Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Microbiol ; 9(7): 1884-1898, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38866938

RESUMO

Deciphering the activity of individual microbes within complex communities and environments remains a challenge. Here we describe the development of microbiome single-cell transcriptomics using droplet-based single-cell RNA sequencing and pangenome-based computational analysis to characterize the functional heterogeneity of the rumen microbiome. We generated a microbial genome database (the Bovine Gastro Microbial Genome Map) as a functional reference map for the construction of a single-cell transcriptomic atlas of the rumen microbiome. The atlas includes 174,531 microbial cells and 2,534 species, of which 172 are core active species grouped into 12 functional clusters. We detected single-cell-level functional roles, including a key role for Basfia succiniciproducens in the carbohydrate metabolic niche of the rumen microbiome. Furthermore, we explored functional heterogeneity and reveal metabolic niche trajectories driven by biofilm formation pathway genes within B. succiniciproducens. Our results provide a resource for studying the rumen microbiome and illustrate the diverse functions of individual microbial cells that drive their ecological niche stability or adaptation within the ecosystem.


Assuntos
Rúmen , Análise de Célula Única , Transcriptoma , Rúmen/microbiologia , Animais , Bovinos/microbiologia , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Microbiota/genética , Perfilação da Expressão Gênica , Biofilmes/crescimento & desenvolvimento , Microbioma Gastrointestinal/genética , Genoma Bacteriano , Filogenia
2.
ISME Commun ; 4(1): ycad020, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38328446

RESUMO

Recent studies have reported that some rumen microbes are "heritable" (those have significant narrow sense heritability) and can significantly contribute to host phenotype variations. However, it is unknown if these heritable rumen bacteria can be passed to the next generation. In this study, the rumen bacteria from mother cows (sampled in 2016) and their offspring (sampled in 2019) were assessed to determine if vertical transmission occurred between the two generations. The analysis of relationship between host genotypes and heritable bacterial abundances showed that potential of five host genotypes can affect the relative abundances of two unclassified species level heritable bacteria (Pseudoscardovia and p-251-o5). The G allele of BTB-01532239 and A allele of ARS-BFGL-NGS-8960 were associated with a higher relative abundance of p-251-o5. The A allele of BTB-00740910 and BovineHD1300021786 and G allele of BovineHD1900005868 were associated with a higher relative abundance of Pseudoscardovia. The mother-offspring comparison revealed that the heritable rumen bacteria had higher compositional similarity than nonheritable bacteria between two generations, and the predicted heritable microbial functions had higher stability than those from nonheritable bacteria. These findings suggest that a high stability exists in heritable rumen bacteria, which could be passed to the next generation in dairy cows.

3.
Anim Biosci ; 37(2): 370-384, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38186256

RESUMO

Rumen microbiota play a central role in the digestive process of ruminants. Their remarkable ability to break down complex plant fibers and proteins, converting them into essential organic compounds that provide animals with energy and nutrition. Research on rumen microbiota not only contributes to improving animal production performance and enhancing feed utilization efficiency but also holds the potential to reduce methane emissions and environmental impact. Nevertheless, studies on rumen microbiota face numerous challenges, including complexity, difficulties in cultivation, and obstacles in functional analysis. This review provides an overview of microbial species involved in the degradation of macromolecules, the fermentation processes, and methane production in the rumen, all based on cultivation methods. Additionally, the review introduces the applications, advantages, and limitations of emerging omics technologies such as metagenomics, metatranscriptomics, metaproteomics, and metabolomics, in investigating the functionality of rumen microbiota. Finally, the article offers a forward-looking perspective on the new horizons and technologies in the field of rumen microbiota functional research. These emerging technologies, with continuous refinement and mutual complementation, have deepened our understanding of rumen microbiota functionality, thereby enabling effective manipulation of the rumen microbial community.

4.
Micromachines (Basel) ; 14(12)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38138336

RESUMO

In this paper, a long-range hybrid waveguide for subwavelength confinement based on double SPP coupling is proposed. The hybrid waveguide consists of a metal-based cylindrical hybrid waveguide and a silver nanowire. There are two coupling regions in the waveguide structure that enhance mode coupling. Strong mode coupling enables the waveguide to exhibit both a small effective mode area (0.01) and an extremely long transmission length (700 µm). The figure of merit (FOM) of the waveguide can be as high as 4000. In addition, the cross-sectional area of the waveguide is only 500 nm × 500 nm, allowing optical operation in the subwavelength range, which helps enhance the miniaturization of optoelectronic devices. The excellent characteristics of the hybrid waveguide make it have potential applications in photoelectric integrated systems.

5.
Med Sci Sports Exerc ; 55(11): 1985-1994, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37259253

RESUMO

PURPOSE: This study compared traditional rehabilitation as a treatment modality after plaster cast treatment of Colles' fracture with a combination of individualized blood flow restriction (BFR) and traditional rehabilitation. METHODS: Twenty-eight participants were randomized into a BFR group and a non-BFR group after plaster cast treatment of Colles' fracture. The BFR group completed traditional rehabilitation with a medical grade tourniquet applied to the upper arm, and the non-BFR group underwent traditional rehabilitation only. Patients were followed up with radiographic outcomes (palmar tilt and radial inclination) to ensure the stability of the fracture. Clinical assessment of patient-rated wrist evaluation (PRWE) score, grip strength, pinch strength, wrist range of motion (ROM), and muscle stiffness was conducted at cast removal and 6 wk after cast removal. Two-way repeated-measures ANOVA determined significant interactions between time and group in the aforementioned variables. An independent-sample t -test assessed the differences in baseline variables and radiographic outcomes. RESULTS: Significant interactions between time and group were noted for PRWE score ( F = 11.796, P = 0.002, η2p = 0.339), grip strength ( F = 5.445, P = 0.029, η2p = 0.191), and wrist ROM (ulnar deviation; F = 7.856, P = 0.010, η2p = 0.255). No significant interactions between time and group were found in measurements of pinch strength or wrist ROM (flexion, extension, radial deviation, pronation, supination). An independent-sample t -test showed no significant difference in baseline variables and radiographic outcomes between the groups before or after intervention. CONCLUSIONS: This study found that combining individualized BFR with traditional rehabilitation resulted in greater increases in PRWE score, grip strength, and wrist ROM (ulnar deviation) than traditional rehabilitation alone. Therefore, adding individualized BFR to traditional rehabilitation might be a better option for treatment for similar patients.


Assuntos
Fratura de Colles , Humanos , Fratura de Colles/diagnóstico por imagem , Fratura de Colles/terapia , Moldes Cirúrgicos , Força da Mão , Amplitude de Movimento Articular/fisiologia , Medidas de Resultados Relatados pelo Paciente
6.
mSystems ; 7(5): e0042222, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36102532

RESUMO

Recent studies have reported that some rumen microbes are heritable. However, it is necessary to clarify the functions and specific contributions of the heritable rumen microbes to cattle phenotypes (microbiability) in comparison with those that are nonheritable. This study aimed to identify the distribution and predicted functions of heritable and nonheritable bacterial taxa at species level in the rumen of dairy cows and their respective contributions to energy-corrected milk yield, protein content and yield, and fat content and yield in milk. Thirty-two heritable and 674 nonheritable bacterial taxa were identified at species level, and the functional analysis revealed that predicted microbial functions for both groups were mainly enriched for energy, amino acid, and ribonucleotide metabolism. The mean microbiability (to reflect a single taxon's contribution) of heritable bacteria was found to range from 0.16% to 0.33% for the different milk traits, whereas the range for nonheritable bacteria was 0.03% to 0.06%. These findings suggest a strong contribution by host genetics in shaping the rumen microbiota, which contribute significantly to milk production traits. Therefore, there is an opportunity to further improve milk production traits through attention to host genetics and the interaction with the rumen microbiota. IMPORTANCE Rumen bacteria produce volatile fatty acids which exert a far-reaching influence on hepatic metabolism, mammary gland metabolism, and animal production. In the current study, 32 heritable and 674 nonheritable bacterial taxa at species level were identified, and shown to have different microbiability (overall community contribution) and mean microbiability (the average of a single taxon's contribution) for lactation performance. The predicted functions of heritable and nonheritable bacterial taxa also differed, suggesting that targeted nutritional and genetic breeding approaches could be used to manipulate them to improve dairy cow performance.


Assuntos
Lactação , Rúmen , Feminino , Bovinos , Animais , Rúmen/química , Leite/química , Bactérias/genética , Ácidos Graxos Voláteis/análise
7.
Microorganisms ; 10(8)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35893549

RESUMO

Age is an important factor in shaping the gut microbiome. However, the age effect on the rumen microbial community for dairy buffaloes remains less explored. Using metagenomics, we examined the microbial composition and functions of rumen microbiota in dairy Murrah buffaloes of different ages: Y (1 year old), M (3−5 years old), E (6−8 years old), and O (>9 years old). We found that Bacteroidetes and Firmicutes were the predominant phyla, with Prevotella accounting for the highest abundance at the genus level. The proportion of Bacteroides and Methanobrevibacter significantly increased with age, while the abundance of genus Lactobacillus significantly decreased with age (LDA > 3, p < 0.05). Most differed COG and KEGG pathways were enriched in Y with carbohydrate metabolism, while older buffaloes enriched more functions of protein metabolism and the processing of replication and repair (LDA > 2, p < 0.05). Additionally, the functional contribution analysis revealed that the genera Prevotella and Lactobacillus of Y with more functions of CAZymes encoded genes of glycoside hydrolases and carbohydrate esterases for their roles of capable of metabolizing starch and sucrose-associated oligosaccharide enzyme, hemicellulase, and cellulase activities than the other three groups (LDA > 2, p < 0.05), thus affecting the 1-year-old dairy buffalo rumen carbohydrate metabolism. This study provides comprehensive dairy buffalo rumen metagenome data and assists in manipulating the rumen microbiome for improved dairy buffalo production.

8.
Anim Microbiome ; 4(1): 19, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35260198

RESUMO

BACKGROUND: Rumen microbial composition and functions have vital roles in feed digestion and fermentation and are linked to feed efficiency in cattle. This study selected Holstein cows, which are high in both milk protein content and milk yield, to analyse the relationship between the rumen microbiota and residual feed intake (RFI). Eighteen multiparous lactating cows were divided into low RFI (LRFI, high efficiency, n = 9) and high RFI (HRFI, low efficiency, n = 9) groups to investigate the differences in microbial composition and functions. RESULTS: The relative abundances of butyrate producers, including the Clostridium, Butyrivibrio, Eubacterium and Blautia genera, were higher in HRFI cows than in LRFI cows (P < 0.05). Four carbohydrate metabolic pathways (glycolysis/gluconeogenesis, pentose phosphate pathway, fructose and mannose metabolism, and butanoate metabolism) and one energy metabolism pathway (methane metabolism), were more abundant in HRFI animals (P < 0.05). Quorum sensing and DNA replication pathways were more abundant in HRFI cows. For CAZyme profiles, 14 out of 19 genes encoding carbohydrates-deconstructing enzymes were more abundant in HRFI cows (P < 0.05). Seven Lachnospiraceae species associated with carbohydrate metabolism and quorum sensing may contribute to the difference in feed efficiency. Moreover, the LRFI cows had lower abundances of Methanosphaera (P < 0.01), Methanobrevibacter ruminantium (P = 0.09) and methanogenesis functions (P = 0.04). CONCLUSIONS: The rumen microbiota of low-efficiency cows has stronger abilities to degrade carbohydrates and produce methane, and quorum sensing pathways could also be associated with differences in feed efficiency. This study provides a deeper understanding of the microbial ecology of dairy cows with different feed efficiencies and highlights the possibility of modulating the rumen microbiome or microbial functions to improve the feed efficiency of dairy cows.

9.
Microbiome ; 10(1): 32, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35172905

RESUMO

BACKGROUND: As the global population continues to grow, competition for resources between humans and livestock has been intensifying. Increasing milk protein production and improving feed efficiency are becoming increasingly important to meet the demand for high-quality dairy protein. In a previous study, we found that milk protein yield in dairy cows was associated with the rumen microbiome. The objective of this study was to elucidate the potential microbial features that underpins feed efficiency in dairy cows using metagenomics, metatranscriptomics, and metabolomics. RESULTS: Comparison of metagenomic and metatranscriptomic data revealed that the latter was a better approach to uncover the associations between rumen microbial functions and host performance. Co-occurrence network analysis of the rumen microbiome revealed differential microbial interaction patterns between the animals with different feed efficiency, with high-efficiency animals having more and stronger associations than low-efficiency animals. In the rumen of high-efficiency animals, Selenomonas and members of the Succinivibrionaceae family positively interacted with each other, functioning as keystone members due to their essential ecological functions and active carbohydrate metabolic functions. At the metabolic level, analysis using random forest machine learning suggested that six ruminal metabolites (all derived from carbohydrates) could be used as metabolic markers that can potentially differentiate efficient and inefficient microbiomes, with an accuracy of prediction of 95.06%. CONCLUSIONS: The results of the current study provided new insights into the new ruminal microbial features associated with feed efficiency in dairy cows, which may improve the ability to select animals for better performance in the dairy industry. The fundamental knowledge will also inform future interventions to improve feed efficiency in dairy cows. Video Abstract.


Assuntos
Ração Animal , Rúmen , Ração Animal/análise , Animais , Bovinos , Dieta/veterinária , Feminino , Fermentação , Lactação , Rúmen/metabolismo
10.
Microbiome ; 10(1): 11, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35057854

RESUMO

BACKGROUND: Dairy cows utilize human-inedible, low-value plant biomass to produce milk, a low-cost product with rich nutrients and high proteins. This process largely relies on rumen microbes that ferment lignocellulose and cellulose to produce volatile fatty acids (VFAs). The VFAs are absorbed and partly metabolized by the stratified squamous rumen epithelium, which is mediated by diverse cell types. Here, we applied a metagenomic binning approach to explore the individual microbes involved in fiber digestion and performed single-cell RNA sequencing on rumen epithelial cells to investigate the cell subtypes contributing to VFA absorption and metabolism. RESULTS: The 52 mid-lactating dairy cows in our study (parity = 2.62 ± 0.91) had milk yield of 33.10 ± 6.72 kg. We determined the fiber digestion and fermentation capacities of 186 bacterial genomes using metagenomic binning and identified specific bacterial genomes with strong cellulose/xylan/pectin degradation capabilities that were highly associated with the biosynthesis of VFAs. Furthermore, we constructed a rumen epithelial single-cell map consisting of 18 rumen epithelial cell subtypes based on the transcriptome of 20,728 individual epithelial cells. A systematic survey of the expression profiles of genes encoding candidates for VFA transporters revealed that IGFBP5+ cg-like spinous cells uniquely highly expressed SLC16A1 and SLC4A9, suggesting that this cell type may play important roles in VFA absorption. Potential cross-talk between the microbiome and host cells and their roles in modulating the expression of key genes in the key rumen epithelial cell subtypes were also identified. CONCLUSIONS: We discovered the key individual microbial genomes and epithelial cell subtypes involved in fiber digestion, VFA uptake and metabolism, respectively, in the rumen. The integration of these data enables us to link microbial genomes and epithelial single cells to the trophic system. Video abstract.


Assuntos
Lactação , Rúmen , Ração Animal/análise , Animais , Bovinos , Dieta/veterinária , Digestão , Feminino , Fermentação , Metagenoma/genética , Gravidez , Rúmen/metabolismo , Análise de Sequência de RNA
11.
Animals (Basel) ; 11(12)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34944297

RESUMO

The main objective of our current study was evaluating the effects of NFC supplementation and forage type on rumen microbiota and metabolism, by comparing microbial structures and composition among samples collected from cows fed AH (alfalfa-based diet), H-NFC (CS-based diet with high NFC) and L-NFC (CS-based diet with low NFC) diets. Our results show that microbial communities were structurally different but functionally similar among groups. When compared with L-HFC, NFC increased the population of Treponema, Ruminobacter, Selenomonas and Succinimonas that were negatively correlated with ruminal NH3-N, and urea nitrogen in blood, milk and urine, as well as significantly increasing the number of genes involved in amino acid biosynthesis. However, when compared to the AH group, H-NFC showed a higher abundance of bacteria relating to starch degradation and lactate production, but a lower abundance of bacteria utilizing pectin and other soluble fibers. This may lead to a slower proliferation of lignocellulose bacteria, such as Ruminococcus, Marvinbryantia and Syntrophococcus. Lower fibrolytic capacity in the rumen may reduce rumen rotation rate and may limit dry matter intake and milk yield in cows fed H-NFC. The enzyme activity assays further confirmed that cellulase and xylanase activity in AH were significantly higher than H-NFC. In addition, the lower cobalt content in Gramineae plants compared to legumes, might have led to the significantly down-regulated microbial genes involved in vitamin B12 biosynthesis in H-NFC compared to AH. A lower dietary supply with vitamin B12 may restrict the synthesis of milk lactose, one of the key factors influencing milk yield. In conclusion, supplementation of a CS-based diet with additional NFC was beneficial for nitrogen conversion by increasing the activity of amino acid biosynthesis in rumen microbiota in dairy cattle. However, lower levels of fibrolytic capacity may limit dry matter intake of cows fed H-NFC and may prevent increased milk yield.

12.
Opt Express ; 29(17): 27118-27126, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34615133

RESUMO

We present a numerical calculation with iterative algorithm method for accurately measuring laser linewidth. In this new method, the self-heterodyne spectrum of long delay fiber is calculated as the initial value, and the short delay self-heterodyne spectrum is demodulated with iterative algorithm to realize the accurate measurement of laser linewidth. The method can eliminate the influence of 1/f noise on the measurement spectrum broadening, so it provides a powerful way for accurate measurement of narrow linewidth.

13.
Anim Microbiome ; 3(1): 44, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34210366

RESUMO

BACKGROUND: Antimicrobial resistance poses super challenges in both human health and livestock production. Rumen microbiota is a large reservoir of antibiotic resistance genes (ARGs), which show significant varations in different host species and lifestyles. To compare the microbiome and resistome between dairy cows and dairy buffaloes, the microbial composition, functions and harbored ARGs of rumen microbiota were explored between 16 dairy cows (3.93 ± 1.34 years old) and 15 dairy buffaloes (4.80 ± 3.49 years old) using metagenomics. RESULTS: Dairy buffaloes showed significantly different bacterial species (LDA > 3.5 & P < 0.01), enriched KEGG pathways and CAZymes encoded genes (FDR < 0.01 & Fold Change > 2) in the rumen compared with dairy cows. Distinct resistive profiles were identified between dairy cows and dairy buffaloes. Among the total 505 ARGs discovered in the resistome of dairy cows and dairy buffaloes, 18 ARGs conferring resistance to 16 antibiotic classes were uniquely detected in dairy buffaloes. Gene tcmA (resistance to tetracenomycin C) presented high prevalence and age effect in dairy buffaloes, and was also highly positively correlated with 93 co-expressed ARGs in the rumen (R = 0.98 & P = 5E-11). In addition, 44 bacterial species under Lactobacillus genus were found to be associated with tcmA (R > 0.95 & P < 0.001). L. amylovorus and L. acidophilus showed greatest potential of harboring tcmA based on co-occurrence analysis and tcmA-containing contigs taxonomic alignment. CONCLUSIONS: The current study revealed distinctive microbiome and unique ARGs in dairy buffaloes compared to dairy cattle. Our results provide novel understanding on the microbiome and resistome of dairy buffaloes, the unique ARGs and associated bacteria will help develop strategies to prevent the transmission of ARGs.

14.
Anim Microbiome ; 3(1): 18, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568223

RESUMO

BACKGROUND: Antimicrobial resistance is one of the most urgent threat to global public health, as it can lead to high morbidity, mortality, and medical costs for humans and livestock animals. In ruminants, the rumen microbiome carries a large number of antimicrobial resistance genes (ARGs), which could disseminate to the environment through saliva, or through the flow of rumen microbial biomass to the hindgut and released through feces. The occurrence and distribution of ARGs in rumen microbes has been reported, revealing the effects of external stimuli (e.g., antimicrobial administrations and diet ingredients) on the antimicrobial resistance in the rumen. However, the host effect on the ruminal resistome and their interactions remain largely unknown. Here, we investigated the ruminal resistome and its relationship with host feed intake and milk protein yield using metagenomic sequencing. RESULTS: The ruminal resistome conferred resistance to 26 classes of antimicrobials, with genes encoding resistance to tetracycline being the most predominant. The ARG-containing contigs were assigned to bacterial taxonomy, and the majority of highly abundant bacterial genera were resistant to at least one antimicrobial, while the abundances of ARG-containing bacterial genera showed distinct variations. Although the ruminal resistome is not co-varied with host feed intake, it could be potentially linked to milk protein yield in dairy cows. Results showed that host feed intake did not affect the alpha or beta diversity of the ruminal resistome or the abundances of ARGs, while the Shannon index (R2 = 0.63, P < 0.01) and richness (R2 = 0.67, P < 0.01) of the ruminal resistome were highly correlated with milk protein yield. A total of 128 significantly different ARGs (FDR < 0.05) were identified in the high- and low-milk protein yield dairy cows. We found four ruminal resistotypes that are driven by specific ARGs and associated with milk protein yield. Particularly, cows with low milk protein yield are classified into the same ruminal resistotype and featured by high-abundance ARGs, including mfd and sav1866. CONCLUSIONS: The current study uncovered the prevalence of ARGs in the rumen of a cohort of lactating dairy cows. The ruminal resistome is not co-varied with host feed intake, while it could be potentially linked to milk protein yield in dairy cows. Our results provide fundamental knowledge on the prevalence, mechanisms and impact factors of antimicrobial resistance in dairy cattle and are important for both the dairy industry and other food animal antimicrobial resistance control strategies.

15.
Microbiome ; 8(1): 64, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32398126

RESUMO

BACKGROUND: Recently, we reported that some dairy cows could produce high amounts of milk with high amounts of protein (defined as milk protein yield [MPY]) when a population was raised under the same nutritional and management condition, a potential new trait that can be used to increase high-quality milk production. It is unknown to what extent the rumen microbiome and its metabolites, as well as the host metabolism, contribute to MPY. Here, analysis of rumen metagenomics and metabolomics, together with serum metabolomics was performed to identify potential regulatory mechanisms of MPY at both the rumen microbiome and host levels. RESULTS: Metagenomics analysis revealed that several Prevotella species were significantly more abundant in the rumen of high-MPY cows, contributing to improved functions related to branched-chain amino acid biosynthesis. In addition, the rumen microbiome of high-MPY cows had lower relative abundances of organisms with methanogen and methanogenesis functions, suggesting that these cows may produce less methane. Metabolomics analysis revealed that the relative concentrations of rumen microbial metabolites (mainly amino acids, carboxylic acids, and fatty acids) and the absolute concentrations of volatile fatty acids were higher in the high-MPY cows. By associating the rumen microbiome with the rumen metabolome, we found that specific microbial taxa (mainly Prevotella species) were positively correlated with ruminal microbial metabolites, including the amino acids and carbohydrates involved in glutathione, phenylalanine, starch, sucrose, and galactose metabolism. To detect the interactions between the rumen microbiome and host metabolism, we associated the rumen microbiome with the host serum metabolome and found that Prevotella species may affect the host's metabolism of amino acids (including glycine, serine, threonine, alanine, aspartate, glutamate, cysteine, and methionine). Further analysis using the linear mixed effect model estimated contributions to the variation in MPY based on different omics and revealed that the rumen microbial composition, functions, and metabolites, and the serum metabolites contributed 17.81, 21.56, 29.76, and 26.78%, respectively, to the host MPY. CONCLUSIONS: These findings provide a fundamental understanding of how the microbiome-dependent and host-dependent mechanisms contribute to varied individualized performance in the milk production quality of dairy cows under the same management condition. This fundamental information is vital for the development of potential manipulation strategies to improve milk quality and production through precision feeding. Video Abstract.


Assuntos
Lactação , Metaboloma , Microbiota , Leite , Rúmen/microbiologia , Animais , Bovinos , Indústria de Laticínios , Feminino , Prevotella/isolamento & purificação , Prevotella/metabolismo
16.
Appl Opt ; 59(8): 2610-2614, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32225805

RESUMO

Spectral broadening due to amplified spontaneous emission (ASE) in a fiber amplifier is experimentally and theoretically investigated in this paper. By measuring and analyzing the variation in linewidth and noise of the fiber amplifier, the influence of ASE on laser linewidth is studied. The analysis shows that the ASE will cause broadening of the laser linewidth as noise, and the noise is introduced as an additive term rather than a multiplicative one.

17.
Front Optoelectron ; 13(2): 149-155, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36641554

RESUMO

In this paper, we have proposed and demonstrated the generation of passively mode-locked pulses and dissipative soliton resonance in an erbium-doped fiber laser based on Fe3O4 nanoparticles as saturable absorbers. We obtained self-starting mode-locked pulses with fundamental repetition frequency of 7.69 MHz and center wavelength of 1561 nm. The output of a pulsed laser has spectral width of 0.69 nm and pulse duration of 14 ns with rectangular pulse profile at the pump power of 190 mW. As far as we know, this is the firsttimethatFe3O4 nanoparticles have been developed as low-dimensional materials for passive mode-locking with rectangular pulse. Our experiments have confirmed that Fe3O4 has a wide prospect as a nonlinear photonics device for ultrafast fiber laser applications.

18.
Microorganisms ; 8(12)2020 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-33419337

RESUMO

Mastitis is one of the major problems for the productivity of dairy cows and its classifications have usually been based on milk somatic cell counts (SCCs). In this study, we investigated the differences in milk production, rumen fermentation parameters, and diversity and composition of rumen and hindgut bacteria in cows with similar SCCs with the aim to identify whether they can be potential microbial biomarkers to improve the diagnostics of mastitis. A total of 20 dairy cows with SCCs over 500 × 103 cells/mL in milk but without clinical symptoms of mastitis were selected in this study. Random forest modeling revealed that Erysipelotrichaceae UCG 004 and the [Eubacterium] xylanophilum group in the rumen, as well as the Family XIII AD3011 group and Bacteroides in the hindgut, were the most influential candidates as key bacterial markers for differentiating "true" mastitis from cows with high SCCs. Mastitis statuses of 334 dairy cows were evaluated, and 96 in 101 cows with high SCCs were defined as healthy rather than mastitis according to the rumen bacteria. Our findings suggested that bacteria in the rumen and hindgut can be a new approach and provide an opportunity to reduce common errors in the detection of mastitis.

19.
Animals (Basel) ; 9(5)2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31083376

RESUMO

It is well known that serum biochemical parameters and hormones contribute greatly to the physiological and metabolic status of dairy cows. However, few studies have focused on the variation of these serum parameters in multiparous mid-lactation cows without the interference of diet and management. A total of 287 Holstein dairy cows fed the same diet and maintained under the same management regime were selected from a commercial dairy farm to evaluate the effects of days-in-milk (DIM) and parity on serum biochemical parameters and hormone profiles. Milk yield and milk protein content were affected by DIM and parity (p < 0.05). Milk protein yield showed a numerically decreasing trend with parity, and it was relatively constant in cows with parities between 2 and 4 but lower in cows with parity 6 (p = 0.020). Ten and five serum biochemical parameters related to protein status, energy metabolism, liver and kidney function, and oxidative stress were affected by DIM and parity, respectively (p < 0.05). Glucagon, insulin-like growth factor 1 concentration, and the revised quantitative insulin sensitivity check index were significantly different (p < 0.05) among cows with different DIM. Parity had no effect on hormone concentrations. An interaction between DIM and parity effect was only detected for glucagon concentration (p = 0.015), which showed a significantly increasing trend with DIM and overall decreasing trend with parity. In summary, DIM and parity played an important role in affecting the serum biochemical parameters and/or hormones of dairy cows, with serum parameters affected more by DIM than parity.

20.
Sci Data ; 6: 180301, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30667380

RESUMO

With the help of the bacteria in the rumen, ruminants can effectively convert human inedible plant fiber to edible food (meat and milk). However, the understanding of rumen bacteriome in dairy cows is still limited, especially in a large population under the same diet, breed, and milking period. Here we described the sequencing data of 16S rRNA gene of rumen bacteriome from 334 mid-lactation Holstein dairy cows generated using the Illumina HiSeq 2500 (PE250) platform. A total of 24,030,828 raw reads with an average of 71,946 ± 13,450 sequences per sample were obtained. The top ten genera with highest relative abundance accounted for 60.65% of total bacterial sequences. We observed 4,460 overall operational taxonomic units (1,827 ± 94 per sample) based on a 97% nucleotide sequence identity between reads. Totally 6,082 amplicon sequence variants (672 ± 131 per sample) were identified in 334 samples. The shareable datasets can be re-used by researchers to assess other rumen bacterial-related biological functions in dairy cows towards the improvement of animal production and health.


Assuntos
Bovinos , Microbioma Gastrointestinal , Rúmen/microbiologia , Animais , Sequenciamento de Nucleotídeos em Larga Escala , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA