Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biomed Mater Res B Appl Biomater ; 109(11): 1724-1734, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33739603

RESUMO

Hypertrophic scar, a common skin disorder typically caused by deep burns or scald were usually treated via surgical resection, laser irradiation, and drugs. However, all the approaches were always companied with complications and devastatingly subjected to relapse, which indicated the urgently need of an effective treatment method. In this project, a new hydrogel composed of Poly (γ-glutamic acid) (γ-PGA), Chitooligo-saccharide, and Papain was developed via crosslinker (EDC&NHS), and characterized with good porously three-dimensional network structure, good water absorption, and mechanical properties. Besides, G/C/P hydrogel facilitated cell adhesion and inhibited excessive proliferation of fibroblasts, which indicated the potential of in vivo application. After applied onto skin wound healing in vivo on a rabbit ear skin wound model, G/C/P hydrogel inhibited excessive collagen deposition and the generation of hyperplastic scars effectively during wound healing. The hydrogel described here provide a new platform for regeneration field and hold great promise for solving serious skin disorder.


Assuntos
Quitosana , Cicatriz Hipertrófica , Hidrogéis , Oligossacarídeos , Papaína , Ácido Poliglutâmico , Cicatrização/efeitos dos fármacos , Animais , Quitosana/química , Quitosana/farmacologia , Cicatriz Hipertrófica/metabolismo , Cicatriz Hipertrófica/prevenção & controle , Feminino , Hidrogéis/química , Hidrogéis/farmacologia , Camundongos , Células NIH 3T3 , Oligossacarídeos/química , Oligossacarídeos/farmacologia , Papaína/química , Papaína/farmacologia , Ácido Poliglutâmico/química , Ácido Poliglutâmico/farmacologia , Coelhos
2.
Int J Mol Sci ; 22(4)2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33557232

RESUMO

Fibrosis is characterized by excessive production of disorganized collagen- and fibronectin-rich extracellular matrices (ECMs) and is driven by the persistence of myofibroblasts within tissues. A key protein contributing to myofibroblast differentiation is extra domain A fibronectin (EDA-FN). We sought to target and interfere with interactions between EDA-FN and its integrin receptors to effectively inhibit profibrotic activity and myofibroblast formation. Molecular docking was used to assist in the design of a blocking polypeptide (antifibrotic 38-amino-acid polypeptide, AF38Pep) for specific inhibition of EDA-FN associations with the fibroblast-expressed integrins α4ß1 and α4ß7. Blocking peptides were designed and evaluated in silico before synthesis, confirmation of binding specificity, and evaluation in vitro. We identified the high-affinity EDA-FN C-C' loop binding cleft within integrins α4ß1 and α4ß7. The polypeptide with the highest predicted binding affinity, AF38Pep, was synthesized and could achieve specific binding to myofibroblast fibronectin-rich ECM and EDA-FN C-C' loop peptides. AF38Pep demonstrated potent myofibroblast inhibitory activity at 10 µg/mL and was not cytotoxic. Treatment with AF38Pep prevented integrin α4ß1-mediated focal adhesion kinase (FAK) activation and early signaling through extracellular-signal-regulated kinases 1 and 2 (ERK1/2), attenuated the expression of pro-matrix metalloproteinase 9 (MMP9) and pro-MMP2, and inhibited collagen synthesis and deposition. Immunocytochemistry staining revealed an inhibition of α-smooth muscle actin (α-SMA) incorporation into actin stress fibers and attenuated cell contraction. Increases in the expression of mRNA associated with fibrosis and downstream from integrin signaling were inhibited by treatment with AF38Pep. Our study suggested that AF38Pep could successfully interfere with EDA-FN C-C' loop-specific integrin interactions and could act as an effective inhibitor of fibroblast of myofibroblast differentiation.


Assuntos
Desenho de Fármacos , Fibroblastos/efeitos dos fármacos , Fibronectinas/metabolismo , Fibrose/tratamento farmacológico , Integrinas/metabolismo , Miofibroblastos/efeitos dos fármacos , Peptídeos/farmacologia , Sítios de Ligação , Diferenciação Celular , Matriz Extracelular/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibronectinas/química , Fibrose/metabolismo , Fibrose/patologia , Humanos , Integrinas/química , Pulmão/citologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Simulação de Acoplamento Molecular , Miofibroblastos/citologia , Miofibroblastos/metabolismo , Ligação Proteica , Domínios Proteicos , Transdução de Sinais
3.
ACS Biomater Sci Eng ; 5(12): 6691-6702, 2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33423487

RESUMO

There has been substantial progress made in the development of bone regeneration materials, driven by the deficiencies that exist in current clinical products, such as finite sources, donor site complications, and potential for disease transmission. To overcome these shortcomings, multifunctional scaffolds should be developed to integrate the relationship among osteoinduction, osteoconduction, and osseointegration. In this study, we fabricated polycaprolactone/gelatin (PG) nanofiber films by electrospinning, to act as barriers against connective tissue migration into bone defect sites; chitosan/poly (γ-glutamic acid)/hydroxyapatite (CPH) hydrogels were formed by electrostatic interaction and lyophilization, to exert osteoconduction; and platelet-rich fibrin (PRF) was extracted from rat abdominal aorta and combined with composite scaffolds, to promote bone induction through the release of growth factors. Hydrogels were immersed in simulated body fluid (SBF) for 1 month to investigate mineralization in vitro. Cytocompatibility, cell barrier effect, and osteogenic differentiation were also explored in vitro. The ability to effectively regenerate bone was analyzed by implantation of triple-layered composite scaffolds into rat calvarial defects in vivo. Size-matched hydrogel filled the defect site, and then, fresh PRF was applied to the hydrogel surface. Finally, P2G3 nanofiber films were applied and attached to the surrounding soft tissue. In short, we fabricated multifunctional triple-layered scaffolds by combining the advantages of osteoinduction, osteoconduction, and osseointegration, which could give full play to the role of PRF in bone regeneration and provide new and pragmatic concepts for bone tissue regeneration in clinical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA