Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 667
Filtrar
1.
J Environ Manage ; 370: 122497, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39278020

RESUMO

The recycling of food waste (FW) through anaerobic fermentation into lactic acid (LA), with two isomers L-LA and D-LA, aligns with the principles of a bio-based circular economy. However, FW fermentation is often limited by competing pathways, acidification inhibition, and trace metals deficiency. This study investigates the introduction of landfill leachate, containing buffering agents (ammonia) and trace metals, into FW fermentation. Various dosages of landfill leachate, ranging from 90 (LN-90) to 450 mg/L (LN-450) based on inclusive ammonia calculation, were employed. Results showed that LA production peaked at 43.65 ± 0.57 g COD/L in LN-180 on day 6, with a high optical activity of L-LA at 92.40 ± 1.15 %. Fermentation pathway analysis revealed that landfill leachate amendment enhances hydrolysis (as evidenced by increased activity of amylase, α-glucosidase, and protease) and glycolysis (resulting in enhanced utilization of carbohydrates and glucose). The inclusive ammonia in leachate plays a crucial role as a buffer, maintaining optimal pH conditions (5-7), thereby reducing volatile fatty acid production and thus intensifying LA orientations. The increased activity of L-lactate dehydrogenase (L-LA generation) and decreased NAD-independent lactate dehydrogenase (LA consumption) in properly dosed leachate further explained the high accumulation of L-LA. Dominance of lactic acid bacteria, including Streptococcus, Enterococcus, Klebsiella, Bifidobacterium, Bavariicoccus, and Lacticaseibacillus, accounted for 91.08% (LN-90), while inhibitory effects were observed in LN-450 (4.45%). Functional gene analysis further supported the enhanced glycolysis, L-lactate dehydrogenase, and nitrogen assimilation. Finally, a network analysis indicates a beneficial effect on the genus Enterococcus and Klebsiella by landfill leachate addition. This study demonstrates the efficiency of utilizing landfill leachate to enhance LA recycling from FW fermentation, aligning with the concept of circular economy by transforming waste into valuable resources.

2.
Molecules ; 29(17)2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39274928

RESUMO

In view of the flue gas characteristics of cement kilns in China, the development of low-temperature denitrification catalysts with excellent anti-poisoning performance has important theoretical and practical significance. In this work, a series of MnCeOx@TiO2 and tourmaline-containing MnCeOx@TiO2-T catalysts was prepared using a chemical pre-deposition method. It was found that the MnCeOx@TiO2-T2 catalyst (containing 2% tourmaline) exhibited the best low-temperature NH3-selective catalytic reduction (NH3-SCR) performance, yielding 100% NOx conversion at 110 °C and above. When 100-300 ppm SO2 and 10 vol.% H2O were introduced to the reaction, the NOx conversion of the MnCeOx@TiO2-T2 catalyst was still higher than 90% at 170 °C, indicating good anti-poisoning performance. The addition of appropriate amounts of tourmaline can not only preferably expose the active {001} facets of TiO2 but also introduce the acidic SiO2 and Al2O3 components and increase the content of Mn4+ and Oα on the surface of the catalyst, all of which contribute to the enhancement of reaction activity of NH3-SCR and anti-poisoning performance. However, excess amounts of tourmaline led to the formation of dense surface of catalysts that suppressed the exposure of catalytic active sites, giving rise to the decrease in catalytic activity and anti-poisoning capability. Through an in situ DRIFTS study, it was found that the addition of appropriate amounts of tourmaline increased the number of Brønsted acid sites on the catalyst surface, which suppressed the adsorption of SO2 and thus inhibited the deposition of NH4HSO4 and (NH4)2HSO4 on the surface of the catalyst, thereby improving the NH3-SCR performance and anti-poisoning ability of the catalyst.

3.
Neural Netw ; 180: 106727, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39288643

RESUMO

Distributed neuromorphic architecture is a promising technique for on-chip processing of multiple tasks. Deploying the constructed model in a distributed neuromorphic system, however, remains time-consuming and challenging due to considerations such as network topology, connection rules, and compatibility with multiple programming languages. We proposed a multiscale distributed neural computing model database (NCMD), which is a framework designed for ARM-based multi-core hardware. Various neural computing components, including ion channels, synapses, and neurons, are encompassed in NCMD. We demonstrated how NCMD constructs and deploys multi-compartmental detailed neuron models as well as spiking neural networks (SNNs) in BrainS, a distributed multi-ARM neuromorphic system. We demonstrated that the electrodiffusive Pinsky-Rinzel (edPR) model developed by NCMD is well-suited for BrainS. All dynamic properties, such as changes in membrane potential and ion concentrations, can be easily explored. In addition, SNNs constructed by NCMD can achieve an accuracy of 86.67% on the test set of the Iris dataset. The proposed NCMD offers an innovative approach to applying BrainS in neuroscience, cognitive decision-making, and artificial intelligence research.

4.
ACS Omega ; 9(36): 37923-37933, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39281910

RESUMO

In this study, we conducted a comprehensive analysis to identify key genes and pathways associated with pulmonary arterial hypertension (PAH) and investigated the role of delta-like ligand 4 (DLL4) in PAH pathogenesis. Through integrated analysis of multiple data sets, we identified 6 candidate differentially expressed genes (DEGs), notably DLL4, which showed the highest distinguishing efficiency between PAH and control samples. Functional and pathway enrichment analyses revealed the involvement of DLL4 in critical biological processes and pathways related to PAH, including notch signaling, immune cell function, and inflammatory responses. Further investigation demonstrated that decreased DLL4 expression correlated with increased M2 macrophage polarization, suggesting a potential role for DLL4 in preventing M2 differentiation. Additionally, the DLL4/Notch1 axis was found to influence the Notch profile and regulate signaling mediators during M2 differentiation. These findings highlight DLL4 as a promising biomarker and therapeutic target for PAH, shedding light on the underlying molecular mechanisms and providing insights for the development of novel treatment strategies.

5.
J Environ Manage ; 370: 122551, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39299128

RESUMO

The textile printing industry discharges large volumes of effluent containing high concentrations of urea and nitrogenous compounds. Anoxic-oxic (AO) treatment is a promising method for treating printing wastewater. However, the effect of sodium sulfate (Na2SO4) salinity on the urea hydrolysis and nitrogen removal simultaneously in the AO process has received little attention. In this study, five batch reactors were used to treat synthetic printing wastewater with high urea and nitrogen concentrations. A strategy was applied to increase the Na2SO4 concentration from 0 to 19 g/L in the anoxic stage of each reactor. The effect of Na2SO4 on urea hydrolysis, total nitrogen removal and COD removal, sludge characteristics, and bacterial community structure were investigated. The findings showed that urea hydrolysis increased with increasing Na2SO4 concentration. The main mechanism of urea removal was intracellular hydrolysis, with a urea removal efficiency (URE%) of approximately 98% in all batch reactors. In addition, under the stress of Na2SO4, the total nitrogen and COD removal performances were partially inhibited. The most significant removal performances after AO treatment were observed at 0 g/L Na2SO4, with nitrogen and COD removal efficiencies of 88% and 95%, respectively. When Na2SO4 concentration reached 19 g/L, the sludge settling performance and compactness were enhanced. The extracellular polymeric substance (EPS) components in the sludge were dependent on their ability of removing organics. Bacterial community diversity analysis revealed that the enrichment of the Proteobacteria, Firmicutes, and Gemmatimonadota phyla in the anoxic stages of batch reactors was related to intracellular urea hydrolysis. Bacteriodota and Chloroflexi were responsible for total nitrogen removal in all anoxic and oxic stages. This research will develop the understanding of Na2SO4 salinity impact on simultaneous urea hydrolysis and nitrogen removal during AO treatment process.

6.
J Hazard Mater ; 479: 135724, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39236539

RESUMO

Nonradical electron transfer process (ETP) is a promising pathway for pollutant degradation in peroxydisulfate-based advanced oxidation processes (PDS-AOPs). However, there is a critical bottleneck to trigger ETP by sludge-derived hydrochar due to its negatively charged surface, inferior porosity and electrical conductivity. Herein, pyrrolic-N doped and carbon defected sludge-derived hydrochar (SDHC-N) was constructed for PDS activation to degrade anilines ionizable organic compounds (IOC) through complete nonradical ETP oxidation. Degradation of anilines IOC was not only affected by the electron-donating capacity but also proton concentration in solution because of the ionizable amino group (-NH2). Diverse effects including proton favor, insusceptible and inhibition were observed. Impressively, addition of HCO3 with strong proton binding capacity boosted aniline degradation nearly 10 times. Moreover, characterizations and theoretical calculations demonstrated that pyrrolic-N increased electron density and created positively charged surface, profoundly promoting generation of SDHC-N-S2O82-* complexes. More delocalized electrons around carbon defect could enhance electron mobility. This work guides a rational design of sludge-derived hydrochar to mediate nonradical ETP oxidation, and provides insights into the impacts of proton on anilines IOC degradation.

7.
Genomics ; 116(5): 110914, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39128817

RESUMO

Increasing evidence suggests that tissue inhibitor of metalloproteinase 1 (TIMP1) played a pivotal role in immune regulation. Our study focused on examining the expression and function of TIMP1 in humans, particularly in its regulation of tumor-associated macrophages (TAMs) in papillary thyroid carcinoma (PTC). We observed an upregulation of TIMP1 in 16 different types of malignancies, including thyroid cancer. TIMP1 shaped the inflammatory TME in PTC. Inhibiting the expression of TIMP1 has been demonstrated to reduce the malignant biological traits of PTC cells. Furthermore, reducing TIMP1 expression impeded M2 macrophage polarization as well as facilitated M1 macrophage polarization in PTC. ELISA results demonstrated that downregulated TIMP1 expression correlated with decreased levels of IL10 and TGF-ß in cell supernatants. Furthermore, the supernatant from polarized macrophages in the TIMP1-silenced group inhibited the motility of wild-type PTC cells. Therefore, TIMP1 may enhance the progression of PTC by stimulating the PI3K/AKT pathway via the secretion of IL10 and TGF-ß, consequently influencing M2-type polarization in TAMs.

8.
Heliyon ; 10(15): e35220, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39170282

RESUMO

OBJECTIVE: Paradoxical embolism caused by a patent foramen ovale (PFO) is a rare cause of myocardial infarction (MI) in individuals presenting with normal coronary arteries on angiography; however, the deduction is often made due to the inability to identify the exact thrombus that penetrates the atrial septum. Previous studies using optical coherence tomography (OCT) have reported in situ thrombi attached to PFO tunnel in patients with cryptogenic stroke. However, the presence of such thrombi in patients with cryptogenic MI (without a definite cause) remains uncertain. METHOD: We retrospectively analyzed OCT data collected from February to July 2023 on PFO tunnels in MI adults with normal coronary arteries on angiography. RESULTS: Three patients diagnosed with cryptogenic MI and a PFO underwent OCT examination. These patients exhibited varying OCT findings. White thrombi and endocardial abnormalities in the channel were observed in two patients with MI. No thrombus or anomalous morphology on the endocardial surface was noted in the third patient. PFO closure was performed on all patients, and follow-up was completed by October 1, 2023. None of the patients reported recurrence of chest pain. CONCLUSION: In situ thrombus was identified within the PFO channel in patients with cryptogenic MI, potentially serving as a novel etiological factor for coronary thrombosis.

9.
Mar Pollut Bull ; 206: 116685, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39002220

RESUMO

Human activities emitting carbon dioxide (CO2) have caused severe greenhouse effects and accelerated climate change, making carbon neutrality urgent. Seawater mineral carbonation technology offers a promising negative emission strategy. This work investigates current advancements in proposed seawater mineral carbonation technologies, including CO2 storage and ocean chemical carbon sequestration. CO2 storage technology relies on indirect mineral carbonation to fix CO2, involving CO2 dissolution, Ca/Mg extraction, and carbonate precipitation, optimized by adding alkaline substances or using electrochemical methods. Ocean chemical carbon sequestration uses natural seawater for direct mineral carbonation, enhanced by adding specific materials to promote carbonate precipitation and increase CO2 absorption, thus enhancing marine carbon sinks. This study evaluates these technologies' advantages and challenges, including reaction rates, costs, and ecological impacts, and analyzes representative materials' carbon fixation potential. Literature indicates that seawater mineral carbonation can play a significant role in CO2 storage and enhancing marine carbon sinks in the coming decades.


Assuntos
Dióxido de Carbono , Sequestro de Carbono , Água do Mar , Água do Mar/química , Dióxido de Carbono/análise , Mudança Climática , Carbonatos/química , Minerais/química
10.
Clin Cosmet Investig Dermatol ; 17: 1603-1612, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38984321

RESUMO

Alopecia is considered a widespread yet troubling health issue, with limited treatment options. As membranous structures derived from cells carrying proteins, nucleic acids and lipids, exosomes functionally medicate intercellular communication and alter the responses of recipient cells, resulting in disease restraint or promotion. Exosomes have broad prospects in diagnosis and treatment of diseases. Studies using animal models and at the cellular level have clearly shown that exosomes from several types of cells, including dermal papilla cells and mesenchymal stem cells, have a notable capacity to promote hair growth, suggesting that exosomes may provide a new option to treat alopecia. Here, we present a thorough review of the most recent progress in the application of exosomes to hair growth.

12.
J Cell Physiol ; : e31368, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982727

RESUMO

Neuromedin S (NMS) plays key roles in reproductive regulation, while its function and mechanism in follicular development remain unclear. The current study aims to investigate the specific role and mechanisms of NMS and its receptors in regulating the proliferation and steroidogenesis of ovarian granulosa cells (GCs). Phenotypically, a certain concentration of NMS addition promoted the proliferation and estrogen production of goat GCs, accompanied by an increase in the G1/S cell population and upregulation of the expression levels of cyclin D1, cyclin dependent kinase 6, steroidogenic acute regulatory protein, cytochrome P450, family 11, subfamily A, polypeptide 1, 3beta-hydroxysteroid dehydrogenase, and cytochrome P450, family 11, subfamily A, polypeptide 1, while the effects of NMS treatment were effectively hindered by knockdown of neuromedin U receptor type 2 (NMUR2). Mechanistically, activation of NMUR2 with NMS maintained endoplasmic reticulum (ER) calcium (Ca2+) homeostasis by triggering the PLCG1-IP3R pathway, which helped preserve ER morphology, sustained an appropriate level of endoplasmic reticulum unfolded protein response (UPRer), and suppressed the nuclear translocation of activating transcription factor 4. Moreover, NMS maintained intracellular Ca2+ homeostasis to activate the calmodulin 1-large tumor suppressor kinase 1 pathway, ultimately orchestrating the regulation of goat GC proliferation and estrogen production through the Yes1 associated transcriptional regulator-ATF4-c-Jun pathway. Crucially, the effects of NMS were mitigated by concurrent knockdown of the NMUR2 gene. Collectively, these data suggest that activation of NMUR2 by NMS enhances cell proliferation and estrogen production in goat GCs through modulating the ER and intracellular Ca2+ homeostasis, leading to activation of the YAP1-ATF4-c-Jun pathway. These findings offer valuable insights into the regulatory mechanisms involved in follicular growth and development, providing a novel perspective for future research.

13.
Eur Heart J Case Rep ; 8(7): ytae304, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39081402

RESUMO

Background: Myocardial infarction (MI) caused by patent foramen ovale (PFO)-based paradoxical embolism is rare, and there are few case reports in the literature. Case summary: Here, we report a case of MI in which optical coherence tomography revealed in situ thrombi in the PFO channel. Discussion: In addition to paradoxical embolism, in situ thrombus may also be one of the pathogenic mechanisms of PFO in patients with MI.

14.
Bioresour Technol ; 406: 131069, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38971388

RESUMO

The feasibility of inducing simultaneous nitrification and denitrification (SND) by S0 for low carbon to nitrogen (C/N) ratio wastewater remediation was investigated. Compared with S0 and/or organics absent systems (-3.4 %∼5.0 %), the higher nitrogen removal performance (18.2 %∼59.8 %) was achieved with C/N ratios and S0 dosages increasing when S0 and organics added simultaneously. The synergistic effect of S0 and organics stimulated extracellular polymeric substances secretion and weakened intermolecular binding force of S0, facilitating S0 bio-utilization and reducing the external organics requirement. It also promoted microbial metabolism (0.16 âˆ¼ 0.24 µg O2/(g VSS·h)) and ammonia assimilation (5.9 %∼20.5 %), thereby enhancing the capture of organics and providing more electron donors for SND. Furthermore, aerobic denitrifiers (15.91 %∼27.45 %) and aerobic denitrifying (napA and nirS) and ammonia assimilating genes were accumulated by this synergistic effect. This study revealed the mechanism of SND induced by coordination of S0 and organics and provided an innovative strategy for triggering efficient and stable SND.


Assuntos
Carbono , Desnitrificação , Nitrificação , Nitrogênio , Enxofre , Águas Residuárias , Águas Residuárias/química , Nitrogênio/metabolismo , Enxofre/metabolismo , Amônia/metabolismo , Purificação da Água/métodos , Compostos Orgânicos
15.
Heliyon ; 10(13): e33358, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39035505

RESUMO

Objective: This study explores the inhibition of papillary thyroid carcinoma proliferation by Decorin via the EGFR/SHP2/FER pathway. Method: ology: Thirty-two pairs of papillary thyroid carcinoma tissues and adjacent normal tissues were collected for immunohistochemical analysis. Thyroid cancer cell lines with overexpressed or silenced Decorin were employed in subcutaneous tumor formation experiments in nude mice. Cell membrane proteins were extracted for Western blot and immunofluorescence analyses. Results: Reduced Decorin expression in human papillary thyroid carcinoma was associated with inhibited formation of the EGFR/SHP2/FER complex. Immunohistochemical analysis revealed lower Decorin levels in carcinoma tissues compared to adjacent normal tissues, corroborated by decreased Decorin and PTEN levels in carcinoma as shown by Western Blot. Overexpression of Decorin in mouse models diminished tumor growth, an effect reversed by Decorin silencing and mitigated by FER inhibition. Decorin modulated Rab5-GTP and Rab7-GTP levels, impacting endosome transition and subsequent signaling pathways. Conclusion: Decorin inhibits papillary thyroid carcinoma proliferation by disrupting the EGFR/SHP2/FER pathway and modulating endosomal transport.

16.
Immunol Invest ; 53(6): 989-1000, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38900045

RESUMO

BACKGROUND: Interstitial lung disease (ILD) is a common pulmonary manifestation of rheumatoid arthritis (RA) and is associated with a poor prognosis. However, the role of blood biomarkers in RA-associated interstitial lung disease (RA-ILD) is ill-defined. We aim to evaluate the role of YKL-40 and Krebs von den Lungen-6 (KL-6) in the diagnosis and severity evaluation of RA-ILD. METHODS: 45 RA-non-ILD patients and 38 RA-ILD patients were included. The clinical data and the levels of YKL-40 and KL-6 were measured and collected for all patients. The risk factors for RA-ILD were analyzed and their correlation with relevant indicators and predictive value for RA-ILD was explored. RESULTS: The levels of YKL-40 and KL-6 in RA-ILD patients were higher than RA-non-ILD patients (p < .001). Both YKL-40 and KL-6 were correlated with the incidence of RA-ILD. The predictive power of combined KL-6 and YKL-40 for the presence of ILD was 0.789, with a sensitivity and specificity at 73.7% and 73.3%, respectively. In RA-ILD patients, both YKL-40 and KL-6 were positively correlated with the Scleroderma Lung Study (SLS) I score and negatively correlated with pulmonary function. CONCLUSIONS: KL-6 and YKL-40 might be a useful biomarker in the diagnosis and severity evaluation of RA-ILD.


Assuntos
Artrite Reumatoide , Biomarcadores , Proteína 1 Semelhante à Quitinase-3 , Doenças Pulmonares Intersticiais , Mucina-1 , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Artrite Reumatoide/sangue , Artrite Reumatoide/diagnóstico , Artrite Reumatoide/complicações , Biomarcadores/sangue , Proteína 1 Semelhante à Quitinase-3/sangue , Doenças Pulmonares Intersticiais/sangue , Doenças Pulmonares Intersticiais/diagnóstico , Doenças Pulmonares Intersticiais/etiologia , Mucina-1/sangue , Valor Preditivo dos Testes , Prognóstico , Sensibilidade e Especificidade , Índice de Gravidade de Doença
17.
Immunobiology ; 229(5): 152821, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38935988

RESUMO

BACKGROUND: As metastatic papillary thyroid carcinoma becomes increasingly challenging to treat, immunotherapy has emerged as a new research direction. Tumor-associated macrophages (TAMs) influence the occurrence, invasion, and metastasis of tumors. Apolipoprotein E (APOE) can regulate the polarization changes of macrophages and participate in the remodeling of the tumor microenvironment. However, the role of APOE in regulating the polarization and biological functions of TAMs in papillary thyroid carcinoma (PTC) remains unclear, as it acts as a dual biomarker. METHODS: We probed APOE expression in PTC tissues using immunohistochemical staining. A cell co-culture model was established where different APOE-expressing K1 cells were co-cultured with THP-1-derived M0 macrophages. An in-depth analysis of macrophage polarization behavior was performed using real-time quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, and western blotting. Subsequently, the impact of APOE-regulated macrophages on tumor cell behavior, especially proliferation, migration, and invasion, was evaluated utilizing IncuCyte ZOOM system, flow cytometry, colony formation, and scratch experiments. Finally, we used a xenograft model to confirm the effects of APOE on PTC tumorigenesis. RESULTS: Tumor dimensions, stage, and lymphatic metastases were significantly associated with increased APOE expression in PTC tissues. K1 cells were markedly limited in their proliferation, migration, and invasion abilities when APOE expression was silenced, a process mediated by the PI3K/Akt/NF-κB signaling axis. Moreover, APOE is a key facilitator of the enhancement of the anti-inflammatory cytokines IL-10 and TGF-ß1. In PTC cellular models, APOE contributed to the phenotypic shift of THP-1 derived macrophages towards an M2 phenotypic polarization, predominantly through the modulation of IL-10. Furthermore, in vivo studies involving athymic nude mice have demonstrated pivotal role of APOE in tumor progression and the induction of M2-like TAM polarization. CONCLUSION: Our results elucidated that APOE could promote the shift of TAMs from M0-type to M2-type polarization by regulating inflammatory factors expressions in K1 cell through the PI3K/Akt/NF-κB pathway. These findings are crucial for understanding the molecular mechanisms underlying PTC pathogenesis and for developing immunological drugs to treat this disease.


Assuntos
Apolipoproteínas E , Macrófagos , Câncer Papilífero da Tireoide , Neoplasias da Glândula Tireoide , Microambiente Tumoral , Humanos , Animais , Câncer Papilífero da Tireoide/patologia , Câncer Papilífero da Tireoide/imunologia , Câncer Papilífero da Tireoide/metabolismo , Câncer Papilífero da Tireoide/genética , Camundongos , Apolipoproteínas E/genética , Neoplasias da Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/imunologia , Neoplasias da Glândula Tireoide/genética , Feminino , Macrófagos/imunologia , Macrófagos/metabolismo , Microambiente Tumoral/imunologia , Masculino , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Movimento Celular , Progressão da Doença , Transdução de Sinais , Pessoa de Meia-Idade , Camundongos Nus , Técnicas de Cocultura , Ativação de Macrófagos
18.
PLoS Comput Biol ; 20(6): e1011882, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38838038

RESUMO

In embryonic development and organogenesis, cells sharing identical genetic codes acquire diverse gene expression states in a highly reproducible spatial distribution, crucial for multicellular formation and quantifiable through positional information. To understand the spontaneous growth of complexity, we constructed a one-dimensional division-decision model, simulating the growth of cells with identical genetic networks from a single cell. Our findings highlight the pivotal role of cell division in providing positional cues, escorting the system toward states rich in information. Moreover, we pinpointed lateral inhibition as a critical mechanism translating spatial contacts into gene expression. Our model demonstrates that the spatial arrangement resulting from cell division, combined with cell lineages, imparts positional information, specifying multiple cell states with increased complexity-illustrated through examples in C.elegans. This study constitutes a foundational step in comprehending developmental intricacies, paving the way for future quantitative formulations to construct synthetic multicellular patterns.


Assuntos
Redes Reguladoras de Genes , Modelos Biológicos , Animais , Redes Reguladoras de Genes/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/crescimento & desenvolvimento , Divisão Celular/fisiologia , Divisão Celular/genética , Biologia Computacional , Desenvolvimento Embrionário/fisiologia , Desenvolvimento Embrionário/genética , Linhagem da Célula , Simulação por Computador , Regulação da Expressão Gênica no Desenvolvimento/genética
19.
FASEB J ; 38(13): e23701, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38941193

RESUMO

Zearalenone (ZEN) is a mycotoxin known for its estrogen-like effects, which can disrupt the normal physiological function of endometrial cells and potentially lead to abortion in female animals. However, the precise mechanism by which ZEN regulates endometrial function remains unclear. In this study, we found that the binding receptor estrogen receptors for ZEN is extensively expressed across various segments of the uterus and within endometrial cells, and a certain concentration of ZEN treatment reduced the proliferation capacity of goat endometrial epithelial cells (EECs) and endometrial stromal cells (ESCs). Meanwhile, cell cycle analysis revealed that ZEN treatment leaded to cell cycle arrest in goat EECs and ESCs. To explore the underlying mechanism, we investigated the mitochondrial quality control systems and observed that ZEN triggered excessive mitochondrial fission and disturbed the balance of mitochondrial fusion-fission dynamics, impaired mitochondrial biogenesis, increased mitochondrial unfolded protein response and mitophagy in goat EECs and ESCs. Additionally, ZEN treatment reduced the activities of mitochondrial respiratory chain complexes, heightened the production of hydrogen peroxide and reactive oxygen species, and caused cellular oxidative stress and mitochondrial dysfunction. These results suggest that ZEN has adverse effects on goat endometrium cells by disrupting the mitochondrial quality control system and affecting cell cycle and proliferation. Understanding the underlying molecular pathways involved in ZEN-induced mitochondrial dysfunction and its consequences on cell function will provide critical insights into the reproductive toxicity of ZEN and contribute to safeguarding the health and wellbeing of animals and humans exposed to this mycotoxin.


Assuntos
Proliferação de Células , Endométrio , Cabras , Mitocôndrias , Zearalenona , Animais , Feminino , Endométrio/citologia , Endométrio/metabolismo , Endométrio/efeitos dos fármacos , Zearalenona/toxicidade , Zearalenona/farmacologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Cultivadas , Dinâmica Mitocondrial/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Células Estromais/metabolismo , Células Estromais/efeitos dos fármacos , Células Estromais/citologia
20.
Sci Bull (Beijing) ; 69(14): 2281-2288, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38724301

RESUMO

A "once-in-a-millennium" super rainstorm battered Zhengzhou, central China, from 07/17/2021 to 07/22/2021 (named "7.20" Zhengzhou rainstorm). It killed 398 people and caused billions of dollars in damage. A pressing question is whether rainstorms of this intensity can be effectively documented by geological archives to understand better their historical variabilities beyond the range of meteorological data. Here, four land snail shells were collected from Zhengzhou, and weekly to daily resolved snail shell δ18O records from June to September of 2021 were obtained by gas-source mass spectrometry and secondary ion mass spectrometry. The daily resolved records show a dramatic negative shift between 06/18/2021 and 09/18/2021, which has been attributed to the "7.20" Zhengzhou rainstorm. Moreover, the measured amplitude of this shift is consistent with the theoretical value estimated from the flux balance model and instrumental data for the "7.20" Zhengzhou rainstorm. Our results suggest that the ultra-high resolution δ18O of land snail shells have the potential to reconstruct local synoptic scale rainstorms quantitatively, and thus fossil snail shells in sedimentary strata can be valuable material for investigating the historical variability of local rainstorms under different climate backgrounds.


Assuntos
Exoesqueleto , Isótopos de Oxigênio , Caramujos , Caramujos/química , Animais , China , Exoesqueleto/química , Isótopos de Oxigênio/análise , Chuva , Fósseis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA