Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
FASEB J ; 38(10): e23677, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38775792

RESUMO

Although the use of Doxorubicin (Dox) is extensive in the treatment of malignant tumor, the toxic effects of Dox on the heart can cause myocardial injury. Therefore, it is necessary to find an alternative drug to alleviate the Dox-induced cardiotoxicity. Dihydroartemisinin (DHA) is a semisynthetic derivative of artemisinin, which is an active ingredient of Artemisia annua. The study investigates the effects of DHA on doxorubicin-induced cardiotoxicity and ferroptosis, which are related to the activation of Nrf2 and the regulation of autophagy. Different concentrations of DHA were administered by gavage for 4 weeks in mice. H9c2 cells were pretreated with different concentrations of DHA for 24 h in vitro. The mechanism of DHA treatment was explored through echocardiography, biochemical analysis, real-time quantitative PCR, western blotting analysis, ROS/DHE staining, immunohistochemistry, and immunofluorescence. In vivo, DHA markedly relieved Dox-induced cardiac dysfunction, attenuated oxidative stress, alleviated cardiomyocyte ferroptosis, activated Nrf2, promoted autophagy, and improved the function of lysosomes. In vitro, DHA attenuated oxidative stress and cardiomyocyte ferroptosis, activated Nrf2, promoted clearance of autophagosomes, and reduced lysosomal destruction. The changes of ferroptosis and Nrf2 depend on selective degradation of keap1 and recovery of lysosome. We found for the first time that DHA could protect the heart from the toxic effects of Dox-induced cardiotoxicity. In addition, DHA significantly alleviates Dox-induced ferroptosis through the clearance of autophagosomes, including the selective degradation of keap1 and the recovery of lysosomes.


Assuntos
Artemisininas , Autofagia , Cardiotoxicidade , Doxorrubicina , Ferroptose , Miócitos Cardíacos , Fator 2 Relacionado a NF-E2 , Artemisininas/farmacologia , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Autofagia/efeitos dos fármacos , Doxorrubicina/efeitos adversos , Doxorrubicina/toxicidade , Camundongos , Ferroptose/efeitos dos fármacos , Cardiotoxicidade/etiologia , Cardiotoxicidade/prevenção & controle , Cardiotoxicidade/metabolismo , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Linhagem Celular , Ratos
2.
Int Immunopharmacol ; 124(Pt A): 110851, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37651853

RESUMO

According to epidemiological studies, smoking is one of the leading causes of the high incidence of abdominal aortic aneurysms (AAA).3,4-Benzopyrene (Bap) is a by-product of coal tar and tobacco combustion produced by the incomplete combustion of organic fuels. It is an essential component of both automobile exhaust and tobacco smoke, it is also an important member of the air pollutants. However, the exact mechanism by which Bap can worsen the condition of patients with AAA and increase the mortality of patients with AAA remains unknown. This research aims to investigate the role of Bap in inducing pyroptosis in AAA. In vitro experiments, we revealed that pyroptosis-Gasdermin D (GSDMD) increased when Bap was used. Additionally, the release of inflammatory factors, such as IL-1ß and IL-18 were also rising. An mRNA sequencing analysis revealed that macrophages expressed a high level of the endothelin gene when cells were stimulated by Bap. It seemed that smooth muscle cells pyroptosis was related to macrophages. Experiments revealed that endothelin could increase the calcium ion concentration in smooth muscle cells, resulting in a large amount of ROS and activation of NLRP3 inflammasomes. We discovered that treatment with endothelin receptor antagonist (ABT-546) in vivo and calcium ion chelator (BAPTA) in vitro decreased AAA diameter, downregulated NLRP3 inflammasomes and ROS, and significantly reduced the number of activated GSDMD. Inflammatory mediators were released at a lower level. These findings suggest that Bap-induced pyroptosis may be mediated by the ET-1-Ca2+-inflammasome pathway, providing a new way to reduce mortality in AAA patients.

3.
Int Immunopharmacol ; 122: 110481, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37390647

RESUMO

BACKGROUND: Air pollution is an important and interventionable risk factor for cardiovascular disease. Air pollution exposure, even for a short-term exposure, is conspicuously relevant to increased risk of myocardial infarction (MI) mortality and clinical evidence has shown that air pollution particulate matter (PM) induces the aggravation of AMI. 3,4-benzo[a]pyrene (BaP), an extremely toxic polycyclic aromatic hydrocarbon (PAH) and a common component of PM, is listed as one of the main objects of environmental pollution monitoring. Both epidemiological and toxicological studies suggest that BaP exposure may be associated with cardiovascular disease. Since PM is significantly associated with the increased risk of MI mortality, and BaP is an important component of PM associated with cardiovascular disease, we intend to investigate the effect of BaP on MI models. METHODS: The MI mouse model and the oxygen and glucose deprivation (OGD) H9C2 cell model were used to investigate the effect of BaP in MI injury. The involvement of mitophagy and pyroptosis in regulating deterioration of cardiac function and aggravation of MI injury induced by BaP was comprehensively evaluated. RESULTS: Our study shows that BaP exacerbates MI injury in vivo and in vitro, a result based on BaP-induced NLRP3-related pyroptosis. In addition, BaP can inhibit PINK1/Parkin dependent mitophagy through the aryl hydrocarbon receptor (AhR), thus the mitochondrial permeability transition pore (mPTP) was induced to open. CONCLUSION: Our results suggest a role for the BaP from air pollution in MI injury aggravation and reveal that BaP aggravates MI injury by activating NLRP3-related pyroptosis via the PINK1/Parkin-mitophagy-mPTP opening axis.


Assuntos
Infarto do Miocárdio , Piroptose , Camundongos , Animais , Mitofagia , Proteína 3 que Contém Domínio de Pirina da Família NLR , Benzo(a)pireno , Proteínas Quinases , Ubiquitina-Proteína Ligases
4.
Ecotoxicol Environ Saf ; 254: 114701, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36871353

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are produced during combustion of organic matter, such as during cigarette smoking, and they exist widely in the environment. Exposure to 3,4-benzo[a]pyrene (BaP), as the most widely studied PAHs, relates to many cardiovascular diseases. However, the underlying mechanism of its involvement remains largely unclear. In this study, we developed a myocardial ischemia-reperfusion (I/R) injury mouse model and an oxygen and glucose deprivation-reoxygenation H9C2 cell model to evaluate the effect of BaP in I/R injury. After BaP exposure, the expression of autophagy-related proteins, the abundance of NLRP3 inflammasomes, and the degree of pyroptosis were measured. Our results show that BaP aggravates myocardial pyroptosis in a autophagy-dependent manner. In addition, we found that BaP activates the p53-BNIP3 pathway via the aryl hydrocarbon receptor to decrease autophagosome clearance. Our findings present new insights into the mechanisms underlying cardiotoxicity and reveal that the p53-BNIP3 pathway, which is involved in autophagy regulation, is a potential therapeutic target for BaP-induced myocardial I/R injury. Because PAHs are omnipresent in daily life, the toxic effects of these harmful substances should not be underestimated.


Assuntos
Traumatismo por Reperfusão Miocárdica , Camundongos , Animais , Traumatismo por Reperfusão Miocárdica/metabolismo , Piroptose , Benzo(a)pireno/toxicidade , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína Supressora de Tumor p53 , Autofagia
5.
Phytomedicine ; 104: 154336, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35849969

RESUMO

BACKGROUND: The pathogenesis of myocardial ischemia/reperfusion is complex, involving multiple regulatory genes and environmental factors, and requiring the simultaneous regulation of multiple targets. Meanwhile, Traditional Chinese Medicine (TCM) has certain advantages in the comprehensive treatment of multi-site, multi-target conditions and overall regulation of this condition. This study explores the effect of the well-known TCM, the Shexiang Baoxin Pill (SBP) on myocardial ischemia/reperfusion injury in mice. MATERIALS AND METHODS: In vivo, 20 mg/kg/day SBP was administered by gavage for 28 days. In vitro, cardiomyocytes were pretreated with 25 µg/ml SBP for 24 h. Evans blue/TTC double-staining was employed to determine the infarct size. Markers of myocardial injury were detected in the serum and cell supernatants. The changes of pyroptosis and autophagy proteins were detected by western blot. Immunofluorescence, immunohistochemistry and PCR were performed to further illustrate the results. RESULTS: SBP significantly reduced the myocardial infarct size, decreased the myocardial injury markers, inhibited cardiomyocyte pyroptosis and oxidative stress, and promoted autophagy in vivo. In vitro, SBP alleviated cardiomyocyte pyroptosis, inhibited oxidative stress, reduced IL-1ß and IL-18 secretion, and unblocked autophagy flux. Myocardial injury is mitigated by SBP via the rapid degradation of autophagosomes, and SBP promotes the accumulation of autophagosomes by downregulating mmu_circ_0005874, Map3k8 and upregulating mmu-miR-543-3p. CONCLUSION: We found for the first time that SBP can inhibit pyroptosis and oxidative stress, and protect from myocardial I/R injury. In addition, it inhibits pyroptosis and improves H/R injury by promoting autophagosome generation and accelerating autophagic flux. SBP interferes with autophagy through the interaction between mmu_circ_0005874/mmu-miR-543-3p/Map3k8.


Assuntos
Medicamentos de Ervas Chinesas , MicroRNAs , Traumatismo por Reperfusão Miocárdica , Animais , Autofagia , Medicamentos de Ervas Chinesas/uso terapêutico , MAP Quinase Quinase Quinases , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos , Proteínas Proto-Oncogênicas , RNA/genética , RNA/metabolismo
6.
Front Pharmacol ; 12: 642925, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34349641

RESUMO

Myocardial ischemia-reperfusion (I/R) injury, characterized by myocardial cell death (e.g., apoptosis) and generation of reactive oxygen species (ROS) such as superoxide (O2 ·-) and hydrogen peroxide (H2O2), is a serious threat to human health and property. Saponin astragaloside IV (ASIV), extracted from Chinese herbal medicine astragalus, is effective in resolving multiple pathological issues including myocardial I/R injury. Recent studies have shown that autophagy is regulated by ROS and plays an important role in myocardial I/R injury. However, regulation of autophagy by ASIV during myocardial I/R injury and the role of specific ROS involved in the process have been rarely reported. In the present study, we found that SOD2 was downregulated and O2 ·- was upregulated in H2O2-induced H9C2 cardiac myocyte injury in vitro and myocardial I/R injury in vivo, while such alterations were reversed by ASIV. ASIV possessed the ability to alleviate myocardial I/R injury via attenuating I/R-caused autophagosome accumulation. Upregulate of O2 ·- by 2-methoxyestradiol (2-ME) reversed the effect of ASIV-mediated autophagy regulation, which suggested that O2 ·- was vital in this process. In conclusion, our results contribute to understanding the mechanism of ASIV-induced cardioprotective effect.

7.
Front Cardiovasc Med ; 8: 768214, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35083298

RESUMO

Background: The sodium-glucose co-transporter-2 (SGLT-2) inhibitor dapagliflozin improves cardiovascular outcomes in patients with type 2 diabetes in a manner that is partially independent of its hypoglycemic effect. These observations suggest that it may exert a cardioprotective effect by another mechanism. This study explored the effects of dapagliflozin on myocardial ischemia/reperfusion injury in a mouse model. Materials and Methods: For the in vivo I/R studies, mice received 40 mg/kg/d dapagliflozin, starting 7 days before I/R. Evans Blue/TTC double-staining was used to determine the infarct size. Serum levels of cTnI, CK-MB, and LDH were measured. Inflammation, autophagy protein expression, and caspase-1 activity changes were measured at the protein level. Primary cardiomyocytes were used to investigate the direct effect of dapagliflozin on cardiomyocytes and to verify whether they have the same effect as observed in in vivo experiments. Result: A high dose of dapagliflozin significantly reduced infarct size and decreased the serum levels of cTnI, CK-MB, and LDH. Dapagliflozin also reduced serum levels of IL-1ß, reduced expression of myocardial inflammation-related proteins, and inhibited cardiac caspase-1 activity. The treatment restored autophagy flux and promoted the degradation of autophagosomes. Relief of inflammation relied on autophagosome phagocytosis of NLRP3 and autophagosome clearance after lysosome improvement. 10 µM dapagliflozin reduced intracellular Ca2+ and Na+ in primary cardiomyocytes, and increasing NHE1 and NCX expression mitigated dapagliflozin effects on autophagy. Conclusion: Dapagliflozin protects against myocardial ischemia/reperfusion injury independently of its hypoglycemic effect. High-dose dapagliflozin pretreatment might limit NLRP3 inflammasome activation and mediate its selective autophagy. Dapagliflozin directly acts on cardiomyocytes through NHE1/NCX.

8.
Clin Interv Aging ; 15: 2233-2243, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33293800

RESUMO

BACKGROUND: Myocardial infarction (MI) is a common cause of death worldwide. It is characterized by coronary artery occlusion that causes ischemia and hypoxia of myocardial cells, leading to irreversible myocardial damage. MATERIALS AND METHODS: To explore potential targets for treatment of MI, we reorganized and analyzed two microarray datasets (GSE4648 and GSE775). The GEO2R tool was used to screen for differentially expressed genes (DEGs) between infarcted and normal myocardium. We used the Database for Annotation, Visualization and Integrated Discovery (DAVID) to perform Gene Ontology functional annotation analysis (GO analysis) and the Kyoto Encyclopedia of Genes and Genomes for pathway enrichment analysis (KEGG analysis). We examined protein-protein interactions to characterize the relationship between differentially expressed genes, and we screened potential hub genes according to the degree of connection. PCR and Western blotting were used to identify the core genes. RESULTS: At different times of infarction, a total of 35 genes showed upregulation at all times; however, none of the genes showed downregulation at all 3 times. Similarly, 10 hub genes with high degrees of connectivity were identified. In vivo and in vitro experiments suggested that expression levels of MMP-9 increased at various times after myocardial infarction and that expression increased in a variety of cells simultaneously. CONCLUSION: Expression levels of MMP-9 increase throughout the course of acute myocardial infarction, and this expression has both positive and negative sides. Further studies are needed to explore the role of MMP-9 in MI treatment. The potential values of Il6, Spp1, Ptgs2, Serpine1, Plaur, Cxcl5, Lgals3, Serpinb2, and Cd14 are also worth exploring.


Assuntos
Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Infarto do Miocárdio/genética , Bases de Dados Genéticas , Regulação para Baixo , Humanos , Regulação para Cima
9.
Int J Biol Sci ; 16(14): 2559-2579, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32792857

RESUMO

Metformin (Met) is a major widely used oral glucose lowering drug for the treatment of type 2 diabetes. It is reported that metformin could regulate autophagy in various diseases of cardiovascular system including in I/R injury, diabetic cardiomyopathy and heart failure. Autophagy plays a controversial role in ischemia/reperfusion (I/R) injury, and this research was performed to explore the cardioprotective effect of Met on I/R injury and discuss the underlying mechanism of autophagy in it. In vivo and in vitro, Met exerted cardioprotection function of decreasing myocardial inflammation and apoptosis with a decrease in the level of autophagy. Moreover, Met significantly inhibited autophagosome formation and restore the impairment of autophagosome processing, which lead to cardioprotection effect of Met. Akt was up-regulated in Met-treated I/R hearts and miransertib, a pan-AKT inhibitor, was able to reverse the alleviating autophagy effect of Met. We demonstrate that Met protects cardiomyocytes from I/R-induced apoptosis and inflammation through down regulation of autophagy mediated by Akt signaling pathway.


Assuntos
Autofagia/efeitos dos fármacos , Hipoglicemiantes/uso terapêutico , Metformina/uso terapêutico , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Animais , Apoptose/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Hipoglicemiantes/farmacologia , Inflamação/prevenção & controle , Masculino , Metformina/farmacologia , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-akt/metabolismo
10.
Biomed Res Int ; 2020: 1710452, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31998781

RESUMO

BACKGROUND: This study aims to investigate the coronary microcirculatory resistance and prognosis of patients with acute myocardial infarction (AMI) concomitant with hyperhomocysteinemia (HHcy) after an elective percutaneous coronary intervention (PCI). METHODS: A total of 101 patients that underwent elective PCI between May 2015 and July 2018 due to AMI were consecutively enrolled in this study. Patients were divided into a HHcy group (53) and a normal Hcy group (control; 48) based on their plasma homocysteine concentration. The characteristics of coronary angiography, the index of microcirculatory resistance (IMR) of infarct-related vessels (IRV), changes in left ventricular end diastolic diameter (LVEDd) and left ventricular ejection fraction (LVEF) before and after PCI, and the incidence of major adverse cardiovascular events (MACE) three months after PCI were compared between these groups. RESULTS: Compared to the results from the Hcy group, the HHcy group had a higher IMR. The HHcy group had significantly higher LVEDd and a lower LVEF than the Hcy group 3 months after PCI. Additionally, the incidence of MACE at three months after PCI was higher in the HHcy group than in the Hcy group. Pearson correlation analysis revealed a positive correlation with IMR in the HHcy group. Furthermore, there was a difference in the LVEDd measured at one day after PCI and at three months after PCI in the HHcy group. CONCLUSION: AMI patients concomitant with HHcy that undergo elective PCI are prone to coronary microcirculatory dysfunction and have a poor cardiac function and poor prognosis at three months after PCI.


Assuntos
Resistência Capilar , Circulação Coronária , Procedimentos Cirúrgicos Eletivos/efeitos adversos , Infarto do Miocárdio , Intervenção Coronária Percutânea/efeitos adversos , Complicações Pós-Operatórias , Idoso , Feminino , Humanos , Hiper-Homocisteinemia/sangue , Hiper-Homocisteinemia/diagnóstico , Hiper-Homocisteinemia/etiologia , Hiper-Homocisteinemia/fisiopatologia , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/sangue , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/cirurgia , Complicações Pós-Operatórias/sangue , Complicações Pós-Operatórias/diagnóstico , Complicações Pós-Operatórias/fisiopatologia , Prognóstico , Fatores de Tempo
11.
Front Pharmacol ; 10: 516, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31133861

RESUMO

Autophagy is fundamental to myocardial ischemia/reperfusion (I/R) injury. Antithrombin III (AT) has been shown to protect cardiomyocytes against I/R injury; however, it is unknown whether it modulates autophagy. The objective of this study was to investigate whether AT regulates autophagy during I/R injury and, if so, to identify the potential mechanism involved. Our study showed that AT attenuated I/R injury in vivo and hypoxia/reoxygenation (H/R) injury in vitro. Autophagy was increased both in H9C2 cardiomyocytes during H/R injury and in mouse hearts following I/R injury. The stimulation of autophagy by rapamycin attenuated the protective effect of AT against H9C2 cell injury, indicating that autophagy is involved in the protective role of AT. Furthermore, the cardioprotective effects of AT were abolished by A6730, a specific Akt inhibitor. This study shows that AT exhibits cardioprotective effects by modulating autophagy during I/R injury in a phosphoinositide 3-kinase/Akt-dependent manner.

12.
Clin Interv Aging ; 13: 1475-1483, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30197509

RESUMO

BACKGROUND: Accelerated atherosclerosis is considered to be the linking factor between low bone mineral density (BMD) and increased cardiovascular events and mortality, while some coronary angiographic studies do not support this point. In this study, we attempt to provide a distinct comprehensive view of the relationship between BMD and the angiographically determined coronary atherosclerotic burden. METHODS: A total of 459 consecutive patients with stable chest pain suspected of coronary artery disease (CAD) underwent both dual-energy X-ray absorptiometry scan and selective coronary angiography. The association between BMD and global coronary atherosclerotic plaque burden as represented by the multivessel involvement and the modified Gensini score was analyzed. RESULTS: Multivariable analysis revealed that the low BMD at femoral neck and total hip was an independent correlate of multivessel CAD. The T-scores measured at femoral neck and total hip were both negatively and independently associated to the modified Gensini score. These inversely correlated relationships between BMD and CAD were not observed at lumbar spine 1-4. CONCLUSION: This cross-sectional study elucidated an inverse relationship between hip BMD and the modified Gensini score, and low hip BMD values (T-scores) were significantly and independently associated with increased risk of multivessel coronary disease in patients hospitalized for stable chest pain.


Assuntos
Densidade Óssea/fisiologia , Doença da Artéria Coronariana/fisiopatologia , Placa Aterosclerótica/fisiopatologia , Absorciometria de Fóton , Idoso , Angiografia Coronária , Estudos Transversais , Feminino , Colo do Fêmur/fisiologia , Quadril/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade
13.
BMC Cardiovasc Disord ; 18(1): 177, 2018 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-30170545

RESUMO

BACKGROUND: Patients with frequent premature ventricular contractions (PVCs) are often symptomatic. Catheter ablation was usually indicated to eliminate symptoms in patients with PVCs-induced cardiomyopathy. Currently, PVCs-ablation is also applied for patients with PVCs and no structural heart diseases (SHD); however, the safety and efficacy of ablation in these patients remains unclear. METHODS: In this retrospective study, data from patients who underwent ablation for PVCs from January 2010 to December 2016 at our hospital was retrieved. Predictors of complications and acute procedural success were evaluated. RESULTS: A total of 1231 patients (mean age 47.8 ± 16.8 years, 59% female) were included. The overall complication rate was 2.7%, and the most common complication was hydropericardium. Two ablation-related mortalities occurred. One patient died of coronary artery injury during the procedure and the other died from infectious endocarditis. Location (left ventricle and epicardium) was the main predictor of complications, with right ventricular outflow tract (RVOT) predicting fewer complications. The acute procedural success rate was 94.1% in all patients. The main predictor of acute procedural success was RVOT origin, while an epicardial origin was a predictor of procedural failure. CONCLUSION: Locations of left ventricle and epicardium were predictors of procedural complications for patients with PVCs. Therefore, ablation is not recommended in these patients. For other origins of PVCs, particularly RVOT origin, ablation is a safety and effective treatment.


Assuntos
Ablação por Cateter , Complexos Ventriculares Prematuros/cirurgia , Adulto , Idoso , Ablação por Cateter/efeitos adversos , Ablação por Cateter/mortalidade , Tomada de Decisão Clínica , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Seleção de Pacientes , Complicações Pós-Operatórias/mortalidade , Estudos Retrospectivos , Medição de Risco , Fatores de Risco , Fatores de Tempo , Resultado do Tratamento , Complexos Ventriculares Prematuros/diagnóstico , Complexos Ventriculares Prematuros/mortalidade , Complexos Ventriculares Prematuros/fisiopatologia
14.
J Affect Disord ; 229: 403-409, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29331700

RESUMO

RATIONALE: Depression is associated with coronary artery disease and increases adverse outcomes and mortality in patients with acute myocardial infarction, but the underlying pathophysiological mechanisms remain unclear. OBJECTIVE: To evaluate the effect of macrophage migration inhibitory factor (MIF) on cardiac ischemia-reperfusion (I/R) injury in mice with constant darkness-induced depression. METHODS AND RESULTS: Twenty C57BL/6 mice (8 weeks old, male) were randomly divided into 2 groups: one group was housed in a 12h light/dark cycle environment (LD) and the other in a constant darkness environment (DD). After 3 weeks, constant darkness-exposed (DD) mice displayed depression-like behavior as indicated by increased immobility in the forced swim test (FST) and lower sucrose preference rate. Western blotting revealed cardiac MIF expression was significantly lower in the DD mice than that in the LD mice. Next, 84 mice were randomly divided into 4 groups: LD sham group, LD I/R group, DD sham group, and DD I/R group. Following ischemia and reperfusion, mice in the DD I/R group had a larger infarct area and lower heart function index than mice in the LD I/R group (P < 0.05 for both). The cardiac pAMPK and pACC expression levels of the DD I/R group were also lower in the DD I/R group (P < 0.05). CONCLUSION: DD-induced depression might cause decreased expression of MIF in the heart, resulting in downregulation of MIF-AMPK signaling and a subsequent adverse outcome after a cardiac I/R injury.


Assuntos
Escuridão , Depressão/metabolismo , Fatores Inibidores da Migração de Macrófagos/biossíntese , Infarto do Miocárdio/metabolismo , Traumatismo por Reperfusão/metabolismo , Proteínas Quinases Ativadas por AMP/biossíntese , Animais , Depressão/complicações , Depressão/patologia , Masculino , Camundongos , Infarto do Miocárdio/complicações , Infarto do Miocárdio/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Traumatismo por Reperfusão/patologia
15.
Oxid Med Cell Longev ; 2017: 4130824, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28392886

RESUMO

The present study was aimed at investigating the effect of amifostine on myocardial ischemia/reperfusion (I/R) injury of mice and H9c2 cells cultured with TBHP (tert-butyl hydroperoxide). The results showed that pretreatment with amifostine significantly attenuated cell apoptosis and death, accompanied by decreased reactive oxygen species (ROS) production and lower mitochondrial potential (ΔΨm). In vivo, amifostine pretreatment alleviated I/R injury and decreased myocardial apoptosis and infarct area, which was paralleled by increased superoxide dismutase (SOD) and reduced malondialdehyde (MDA) in myocardial tissues, increased Bcl2 expression, decreased Bax expression, lower cleaved caspase-3 level, fewer TUNEL positive cells, and fewer DHE-positive cells in heart. Our results indicate that amifostine pretreatment has a protective effect against myocardial I/R injury via scavenging ROS.


Assuntos
Amifostina/farmacologia , Amifostina/uso terapêutico , Apoptose/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Camundongos , Mitocôndrias/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Profilaxia Pré-Exposição , Protetores contra Radiação/farmacologia , Protetores contra Radiação/uso terapêutico
16.
Biomed Res Int ; 2015: 175291, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25821786

RESUMO

Dyslipidemia increases the risks for atherosclerosis in part by impairing endothelial integrity. Endothelial progenitor cells (EPCs) are thought to contribute to endothelial recovery after arterial injury. Oxidized low-density lipoprotein (ox-LDL) can induce EPC dysfunction, but the underlying mechanism is not well understood. Human EPCs were cultured in endothelial growth medium supplemented with VEGF (10 ng/mL) and bFGF (10 ng/mL). The cells were treated with ox-LDL (50 µg/mL). EPC proliferation was assayed by using CCK8 kits. Expression and translocation of nuclear factor-kabba B (NF-κB) were evaluated. The level of reactive oxygen species (ROS) in cells was measured using H2DCF-DA as a fluorescence probe. The activity of NADPH oxidase activity was determined by colorimetric assay. Ox-LDL significantly decreased the proliferation, migration, and adhesion capacity of EPCs, while significantly increased ROS production and NADPH oxidase expression. Ox-LDL induced NF-κB P65 mRNA expression and translocation in EPCs. Thus ox-LDL can induce EPC dysfunction at least by increasing expression and translocation of NF-κB P65 and NADPH oxidase activity, which represents a new mechanism of lipidemia-induced vascular injury.


Assuntos
Células Endoteliais/citologia , Células Endoteliais/metabolismo , Lipoproteínas LDL/farmacologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , NF-kappa B/metabolismo , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Feminino , Sangue Fetal/citologia , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA