Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
BMC Biol ; 22(1): 113, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750524

RESUMO

BACKGROUND: Protein posttranslational modifications (PTMs) are fast and early responses to environmental changes, including pathogen infection. Jujube witches' broom (JWB) is a phytoplasma disease causing great economic loss in jujube production. After phytoplasma infection, the transcriptional, translational, and metabolic levels in jujube were activated, enabling it to survive during phytoplasma invasion. However, no study has yet reported on PTMs in jujube. Lysine crotonylation (Kcr) and lysine succinylation (Ksu) have been popular studies in recent years and their function in plant phytoplasma-stress responses remains unclear. RESULTS: Here, 1656 crotonylated and 282 succinylated jujube proteins were first identified under phytoplasma-stress, of which 198 were simultaneously crotonylated and succinylated. Comparative analysis revealed that 656 proteins, 137 crotonylated and 43 succinylated proteins in jujube were regulated by phytoplasma infection, suggesting that Kcr was more universal than Ksu. Kcr differentially expressed proteins (DEPs) were related to ribosomes, photosynthetic and carbon metabolism, while Ksu DEPs were mainly involved in carbon metabolism, the TCA cycle and secondary metabolite biosynthesis. The crosstalk network among proteome, crotonylome and succinylome showed that DEPs related to ribosomal, peroxidases and glutathione redox were enriched. Among them, ZjPOD51 and ZjPHGPX2 significantly increased at the protein and Kcr level under phytoplasma-stress. Notably, 7 Kcr sites were identified in ZjPHGPX2, a unique antioxidant enzyme. After inhibitor nicotinamide (NAM) treatment, GPX enzyme activity in jujube seedlings was reduced. Further, site-directed mutagenesis of key Kcr modification sites K130 and/or K135 in ZjPHGPX2 significantly reduced its activity. CONCLUSIONS: This study firstly provided large-scale datasets of Kcr and Ksu in phytoplasma-infected jujube and revealed that Kcr modification in ZjPHGPX2 positively regulates its activity.


Assuntos
Phytoplasma , Doenças das Plantas , Proteínas de Plantas , Ziziphus , Ziziphus/microbiologia , Ziziphus/metabolismo , Phytoplasma/fisiologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Doenças das Plantas/microbiologia , Processamento de Proteína Pós-Traducional , Estresse Fisiológico , Lisina/metabolismo
2.
Plants (Basel) ; 12(11)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37299093

RESUMO

Virus-induced gene silencing (VIGS) is a fast and efficient method for assaying gene function in plants. At present, the VIGS system mediated by Tobacco rattle virus (TRV) has been successfully practiced in some species such as cotton and tomato. However, little research of VIGS systems has been reported in woody plants, nor in Chinese jujube. In this study, the TRV-VIGS system of jujube was firstly investigated. The jujube seedlings were grown in a greenhouse with a 16 h light/8 h dark cycle at 23 °C. After the cotyledon was fully unfolded, Agrobacterium mixture containing pTRV1 and pTRV2-ZjCLA with OD600 = 1.5 was injected into cotyledon. After 15 days, the new leaves of jujube seedlings showed obvious photo-bleaching symptoms and significantly decreased expression of ZjCLA, indicating that the TRV-VIGS system had successfully functioned on jujube. Moreover, it found that two injections on jujube cotyledon could induce higher silencing efficiency than once injection. A similar silencing effect was then also verified in another gene, ZjPDS. These results indicate that the TRV-VIGS system in Chinese jujube has been successfully established and can be applied to evaluate gene function, providing a breakthrough in gene function verification methods.

3.
BMC Plant Biol ; 23(1): 251, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37173622

RESUMO

Phytoplasmas are obligate cell wall-less prokaryotic bacteria that primarily multiply in plant phloem tissue. Jujube witches' broom (JWB) associated with phytoplasma is a destructive disease of jujube (Ziziphus jujuba Mill.). Here we report the complete 'Candidatus Phytoplasma ziziphi' chromosome of strain Hebei-2018, which is a circular genome of 764,108-base pairs with 735 predicted CDS. Notably, extra 19,825 bp (from 621,995 to 641,819 bp) compared to the previously reported one complements the genes involved in glycolysis, such as pdhA, pdhB, pdhC, pdhD, ackA, pduL and LDH. The synonymous codon usage bias (CUB) patterns by using comparative genomics analysis among the 9 phytoplasmas were similar for most codons. The ENc-GC3s analysis among the 9 phytoplasmas showed a greater effect under the selection on the CUBs of phytoplasmas genes than mutation and other factors. The genome exhibited a strongly reduced ability in metabolic synthesis, while the genes encoding transporter systems were well developed. The genes involved in sec-dependent protein translocation system were also identified.The expressions of nine FtsHs encoding membrane associated ATP-dependent Zn proteases and Mn-SodA with redox capacity in the Ca. P. ziziphi was positively correlated with the phytoplasma concentration. Taken together, the genome will not only expand the number of phytoplasma species and provide some new information about Ca. P. ziziphi, but also contribute to exploring its pathogenic mechanism.


Assuntos
Phytoplasma , Ziziphus , Phytoplasma/genética , Plantas/genética , Códon , Ziziphus/genética , Ziziphus/metabolismo , Mutação , Doenças das Plantas/microbiologia
4.
BMC Plant Biol ; 21(1): 527, 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34763664

RESUMO

BACKGROUND: SEPALLATA3 (SEP3), which is conserved across various plant species, plays essential and various roles in flower and fruit development. However, the regulatory network of the role of SEP3 in flowering time at the molecular level remained unclear. RESULTS: Here, we investigated that SEP3 in Ziziphus jujuba Mill. (ZjSEP3) was expressed in four floral organs and exhibited strong transcriptional activation activity. ZjSEP3 transgenic Arabidopsis showed an early-flowering phenotype and altered the expression of some genes related to flowering. Among them, the expression of LATE ELONGATED HYPOCOTYL (AtLHY), the key gene of circadian rhythms, was significantly suppressed. Yeast one-hybrid (Y1H) and electrophoretic mobility shift assays (EMSAs) further verified that ZjSEP3 inhibited the transcription of AtLHY by binding to the CArG-boxes in its promoter. Moreover, ZjSEP3 also could bind to the ZjLHY promoter and the conserved binding regions of ZjSEP3 were found in the LHY promoter of various plant species. The ectopic regulatory pathway of ZjSEP3-AtLHY was further supported by the ability of 35S::AtLHY to rescue the early-flowering phenotype in ZjSEP3 transgenic plants. In ZjSEP3 transgenic plants, total chlorophyll content and the expression of genes involved in chlorophyll synthesis increased during vegetative stages, which should contribute to its early flowering and relate to the regulatory of AtLHY. CONCLUSION: Overall, ZjSEP3-AtLHY pathway represents a novel regulatory mechanism that is involved in the regulation of flowering time.


Assuntos
Flores/genética , Regulação da Expressão Gênica de Plantas , Regiões Promotoras Genéticas , Ziziphus/genética , Motivos de Aminoácidos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Sequência Conservada , Flores/crescimento & desenvolvimento , Genes de Plantas , Filogenia , Plantas Geneticamente Modificadas/genética , Transcrição Gênica , Transcriptoma
5.
BMC Genomics ; 21(1): 483, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32664853

RESUMO

BACKGROUND: Among several TF families unique to eukaryotes, the basic leucine zipper (bZIP) family is one of the most important. Chinese jujube (Ziziphus jujuba Mill.) is a popular fruit tree species in Asia, and its fruits are rich in sugar, vitamin C and so on. Analysis of the bZIP gene family of jujube has not yet been reported. In this study, ZjbZIPs were identified firstly, their expression patterns were further studied in different tissues and in response to various abiotic and phytoplasma stresses, and their protein-protein interactions were also analyzed. RESULTS: At the whole genome level, 45 ZjbZIPs were identified and classified into 14 classes. The members of each class of bZIP subfamily contain a specific conserved domain in addition to the core bZIP conserved domain, which may be related to its biological function. Relative Synonymous Codon Usage (RSCU) analysis displayed low values of NTA and NCG codons in ZjbZIPs, which would be beneficial to increase the protein production and also indicated that ZjbZIPs were at a relative high methylation level. The paralogous and orthologous events occurred during the evolutionary process of ZjbZIPs. Thirty-four ZjbZIPs were mapped to but not evenly distributed among 10 pseudo- chromosomes. 30 of ZjbZIP genes showed diverse tissue-specific expression in jujube and wild jujube trees, indicating that these genes may have multiple functions. Some ZjbZIP genes were specifically analyzed and found to play important roles in the early stage of fruit development. Moreover, some ZjbZIPs that respond to phytoplasma invasion and abiotic stress environmental conditions, such as salt and low temperature, were found. Based on homology comparisons, prediction analysis and yeast two-hybrid, a protein interaction network including 42 ZjbZIPs was constructed. CONCLUSIONS: The bioinformatics analyses of 45 ZjbZIPs were implemented systematically, and their expression profiles in jujube and wild jujube showed that many genes might play crucial roles during fruit ripening and in the response to phytoplasma and abiotic stresses. The protein interaction networks among ZjbZIPs could provide useful information for further functional studies.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/genética , Ziziphus/genética , Fatores de Transcrição de Zíper de Leucina Básica/isolamento & purificação , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Mapeamento Cromossômico , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla/métodos , Filogenia , Phytoplasma/metabolismo , Estresse Fisiológico/genética , Ziziphus/classificação
6.
Tree Physiol ; 40(10): 1437-1449, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-32483619

RESUMO

Reactive oxygen species (ROS) in plants increase dramatically under pathogen attack, and the antioxidant defense system is then triggered to protect the plant against the ROS. Jujube witches' broom disease (JWB), caused by phytoplasma, is a destructive disease of Chinese jujube. The results of fluorescence-based measurement revealed that ROS were overproduced within jujube leaves after phytoplasma invasion. Furthermore, analysis based on mRNA and metabolite levels revealed that ascorbic acid (AsA) metabolism was strengthened under phytoplasma stress. The high expression of genes involved in the AsA/glutathione (GSH) cycle and thioredoxin (Trx) synthesis in diseased leaves indicated that GSH and Trx actively respond to phytoplasma infection. Moreover, higher activities of enzymatic antioxidants and the upregulated expression of related genes were confirmed in diseased tissues. Both nonenzymatic and enzymatic antioxidants in the host jujube were strongly stimulated to cope with ROS caused by phytoplasma stress. Compared with that in the susceptible variety, the activities of glutathione S-transferase and peroxidase in the resistant variety at the earlier infection stage were higher, indicating that enzymes might be involved in the resistance to phytoplasma. These results highlight the roles of the antioxidant defense system of the host plant in the tolerance to phytoplasma invasion.


Assuntos
Phytoplasma , Ziziphus , Antioxidantes , China , Doenças das Plantas
7.
BMC Genomics ; 21(1): 142, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-32041543

RESUMO

BACKGROUND: Mitogen-activated protein kinase (MAPK) cascades play vital roles in signal transduction in response to a wide range of biotic and abiotic stresses. In a previous study, we identified ten ZjMAPKs and five ZjMAPKKs in the Chinese jujube genome. We found that some members of ZjMAPKs and ZjMAPKKs may play key roles in the plant's response to phytoplasma infection. However, how these ZjMAPKKs are modulated by ZjMAPKKKs during the response process has not been elucidated. Little information is available regarding MAPKKKs in Chinese jujube. RESULTS: A total of 56 ZjMAPKKKs were identified in the jujube genome. All of these kinases contain the key S-TKc (serine/threonine protein kinase) domain, which is distributed among all 12 chromosomes. Phylogenetic analyses show that these ZjMAPKKKs can be classified into two subfamilies. Specifically, 41 ZjMAPKKKs belong to the Raf subfamily, and 15 belong to the MEKK subfamily. In addition, the ZjMAPKKKs in each subfamily share the same conserved motifs and gene structures. Only one pair of ZjMAPKKKs (15/16, on chromosome 5) was found to be tandemly duplicated. Using qPCR, the expression profiles of these MAPKKKs were investigated in response to infection with phytoplasma. In the three main infected tissues (witches' broom leaves, phyllody leaves, and apparently normal leaves), ZjMAPKKK26 and - 45 were significantly upregulated, and ZjMAPKKK3, - 43 and - 50 were significantly downregulated. ZjMAPKKK4, - 10, - 25 and - 44 were significantly and highly induced in sterile cultivated tissues infected by phytoplasma, while ZjMAPKKK6, - 7, - 17, - 18, - 30, - 34, - 35, - 37, - 40, - 41, - 43, - 46, - 52 and - 53 were significantly downregulated. CONCLUSIONS: For the first time, we present an identification and classification analysis of ZjMAPKKKs. Some ZjMAPKKK genes may play key roles in the response to phytoplasma infection. This study provides an initial understanding of the mechanisms through which ZjMAPKKKs are involved in the response of Chinese jujube to phytoplasma infection.


Assuntos
MAP Quinase Quinase Quinases/genética , Phytoplasma , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Proteínas de Plantas/genética , Ziziphus , Regulação para Baixo , Regulação da Expressão Gênica de Plantas , Filogenia , Ziziphus/genética , Ziziphus/imunologia , Ziziphus/microbiologia
8.
BMC Genomics ; 20(1): 568, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31291886

RESUMO

BACKGROUND: The bHLH (basic helix-loop-helix) transcription factor is one of the largest families of transcription factors in plants, containing a large number of members with diverse functions. Chinese jujube (Ziziphus jujuba Mill.) is the species with the highest economic value in the family Rhamnaceae. However, the characteristics of the bHLH family in the jujube genome are still unclear. Hence, ZjbHLHs were first searched at a genome-wide level, their expression levels under various conditions were investigated systematically, and their protein-protein interaction networks were predicted. RESULTS: We identified 92 ZjbHLHs in the jujube genome, and these genes were classified into 16 classes according to bHLH domains. Ten ZjbHLHs with atypical bHLH domains were found. Seventy ZjbHLHs were mapped to but not evenly distributed on 12 pseudo- chromosomes. The domain sequences among ZjbHLHs were highly conserved, and their conserved residues were also identified. The tissue-specific expression of 37 ZjbHLH genes in jujube and wild jujube showed diverse patterns, revealing that these genes likely perform multiple functions. Many ZjbHLH genes were screened and found to be involved in flower and fruit development, especially in earlier developmental stages. A few genes responsive to phytoplasma invasion were also verified. Based on protein-protein interaction prediction and homology comparison, protein-protein interaction networks composed of 92 ZjbHLHs were also established. CONCLUSIONS: This study provides a comprehensive bioinformatics analysis of 92 identified ZjbHLH genes. We explored their expression patterns in various tissues, the flowering process, and fruit ripening and under phytoplasma stress. The protein-protein interaction networks of ZjbHLHs provide valuable clues toward further studies of their biological functions.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Genômica , Proteínas de Plantas/genética , Ziziphus/genética , Cromossomos de Plantas/genética , Sequência Conservada , Flores/crescimento & desenvolvimento , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Motivos de Nucleotídeos/genética , Filogenia , Phytoplasma/fisiologia , Ziziphus/crescimento & desenvolvimento , Ziziphus/microbiologia
9.
BMC Genomics ; 20(1): 464, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31174470

RESUMO

BACKGROUND: The WRKY gene family is one of the most important families in higher plants. As transcription factors, they actively respond to biotic and abiotic stress and are also involved in plant development. Chinese jujube (Ziziphus jujuba Mill.) is the largest type of dried fruit tree in China in terms of production, but its production is largely limited by phytoplasma infection, and the information about the role of WRKY genes under phytoplasma stress was still limited. RESULTS: We identified 54 ZjWRKYs in the jujube genome and classified them into three subgroups according to conserved WRKY domains and zinc-finger structure. 41 ZjWRKYs were distributed on 11 of 12 pseudo chromosomes in Chinese jujube. The majority of ZjWRKYs were highly expressed in the seven examined tissues, indicating that they play multiple roles in these vegetative and reproductive organs. Transcriptome data showed that most of the characterised ZjWRKYs were highly expressed at later stages of fruit development. RT-qPCR demonstrated that the expression of 23 ZjWRKYs changed following phytoplasma infection, suggesting that they are involved in signalling pathways that respond to phytoplasma stress. Then, STRING analysis and yeast two-hybrid screening proved that some ZjWRKY proteins were interacting with ZjMAPKK proteins, which were also involved in phytoplasma invasion. Moreover, their differential expressions were further confirmed in resistant and susceptible jujube varieties under phytoplasma stress. These results suggest that ZjWRKYs play significant roles in phytoplasma tolerance and should be crucial candidate genes for jujube-phytoplasma interaction. CONCLUSIONS: 54 ZjWRKYs in Chinese jujube were identified and classified into three subgroups. 41 ZjWRKYs were unevenly distributed along the chromosomes. The majority of ZjWRKYs were highly expressed in various tissues. Most of the ZjWRKYs were positive responses to phytoplasma invasion, and that provided candidate genes for the future studies of jujube-phytoplasma interaction.


Assuntos
Família Multigênica , Phytoplasma , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Ziziphus/genética , Motivos de Aminoácidos , Mapeamento Cromossômico , Genoma de Planta , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/classificação , Proteínas de Plantas/fisiologia , Fatores de Transcrição/química , Fatores de Transcrição/classificação , Fatores de Transcrição/fisiologia , Transcriptoma , Ziziphus/microbiologia
10.
Phytopathology ; 108(9): 1067-1077, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29648946

RESUMO

Phytoplasmas parasitize plant phloem tissue and cause many economically important plant diseases. Jujube witches'-broom disease is a destructive phytoplasma disease of Chinese jujube (Ziziphus jujuba). To elucidate the influence of phytoplasma on host photosynthetic, carbohydrate and energy metabolisms, four types of jujube tissues showing disease symptoms with different severity were investigated at the structural, physiological, and molecular levels. Quantitative real-time PCR and high-performance liquid chromatography results showed that the down-regulation of genes related to photosynthesis and the lower contents of chlorophyll in diseased leaves. This clearly inhibited the light-harvesting and photosystem II activity of photosynthesis; however, overexpression of genes related to starch, sucrose and glucose synthesis led to higher contents of these carbohydrates. Meanwhile, transmission electron microscopy images revealed that dense amounts of phytoplasmas accumulated in the sieve elements of diseased petiole phloem, and the structure of the grana and stroma lamellae of chloroplasts in the diseased leaves was destroyed. Phytoplasma infection inhibited photosynthesis and led to abnormal carbohydrate accumulation in the diseased leaves. Furthermore, comparative metabolite analysis indicated that phytoplasma infection also stimulated amino acids and energy metabolisms of the diseased leaves. Continually inhibiting the photosynthetic process and stimulating carbohydrate and energy metabolisms of diseased trees may exhaust their nutrients. Our results highlight the importance of changing host metabolisms during the pathogenic process.


Assuntos
Metabolismo dos Carboidratos , Metabolismo Energético , Fotossíntese , Phytoplasma/patogenicidade , Doenças das Plantas/imunologia , Ziziphus/imunologia , Clorofila/metabolismo , Cloroplastos/ultraestrutura , Modelos Biológicos , Doenças das Plantas/microbiologia , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Folhas de Planta/fisiologia , Folhas de Planta/ultraestrutura , Caules de Planta/imunologia , Caules de Planta/microbiologia , Caules de Planta/fisiologia , Caules de Planta/ultraestrutura , Ziziphus/microbiologia , Ziziphus/fisiologia , Ziziphus/ultraestrutura
11.
BMC Genomics ; 18(1): 855, 2017 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-29121856

RESUMO

BACKGROUND: Chinese jujube (Ziziphus jujuba Mill.) is one of the most important members in the Rhamnaceae family. The whole genome sequence and more than 30,000 proteins of Chinese jujube have been obtained in 2014. Mitogen-activated protein kinase cascades are universal signal transduction modules in plants, which is rapidly activated under various biotic and abiotic stresses. To date, there has been no comprehensive analysis of the MAPK and MAPKK gene family in Chinese jujube at the whole genome level. RESULTS: By performing a series of bioinformatics analysis, ten MAPK and five MAPKK genes were identified from the genome database of Chinese jujube, and then compared with the homologous genes from Arabidopsis. Phylogenetic analysis showed that ZjMAPKs was classified into four known groups, including A, B, C and D. ZjMAPKs contains five members of the TEY phosphorylation site and five members with the TDY motif. The ZjMAPKK family was subsequently divided into three groups, A, B and D. The gene structure, conserved motifs, functional annotation and chromosome distribution of ZjMAPKs and ZjMAPKKs were also predicted. ZjMAPKs and ZjMAPKKs were distributed on nine pseudo-chromosomes of Chinese jujube. Subsequently, expression analysis of ZjMAPK and ZjMAPKK genes using reverse transcription PCR and quantitative real-time PCR was carried out. The majority of ZjMAPK and ZjMAPKK genes were expressed in all tested organs/tissues with considerable differences in transcript levels indicating that they might be constitutively expressed. Moreover, ZjMKK5 was specific expressed in early development stage of jujube flower bud, indicating it plays some roles in reproductive organs development. The transcript expression of most ZjMAPK and ZjMAPKK genes was down-regulated in response to plant growth regulators, darkness treatment and phytoplasma infection. CONCLUSIONS: We identified ten ZjMAPK and five ZjMAPKK genes from the genome database of Chinese jujube, the research results shown that ZjMPKs and ZjMKKs have the different expression patterns, indicating that they might play different roles in response to various treatments. The results provide valuable information for the further elucidation of physiological functions and biological roles of jujube MAPKs and MAPKKs.


Assuntos
Genômica , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Ziziphus/enzimologia , Ziziphus/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Sequência Conservada , Genoma de Planta/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/química , Proteínas Quinases Ativadas por Mitógeno/química , Filogenia , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA