Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Med Chem ; 277: 116712, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39106657

RESUMO

Quaternization of ruthenium complexes may be a promising strategy for the development of new antibiotics. In response to the increasing bacterial resistance, we integrated the quaternary amine structure into the design of ruthenium complexes and evaluated their antibacterial activity. All the ruthenium complexes showed good antibacterial activity against the tested Staphylococcus aureus (S. aureus). Ru-8 was the most effective antibacterial agent that displayed excellent antibacterial activity against S. aureus (MIC = 0.78-1.56 µg/mL). In vitro experiments showed that all nine ruthenium complexes had low hemolytic toxicity to rabbit erythrocytes. Notably, Ru-8 was found to disrupt bacterial cell membranes, alter their permeability, and induce ROS production in bacteria, all the above leading to the death of bacteria without inducing drug resistance. To further explore the antibacterial activity of Ru-8in vivo, we established a mouse skin wound infection model and a G. mellonella larvae infection model. Ru-8 exhibited significant antibacterial efficacy against S. aureus in vivo and low toxicity to mouse tissues. The Ru-8 showed low toxicity to Raw264.7 cells (mouse monocyte macrophage leukemia cells). This study indicates that the ruthenium complex ruthenium quaternary was a promising strategy for the development of new antibacterial agents.

2.
Sci Total Environ ; 929: 172417, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38631633

RESUMO

Soil erosion plays a crucial role in soil organic carbon (SOC) redistribution and mineralization. Meanwhile, the soil extracellular enzymes (EEs) drive C mineralization. However, the response of soil EEs mediated SOC mineralization to soil erosion remains unclear. We investigated the SOC and soil EEs distribution in long gentle sloping farmland (LGSF) under slop-ridge tillage (SRT) and cross-ridge tillage (CRT) in the black soil region (BSR) of northeast China. The results indicated that the SOC mineralization at the upper slope position was higher than that on the toe-slope (133 % âˆ¼ 340 %) under CRT. However, for SRT, SOC mineralization on the back-slope was 126 % and 164 % higher than on the summit- and shoulder-slope. The SOC, dissolved organic carbon (DOC) content, and ß-glucosidase (BG) activities underwent spatial migration and deposition in the lower region under both tillage practices. As for CRT, the SOC content of the back-slope was 19.21 % higher than on the summit-slope, while the DOC content at the back-slope was 29.20 % higher than on the toe-slope. The BG activity was the highest at the toe-slope, followed by the foot-and back-slope, which were 41.74 %-74.73 % higher than at the summit-slope. As for SRT, the SOC, DOC, and BG activities on the back-slope were significantly higher than other slope positions (P < 0.05). The SOC on the back-slope were 47.82 % and 31.72 % higher than those on the summit- and shoulder-slope, respectively. The DOC and BG on the back-slope were 10.98 % and 67.78 % higher than on the summit-slope. The soil EES results indicated strong C and P limitation. Spatial differences in soil C distribution resulted in a significant positive correlation between C limitation and mineralization. This indicated that soil C and nutrient distribution under different slope positions driven by soil erosion, leading to soil nutrient limitation, is a key factor influencing spatial differences in C sources or sinks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA