de Necrose Tumoral alfa/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Proteínas com Motivo Tripartido/genética , Cadeias Pesadas de Miosina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Linhagem Celular Tumoral
20.
J Agric Food Chem ; 72(18): 10451-10458, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38632679

RESUMO

In recent years, the wide application of mannan has driven the demand for the exploration of mannanase. As one of the main components of hemicellulose, mannan is an important polysaccharide that ruminants need to degrade and utilize, making rumen a rich source of mannanases. In this study, gene mining of mannanases was performed using bioinformatics, and potential dual-catalytic domain mannanases were heterologously expressed to analyze their properties. The hydrolysis pattern and enzymatic products were identified by liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS). A dual-catalytic domain mannanase Man26/5 with the same function as the substrate was successfully mined from the genome of cattle rumen microbiota. Compared to the single-catalytic domain, its higher thermal stability (≤50 °C) and catalytic efficiency confirm the synergistic effect between the two catalytic domains. It exhibited a unique "crab-like" structure where the CBM located in the middle is responsible for binding, and the catalytic domains at both ends are responsible for cutting. The exploration of its multidomain structure and synergistic patterns could provide a reference for the artificial construction and molecular modification of enzymes.


Assuntos
Proteínas de Bactérias , Domínio Catalítico , beta-Manosidase , Animais , Bovinos , Bactérias/enzimologia , Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , beta-Manosidase/genética , beta-Manosidase/química , beta-Manosidase/metabolismo , Estabilidade Enzimática , Hidrólise , Cinética , Mananas/química , Mananas/metabolismo , Rúmen/microbiologia , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA