Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Sens ; 9(3): 1301-1309, 2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38373043

RESUMO

Continuous pulse wave detection can be used for monitoring and diagnosing cardiovascular diseases, and research on pulse sensing based on piezoelectric thin films is one of the hot spots. Usually, piezoelectric thin films do not come into direct contact with the skin and need to be connected through a layer of an elastic medium. Most views think that the main function of this layer of elastic medium is to increase the adhesion between the sensor component and the skin, but there is little discussion about the impact of the elastic medium on pulse vibration transmission. Here, we conducted a detailed study on the effects of Young's modulus and the thickness of elastic media on pulse sensing signals. The results show that the waveform amplitude of the piezoelectric sensing signal decreases with the increase of Young's modulus and thickness of the elastic medium. Then, we constructed a theoretical model of the influence of elastic media on pulse wave propagation. The amplitude of the pulse wave signal detected by the optimized sensor was increased to 480%. Our research shows that by regulating Young's modulus and thickness of elastic media, pulse wave signals can undergo a similar amplification effect, which has an important theoretical reference value for achieving ambulatory blood pressure monitoring based on high-quality pulse waves.


Assuntos
Monitorização Ambulatorial da Pressão Arterial , Elastômeros , Razão Sinal-Ruído , Módulo de Elasticidade , Modelos Teóricos
2.
Nat Commun ; 15(1): 663, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38253700

RESUMO

Ionically conductive fibers have promising applications; however, complex processing techniques and poor stability limit their practicality. To overcome these challenges, we proposed a stress-induced adaptive phase transition strategy to conveniently fabricate self-encapsulated hydrogel-based ionically conductive fibers (se-HICFs). se-HICFs can be produced simply by directly stretching ionic hydrogels with ultra-stretchable networks (us-IHs) or by dip-drawing from molten us-IHs. During this process, stress facilitated the directional migration and evaporation of water molecules in us-IHs, causing a phase transition in the surface layer of ionic fibers to achieve self-encapsulation. The resulting sheath-core structure of se-HICFs enhanced mechanical strength and stability while endowing se-HICFs with powerful non-contact electrostatic induction capabilities. Mimicking nature, se-HICFs were woven into spider web structures and camouflaged in wild environments to achieve high spatiotemporal resolution 3D depth-of-field sensing for different moving media. This work opens up a convenient route to fabricate stable functionalized ionic fibers.

3.
Sci Adv ; 10(1): eadi6799, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38181077

RESUMO

Electrical stimulation can effectively accelerate bone healing. However, the substantial size and weight of electrical stimulation devices result in reduced patient benefits and compliance. It remains a challenge to establish a flexible and lightweight implantable microelectronic stimulator for bone regeneration. Here, we use self-powered technology to develop an electric pulse stimulator without circuits and batteries, which removes the problems of weight, volume, and necessary rigid packaging. The fully implantable bone defect electrical stimulation (BD-ES) system combines a hybrid tribo/piezoelectric nanogenerator to provide biphasic electric pulses in response to rehabilitation exercise with a conductive bioactive hydrogel. BD-ES can enhance multiple osteogenesis-related biological processes, including calcium ion import and osteogenic differentiation. In a rat model of critical-sized femoral defects, the bone defect was reversed by electrical stimulation therapy with BD-ES and subsequent bone mineralization, and the femur completely healed within 6 weeks. This work is expected to advance the development of symbiotic electrical stimulation therapy devices without batteries and circuits.


Assuntos
Regeneração Óssea , Osteogênese , Humanos , Animais , Ratos , Terapia por Exercício , Calcificação Fisiológica , Estimulação Elétrica
4.
Small Methods ; : e2301455, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38148309

RESUMO

Microneedles (MNs) have emerged as a highly promising technology for delivering drugs via the skin. They provide several benefits, including high drug bioavailability, non-invasiveness, painlessness, and high safety. Traditional strategies for intravenous delivery of anti-tumor drugs have risks of systemic toxicity and easy development of drug resistance, while MN technology facilitates precise delivery and on-demand release of drugs in local tissues. In addition, by further combining with stimulus-responsive materials, the construction of smart stimulus-responsive MNs can be achieved, which can respond to specific physical/chemical stimuli from the internal or external environment, thereby further improving the accuracy of tumor treatment and reducing toxicity to surrounding tissues/cells. This review systematically summarizes the classification, materials, and reaction mechanisms of stimulus-responsive MNs, outlines the benefits and challenges of various types of MNs, and details their application and latest progress in cancer treatment. Finally, the development prospects of smart MNs in tumor treatment are also discussed, bringing inspiration for future precision treatment of tumors.

5.
Adv Healthc Mater ; 12(32): e2301126, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37747342

RESUMO

Osteoarthritis (OA) is the most prevalent joint degenerative disease characterized by chronic joint inflammation. The pathogenesis of OA has not been fully elucidated yet. Cartilage erosion is the most significant pathological feature in OA, which is considered the result of cytomechanical homeostasis destruction. The cytomechanical homeostasis is maintained by the dynamic interaction between cells and the extracellular matrix, which can be reflected by cell traction force (CTF). It is critical to assess the CTF to provide a deeper understanding of the cytomechanical homeostasis destruction and progression in OA. In this study, a silicon nanopillar array (Si-NP) with high spatial resolution and aspect ratio is fabricated to investigate the CTF in response to OA. It is discovered that the CTF is degraded in OA, which is attributed to the F-actin reorganization induced by the activation of RhoA/ROCK signaling pathway. Si-NP also shows promising potential as a mechanopharmacological assessment platform for OA drug screening and evaluation.


Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Silício , Osteoartrite/terapia , Cartilagem , Matriz Extracelular/metabolismo , Homeostase , Condrócitos/metabolismo , Cartilagem Articular/metabolismo
6.
Biosensors (Basel) ; 13(5)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37232913

RESUMO

For outdoor workers or explorers who may be exposed to extreme or wild environments for a long time, wearable electronic devices with continuous health monitoring and personal rescue functions in emergencies could play an important role in protecting their lives. However, the limited battery capacity leads to a limited serving time, which cannot ensure normal operation anywhere and at any time. In this work, a self-powered multifunctional bracelet is proposed by integrating a hybrid energy supply module and a coupled pulse monitoring sensor with the inherent structure of the watch. The hybrid energy supply module can harvest rotational kinetic energy and elastic potential energy from the watch strap swinging simultaneously, generating a voltage of 69 V and a current of 87 mA. Meanwhile, with a statically indeterminate structure design and the coupling of triboelectric and piezoelectric nanogenerators, the bracelet enables stable pulse signal monitoring during movement with a strong anti-interference ability. With the assistance of functional electronic components, the pulse signal and position information of the wearer can be transmitted wirelessly in real-time, and the rescue light and illuminating light can be driven directly by flipping the watch strap slightly. The universal compact design, efficient energy conversion, and stable physiological monitoring demonstrate the wide application prospects of the self-powered multifunctional bracelet.


Assuntos
Fontes de Energia Elétrica , Dispositivos Eletrônicos Vestíveis , Humanos , Pulso Arterial , Frequência Cardíaca , Monitorização Fisiológica
7.
J Mater Chem B ; 11(21): 4703-4714, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37170855

RESUMO

Hydrogel scaffolds play a critical role in tissue engineering due to their hydrophilic network structure and good biocompatibility. Constructing anisotropic scaffolds geometrically similar to injured tissues is conducive to promoting the generation of tissue and organ equivalents, or to guiding and enhancing the regeneration of injured tissues. In this study, we developed polyvinyl alcohol (PVA)/alginate hierarchical hydrogel scaffolds with a clustered and oriented structure using a method that combines directional freezing and drying under stretching. Our hydrogel scaffolds with an adjustable modulus (50 kPa-20 MPa) can match different types of injured tissues. The clustered and oriented structure successfully guided the alignment and orientation of fibroblasts and chondrocytes. This work provides a new idea for constructing hydrogels with hierarchical and anisotropic microstructures, which have promising applications in tissue regeneration.


Assuntos
Hidrogéis , Alicerces Teciduais , Hidrogéis/química , Alicerces Teciduais/química , Engenharia Tecidual/métodos , Condrócitos , Fibroblastos
8.
Adv Mater ; 35(16): e2208395, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36681867

RESUMO

The endogenous electric field (EF) generated by transepithelial potential difference plays a decisive role in wound reepithelialization. For patients with large or chronic wounds, negative-pressure wound therapy (NPWT) is the most effective clinical method in inflammation control by continuously removing the necrotic tissues or infected substances, thus creating a proproliferative microenvironment beneficial for wound reepithelialization. However, continuous negative-pressure drainage causes electrolyte loss and weakens the endogenous EF, which in turn hinders wound reepithelialization. Here, an electrogenerative dressing (EGD) is developed by integrating triboelectric nanogenerators with NPWT. By converting the negative-pressure-induced mechanical deformation into electricity, EGD produces a stable and high-safety EF that can trigger a robust epithelial electrotactic response and drive the macrophages toward a reparative M2 phenotype in vitro. Translational medicine studies confirm that EGD completely reshapes the wound EF weakened by NPWT, and promotes wound closure by facilitating an earlier transition of inflammation/proliferation and guiding epithelial migration and proliferation to accelerate reepithelialization. Long-term EGD therapy remarkably advances tissue remodeling with mature epithelium, orderly extracellular matrix, and less scar formation. Compared with the golden standard of NPWT, EGD orchestrates all the essential wound stages in a noninvasive manner, presenting an excellent prospect in clinical wound therapy.


Assuntos
Cicatrização , Bandagens , Elétrons , Reepitelização , Proliferação de Células , Humanos , Macrófagos , Feminino , Animais , Suínos , Linhagem Celular
9.
Nat Commun ; 13(1): 6908, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36376334

RESUMO

Epidermal growth factor is an excellent drug for promoting wound healing; however, its conventional administration strategies are associated with pharmacodynamic challenges, such as low transdermal permeability, reduction, and receptor desensitization. Here, we develop a microneedle-based self-powered transcutaneous electrical stimulation system (mn-STESS) by integrating a sliding free-standing triboelectric nanogenerator with a microneedle patch to achieve improved epidermal growth factor pharmacodynamics. We show that the mn-STESS facilitates drug penetration and utilization by using microneedles to pierce the stratum corneum. More importantly, we find that it converts the mechanical energy of finger sliding into electricity and mediates transcutaneous electrical stimulation through microneedles. We demonstrate that the electrical stimulation applied by mn-STESS acts as an "adjuvant" that suppresses the reduction of epidermal growth factor by glutathione and upregulates its receptor expression in keratinocyte cells, successfully compensating for receptor desensitization. Collectively, this work highlights the promise of self-powered electrical adjuvants in improving drug pharmacodynamics, creating combinatorial therapeutic strategies for traditional drugs.


Assuntos
Fator de Crescimento Epidérmico , Estimulação Elétrica Nervosa Transcutânea , Sistemas de Liberação de Medicamentos , Administração Cutânea , Agulhas , Preparações Farmacêuticas , Pele
10.
Small Methods ; 6(10): e2200653, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36074976

RESUMO

Wireless wearable sweat analysis devices can monitor biomarkers at the molecular level continuously and in situ, which is highly desired for personalized health care. The miniaturization, integration, and wireless operation of sweat sensors improve the comfort and convenience while also bringing forward new challenges for power supply technology. Herein, a wireless self-powered wearable sweat analysis system (SWSAS) is designed that effectively converts the mechanical energy of human motion into electricity through hybrid nanogenerator modules (HNGMs). The HNGM shows stable output characteristics at low frequency with a current of 15 mA and a voltage of 60 V. Through real-time on-body sweat analysis powered by HNGM, the SWSAS is demonstrated to selectively monitor biomarkers (Na+ and K+ ) in sweat and wirelessly transmit the sensing data to the user interface via Bluetooth.


Assuntos
Suor , Dispositivos Eletrônicos Vestíveis , Humanos , Monitorização Fisiológica , Fontes de Energia Elétrica , Biomarcadores
11.
Research (Wash D C) ; 2022: 9864734, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935133

RESUMO

Diabetes treatment and rehabilitation are usually a lifetime process. Optogenetic engineered designer cell-therapy holds great promise in regulating blood glucose homeostasis. However, portable, sustainable, and long-term energy supplementation has previously presented a challenge for the use of optogenetic stimulation in vivo. Herein, we purpose a self-powered optogenetic system (SOS) for implantable blood glucose control. The SOS consists of a biocompatible far-red light (FRL) source, FRL-triggered transgene-expressing cells, a power management unit, and a flexible implantable piezoelectric nanogenerator (i-PENG) to supply long-term energy by converting biomechanical energy into electricity. Our results show that this system can harvest energy from body movement and power the FRL source, which then significantly enhanced production of a short variant of human glucagon-like peptide 1 (shGLP-1) in vitro and in vivo. Indeed, diabetic mice equipped with the SOS showed rapid restoration of blood glucose homeostasis, improved glucose, and insulin tolerance. Our results suggest that the SOS is sufficiently effective in self-powering the modulation of therapeutic outputs to control glucose homeostasis and, furthermore, present a new strategy for providing energy in optogenetic-based cell therapy.

12.
ACS Appl Mater Interfaces ; 14(32): 36622-36632, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35924818

RESUMO

Wearable exoskeletons are developing rapidly due to their superiority in improving human ability and efficiency. The construction of a multifunctional exoskeleton system relies on an efficient continuous energy supply and various high-performance sensors. Here, a magnetic-driven piezoelectric cantilever generator (MPCG) array is designed for energy harvesting and angle sensing of joint motions. Combining theoretical derivation and experimental characterization, it is found that the nonlinear magnetic force acting on the cantilever structure will cause the phenomenon of frequency upconversion, which greatly improves the output of the MPCG. The experiment successfully proves the feasibility of using the MPCG array as an energy-harvesting module to collect energy from human joint motions and power an RH/temp sensor. Furthermore, the MPCG array can also be used to sense the rotation angle and angular velocity. By integrating with a wireless data acquisition and transmission module and supporting software, a wearable joint rehabilitation monitoring and assessment system is built, which can measure the activities of the joint in real time and evaluate the flexion degree. The demonstrated wearable exoskeleton system for joint motion energy harvesting and joint angle sensing is of great value for the construction of a multifunctional exoskeleton system and wearable smart rehabilitation equipment.


Assuntos
Exoesqueleto Energizado , Articulações/fisiologia , Dispositivos Eletrônicos Vestíveis , Fontes de Energia Elétrica , Humanos , Movimento (Física)
13.
Adv Healthc Mater ; 11(15): e2200653, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35668708

RESUMO

Hydrogel-based epidermal electrodes attract widespread attention in health monitoring and human-machine interfaces for their good biocompatibility, skin-matched Young's modulus, and stable in situ electrophysiological recording performance. However, it is difficult to make the exact conformal attachment between skin and electrodes because of the hair, wrinkles, as well as complex, curved contours of the skin. This also results in signal distortion and large noise. Here, a body temperature enhanced skin-adhesive epidermal electrode is proposed based on non-covalent cross-linked network ionic hydrogel. The ionic hydrogel is fabricated by the polyvinyl alcohol, branched polyethyleneimine, and calcium chloride (CaCl2 ), which demonstrates impressive performances including ultra-stretchability of 1291%, great adhesion to skin and other non-biological materials, stable conductivity of 3.09 S m-1 , recyclability, and outstanding antibacterial ability, simultaneously. Specifically, the adhesion of the ionic hydrogel behaves as temperature-sensitive and could be enhanced by body temperature. Furthermore, the ionic hydrogel is utilized as epidermal electrodes, which display seductive capability to record multifarious electrophysiological signals with high signal-to-noise ratio and ultra-low detection limit, including electrocardiogram, electromyogram, and electroencephalogram. The as-proposed body temperature enhanced skin-adhesive ionic hydrogel brings intelligent functions and broadens the way for epidermal electronics, promoting the development of healthcare electronics.


Assuntos
Adesivos , Hidrogéis , Antibacterianos , Temperatura Corporal , Epiderme , Humanos
14.
Materials (Basel) ; 15(6)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35329513

RESUMO

Oral squamous cell carcinoma (OSCC) is a common oral cancer of the head and neck, which causes tremendous physical and mental pain to people. Traditional chemotherapy usually results in drug resistance and side effects, affecting the therapy process. In this study, a self-powered electrical impulse chemotherapy (EIC) method based on a portable triboelectric nanogenerator (TENG) was established for OSCC therapy. A common chemotherapeutic drug, doxorubicin (DOX), was used in the experiment. The TENG designed with zigzag structure had a small size of 6 cm × 6 cm, which could controllably generate the fixed output of 200 V, 400 V and 600 V. The electrical impulses generated by the TENG increased the cell endocytosis of DOX remarkably. Besides, a simply and ingeniously designed microneedle electrode increased the intensity of electric field (EF) between two adjacent microneedle tips compared with the most used planar interdigital electrode at the same height, which was more suitable for three-dimensional (3D) cells or tissues. Based on the TENG, microneedle electrode and DOX, the self-powered EIC system demonstrated a maximal apoptotic cell ratio of 22.47% and a minimum relative 3D multicellular tumor sphere (MCTS) volume of 160% with the drug dosage of 1 µg mL-1.

15.
Adv Mater ; 34(21): e2200793, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35344226

RESUMO

Virtual reality is a brand-new technology that can be applied extensively. To realize virtual reality, certain types of human-computer interaction equipment are necessary. Existing virtual reality technologies often rely on cameras, data gloves, game pads, and other equipment. These equipment are either bulky, inconvenient to carry and use, or expensive to popularize. Therefore, the development of a convenient and low-cost high-precision human-computer interaction device can contribute positively to the development of virtual reality technology. In this study, a gesture recognition wristband that can realize a full keyboard and multicommand input is developed. The wristband is convenient to wear, low in cost, and does not affect other daily operations of the hand. This wristband is based on physiological anatomy as well as aided by active sensor and machine learning technology; it can achieve a maximum accuracy of 92.6% in recognizing 26 letters. This wristband offers broad application prospects in the fields of gesture command recognition, assistive devices for the disabled, and wearable electronics.


Assuntos
Gestos , Dispositivos Eletrônicos Vestíveis , Eletrônica , Mãos/fisiologia , Humanos , Aprendizado de Máquina
16.
Small ; 18(14): e2108091, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35187811

RESUMO

Converting the mechanical energy of human motion into electricity is considered an ideal energy supply solution for portable electronics. However, low-frequency human movement limits conversion efficiency of conventional energy harvesting devices, which is difficult to provide sustainable power for portable electronic devices. Herein, a fitness gyroscope nanogenerator (fg-NG) based on a triboelectric nanogenerator (TENG) and electromagnetic generator (EMG) is developed that can convert low-frequency wrist motion into high-frequency rotation by using the frequency up-conversion effect of the gyroscope. Remarkably, the fg-NG can reach a rotational speed of over 8000 rpm by hand, increasing the frequency by more than 280 times. The fg-NG can continuously and stably output a current of 17 mA and a voltage of 70 V at frequency of 220-230 Hz. The fg-NG is demonstrated to consistently power a hygrothermograph, smart bracelet, and mobile phone. Also, it can be applicated to a self-powered intelligent training system, showing its immense application potential in portable electronics and wireless Internet of Things devices.


Assuntos
Fontes de Energia Elétrica , Nanotecnologia , Eletricidade , Eletrônica , Humanos , Movimento (Física)
17.
Small Methods ; 6(3): e2101529, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35084114

RESUMO

Human-machine interfaces have penetrated various academia and industry fields such as smartphones, robotic, virtual reality, and wearable electronics, due to their abundant functional sensors and information interaction methods. Nevertheless, most sensors' complex structural design, monotonous parameter detection capability, and single information coding communication hinder their rapid development. As the frontier of self-powered sensors, the triboelectric nanogenerator (TENG) has multiple working modes and high structural adaptability, which is a potential solution for multi-parameter sensing and miniaturizing of traditional interactive electronic devices. Herein, a self-powered hybrid coder (SHC) based on TENG is reported to encode two action parameters of touch and press, which can be used as a smart interface for human-machine interaction. The top-down hollow structure of the SHC, not only constructs a compositing mode to generate stable touch and press signals but also builds a hybrid coding platform for generating action codes in synergy mode. When a finger touches or presses the SHC, Morse code and Gray code can be transmitted for text information or remote control of electric devices. This self-powered coder is of reference value for designing an alternative human-machine interface and having the potential to contribute to the next generation of highly integrated portable smart electronics.


Assuntos
Fontes de Energia Elétrica , Robótica , Eletrônica , Humanos , Tato
18.
Fundam Res ; 2(4): 619-628, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38933997

RESUMO

Respiratory sensing provides a simple, non-invasive, and efficient way for medical diagnosis and health monitoring, but it relies on sensors that are conformal, accurate, durable, and sustainable working. Here, a stretchable, multichannel respiratory sensor inspired by the structure of shark gill cleft is reported. The bionic shark gill structure can convert transverse elastic deformation into longitudinal elastic deformation during stretching. Combining the optimized bionic shark gill structure with the piezoelectric and the triboelectric effect, the bionic shark gill respiratory sensor (BSG-RS) can produce a graded electrical response to different tensile strains. Based on this feature, BSG-RS can simultaneously monitor the breathing rate and breathing depth of the human body accurately, and realize the effective recognition of the different human body's breathing state under the supporting software. With good stretchability, wearability, accuracy, and long-term stability (50,000 cycles), BSG-RS is expected to be applied as self-powered smart wearables for mobile medical diagnostic analysis in the future.

19.
Polymers (Basel) ; 9(6)2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-30970917

RESUMO

Lignin as the most abundant source of aromatic chemicals in nature has attracted a great deal of attention in both academia and industry. Solvolysis is one of the promising methods to convert lignin to a number of petroleum-based aromatic chemicals. The process involving the depolymerization of the lignin macromolecule and repolymerization of fragments is complicated influenced by heating methods, reaction conditions, presence of a catalyst and solvent systems. Recently, numerous investigations attempted unveiling the inherent mechanism of this process in order to promote the production of valuable aromatics. Oxidative solvolysis of lignin can produce a number of the functionalized monomeric or oligomeric chemicals. A number of research groups should be greatly appreciated with regard to their contributions on the following two concerns: (1) the cracking mechanism of inter-unit linkages during the oxidative solvolysis of lignin; and (2) the development of novel catalysts for oxidative solvolysis of lignin and their performance. Investigations on lignin oxidative solvolysis are extensively overviewed in this work, concerning the above issues and the way-forward for lignin refinery.

20.
Carbohydr Polym ; 127: 363-71, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25965495

RESUMO

Xylan-based hemicellulose sample is tested in TG-MS under He, 7% O2, 20% O2 and 60% O2, in order to underpin the understanding of thermo-degradation mechanism of hemicellulose and biomass. The mass loss history recorded by TG can be divided into two main stages: (1) low-temperature stage with the peak located at around 265°C associated with thermal cracking of hemicellulose, and (2) high-temperature stage with the peak enhanced and shifted to lower temperatures by oxygen concentration ascribed to char combustion. A number of prominently evolved ions identified by MS can be designated to acetone, acetic acid, furfural, water, CO, CO2 and so on. The releasing profile of smaller fragments (water, CO and CO2) follows the pattern of DTG curve under different oxygen concentrations (especially for that in the high temperature stage). A three-step consecutive kinetic model employing "n-order reaction function" is proposed and achieved good fit for the experimental mass loss data of thermo-oxidation of hemicellulose.


Assuntos
Atmosfera/química , Polissacarídeos/química , Temperatura , Xilanos/química , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA