Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
BMC Genomics ; 25(1): 238, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438984

RESUMO

BACKGROUND: The caffeoyl-CoA-O methyltransferase (CCoAOMT) family plays a crucial role in the oxidative methylation of phenolic substances and is involved in various plant processes, including growth, development, and stress response. However, there is a limited understanding of the interactions among CCoAOMT protein members in tea plants. RESULTS: In this study, we identified 10 members of the CsCCoAOMT family in the genome of Camellia sinensis (cultivar 'HuangDan'), characterized by conserved gene structures and motifs. These CsCCoAOMT members were located on six different chromosomes (1, 2, 3, 4, 6, and 14). Based on phylogenetic analysis, CsCCoAOMT can be divided into two groups: I and II. Notably, the CsCCoAOMT members of group Ia are likely to be candidate genes involved in lignin biosynthesis. Moreover, through the yeast two-hybrid (Y2H) assay, we established protein interaction networks for the CsCCoAOMT family, revealing 9 pairs of members with interaction relationships. CONCLUSIONS: We identified the CCoAOMT gene family in Camellia sinensis and conducted a comprehensive analysis of their classifications, phylogenetic and synteny relationships, gene structures, protein interactions, tissue-specific expression patterns, and responses to various stresses. Our findings shed light on the evolution and composition of CsCCoAOMT. Notably, the observed interaction among CCoAOMT proteins suggests the potential formation of the O-methyltransferase (OMT) complex during the methylation modification process, expanding our understanding of the functional roles of this gene family in diverse biological processes.


Assuntos
Camellia sinensis , Camellia sinensis/genética , Filogenia , Metiltransferases/genética , Chá
2.
Food Chem Toxicol ; 180: 114033, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37739053

RESUMO

The interplay between cell apoptosis and endoplasmic reticulum (ER) stress has garnered increasing attention. Nevertheless, the precise involvement of the unfolded protein response (UPR) signaling in the apoptosis of porcine macrophage cells induced by Deoxynivalenol (DON) remains enigmatic. In this study, we revealed that exposure to 2 µM DON resulted in a substantial decline in cell viability, concomitant with the initiation of cell apoptosis and the halting of the G1 phase cell cycle in the porcine alveolar macrophage line 3D4/21. Transcriptomic analysis of DON-exposed cells showed distinct expression patterns in 3104 genes, with notable upregulation of ER stress-related genes, including IRE1, CHOP, XBP1 and JNK. Our subsequent validation via qPCR and Western blot analyses confirmed the attenuation of GRP78 and BCL-2, coupled with the upregulation of IRE1, CHOP, JNK, p-JNK, and Bax in DON-induced cells, indicating the instigation of ER stress-associated apoptosis by DON. The addition of 5 mM 4-phenylbutyric acid (4-PBA), an ER stress inhibitor, decreased levels of CHOP, IRE1, JNK, p-JNK, and Bax, while increasing levels of GRP78 and Bcl-2, suggesting that 4-PBA alleviated DON-induced ER stress and apoptosis. Overall, our findings provide new insights into DON-induced ER stress via the IRE1/JNK/CHOP pathway, leading to subsequent cellular apoptosis.

3.
Genes (Basel) ; 14(4)2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-37107704

RESUMO

We assessed differentially expressed (DE) mRNAs and lncRNAs in the liver of septic pigs to explore the key factors regulating lipopolysaccharide (LPS)-induced liver injury. We identified 543 DE lncRNAs and 3642 DE mRNAs responsive to LPS. Functional enrichment analysis revealed the DE mRNAs were involved in liver metabolism and other pathways related to inflammation and apoptosis. We also found significantly upregulated endoplasmic reticulum stress (ERS)-associated genes, including the receptor protein kinase receptor-like endoplasmic reticulum kinase (PERK), the eukaryotic translation initiation factor 2α (EIF2S1), the transcription factor C/EBP homologous protein (CHOP), and activating transcription factor 4 (ATF4). In addition, we predicted 247 differentially expressed target genes (DETG) of DE lncRNAs. The analysis of protein-protein interactions (PPI) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway detected key DETGs that are involved in metabolic pathways, such as N-Acetylgalactosaminyltransferase 2 (GALNT2), argininosuccinate synthetase 1 (ASS1), and fructose 1,6-bisphosphatase 1 (FBP1). LNC_003307 was the most abundant DE lncRNA in the pig liver, with a marked upregulation of >10-fold after LPS stimulation. We identified three transcripts for this gene using the rapid amplification of the cDNA ends (RACE) technique and obtained the shortest transcript sequence. This gene likely derives from the nicotinamide N-methyltransferase (NNMT) gene in pigs. According to the identified DETGs of LNC_003307, we hypothesize that this gene regulates inflammation and endoplasmic reticulum stress in LPS-induced liver damage in pigs. This study provides a transcriptomic reference for further understanding of the regulatory mechanisms underlying septic hepatic injury.


Assuntos
RNA Longo não Codificante , Animais , Suínos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Lipopolissacarídeos/toxicidade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fígado/metabolismo , Inflamação/metabolismo
4.
Medicine (Baltimore) ; 102(15): e33259, 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37058015

RESUMO

BACKGROUND: The analgesic efficacy of pregabalin supplementation for septorhinoplasty remains elusive. This meta-analysis was conducted to compare pregabalin supplementation with placebo for the postoperative pain control of septorhinoplasty. METHODS: We systematically searched several databases including PubMed, EMbase, Web of Science, EBSCO and Cochrane library databases, and included randomized controlled trials (RCTs) regarding the effect of pregabalin supplementation versus placebo for pain control after septorhinoplasty. This meta-analysis was conducted by fixed or random-effect model based on the heterogeneity. RESULTS: Seven RCTs were included in this meta-analysis. In comparison with control group for septorhinoplasty, pregabalin supplementation was associated with significantly decreased pain scores at 1 h (standard mean difference [SMD] = -1.45; 95% confidence interval [CI] = -2.43 to -0.47; P = .004), pain scores at 2 hours (SMD = -1.01; 95% CI = -1.83 to -0.20; P = .02), pain scores at 6 hours (SMD = -1.00; 95% CI = -1.47 to -0.54; P < .0001), number of rescue analgesics (odd ratio [OR] = 0.18; 95% CI = 0.08-0.39; P < .0001) and analgesic consumption (SMD = -2.78; 95% CI = -5.05 to -0.51; P = .02), but unraveled no obvious impact on the incidence of nausea and vomiting (OR = 0.55; 95% CI = 0.24-1.27; P = .16). CONCLUSIONS: Pregabalin supplementation was effective to improve pain relief after septorhinoplasty.


Assuntos
Analgésicos , Dor Pós-Operatória , Humanos , Analgésicos/uso terapêutico , Manejo da Dor/efeitos adversos , Dor Pós-Operatória/tratamento farmacológico , Dor Pós-Operatória/prevenção & controle , Dor Pós-Operatória/etiologia , Pregabalina/uso terapêutico , Vômito/tratamento farmacológico
5.
Molecules ; 28(3)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36770792

RESUMO

Lanthanum can affect the growth and development of the tea plant. Tieguanyin (TGY) and Shuixian (SX) cultivars of Camellia sinensis were selected to explore the mechanism underlying the accumulation of lanthanum (tea plants' most accumulated rare earth element) through proteomics. Roots and fresh leaves of TGY and SX with low- and high-accumulation potential for lanthanum, respectively, were studied; 845 differentially expressed proteins (DEPs) were identified. Gene ontology analysis showed that DEPs were involved in redox processes and related to molecular functions. Kyoto Encyclopedia of Genes and Genomes metabolic pathway analysis showed that DEPs were associated with glutathione (GSH) and α-linolenic acid metabolism, plant pathogen interaction, and oxidative phosphorylation. Thirty-seven proteins in the GSH metabolism pathway showed significant differences, wherein 18 GSH S-transferases showed differential expression patterns in the root system. Compared with the control, expression ratios of GST (TEA004130.1) and GST (TEA032216.1) in TGY leaves were 6.84 and 4.06, respectively, after lanthanum treatment; these were significantly higher than those in SX leaves. The LOX2.1 (TEA011765.1) and LOX2.1 (TEA011776.1) expression ratios in the α-linolenic acid metabolic pathway were 2.44 and 6.43, respectively, in TGY roots, which were significantly higher than those in SX roots. The synthesis of specific substances induces lanthanum-associated defense responses in TGY, which is of great significance for plant yield stability.


Assuntos
Camellia sinensis , Camellia sinensis/metabolismo , Lantânio , Ácido alfa-Linolênico/metabolismo , Proteômica , Folhas de Planta/metabolismo , Regulação da Expressão Gênica de Plantas , Chá/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
Antioxidants (Basel) ; 12(2)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36829950

RESUMO

There is increasing interest in the production and consumption of tea (Camellia sinensis L.) processed from purple-leaved cultivar due to their high anthocyanin content and health benefits. However, how and why seasonal changes affect anthocyanin accumulation in young tea leaves still remains obscured. In this study, anthocyanin and abscisic acid (ABA) contents in young leaves of Zifuxing 1 (ZFX1), a cultivar with new shoots turning to purple in Wuyi Mountain, a key tea production region in China, were monitored over four seasons. Young leaves produced in September were highly purplish, which was accompanied with higher anthocyanin and ABA contents. Among the environmental factors, the light intensity in particular was closely correlated with anthocyanin and ABA contents. A shade experiment also indicated that anthocyanin content significantly decreased after 168 h growth under 75% shade, but ABA treatment under the shade conditions sustained anthocyanin content. To confirm the involvement of ABA in the modulation of anthocyanin accumulation, anthocyanin, carotenoids, chlorophyll, ABA, jasmonic acid (JA), and salicylic acid (SA) in the young leaves of four cultivars, including ZFX1, Zijuan (ZJ), wherein leaves are completely purple, Rougui (RG) and Fudingdabaicha (FDDB) wherein leaves are green, were analyzed, and antioxidant activities of the leaf extracts were tested. Results showed that ABA, not other tested hormones, was significantly correlated with anthocyanin accumulation in the purple-leaved cultivars. Cultivars with higher anthocyanin contents exhibited higher antioxidant activities. Subsequently, ZFX1 plants were grown under full sun and treated with ABA and fluridone (Flu), an ABA inhibitor. ABA treatment elevated anthocyanin level but decreased chlorophyll contents. The reverse was true to those treated with Flu. To pursue a better understanding of ABA involvement in anthocyanin accumulation, RNA-Seq was used to analyze transcript differences among ABA- or Flu-treated and untreated ZFX1 plants. Results indicated that the differentially expressed genes in ABA or Flu treatment were mainly ABA signal sensing and metabolism-related genes, anthocyanin accumulation-related genes, light-responsive genes, and key regulatory MYB transcription factors. Taking all the results into account, a model for anthocyanin accumulation in ZFX1 cultivar was proposed: high light intensity caused reactive oxygen stress, which triggered the biosynthesis of ABA; ABA interactions with transcription factors, such as MYB-enhanced anthocyanin biosynthesis limited chlorophyll and carotenoid accumulation; and transport of anthocyanin to vacuoles resulting in the young leaves of ZFX1 with purplish coloration. Further research is warranted to test this model.

7.
Sci Adv ; 9(1): eabq5506, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36608134

RESUMO

Abnormal temperature caused by global climate change threatens the rice production. Defense signaling network for chilling has been uncovered in plants. However, less is known about repairing DNA damage produced from overwhelmed defense and its evolution during domestication. Here, we genetically identified a major QTL, COLD11, using the data-merging genome-wide association study based on an algorithm combining polarized data from two subspecies, indica and japonica, into one system. Rice loss-of-function mutations of COLD11 caused reduced chilling tolerance. Genome evolution analysis of representative rice germplasms suggested that numbers of GCG sequence repeats in the first exon of COLD11 were subjected to strong domestication selection during the northern expansion of rice planting. The repeat numbers affected the biochemical activity of DNA repair protein COLD11/RAD51A1 in renovating DNA damage under chilling stress. Our findings highlight a potential way to finely manipulate key genes in rice genome and effectively improve chilling tolerance through molecular designing.


Assuntos
Oryza , Oryza/genética , Oryza/metabolismo , Estudo de Associação Genômica Ampla , Códon/metabolismo , Temperatura Baixa
8.
ACS Appl Mater Interfaces ; 13(50): 59834-59842, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34894652

RESUMO

Electrocatalytic nitrogen reduction reaction (NRR) at ambient conditions is a promising route for ammonia (NH3) synthesis but still suffers from low activity and selectivity. Here, ultrafine Sn nanoparticles (NPs) grown on carbon blacks (SnSC/C) have been synthesized through a wet-chemical method using sodium citrate dehydrate as a stabilizing agent. Benefiting from the small sizes of Sn NPs, the SnSC/C catalyst exhibits excellent electrocatalytic performance for NRR with a high Faradaic efficiency of 22.76% and an NH3 yield rate of 17.28 µg h-1 mg-1 in the 0.1 M Na2SO4 electrolyte, outperforming many reported electrocatalysts for NRR under similar conditions. Density functional theory calculation results reveal that the potential-determining step on Sn NPs is the generation of NHNH* through simultaneous hydrogenation of N2* by a H* and a H+/e- pair via Langmuir-Hinshelwood plus Eley-Rideal mechanisms.

9.
Plant Physiol ; 187(3): 1605-1618, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34618076

RESUMO

Replication protein A (RPA), a single-stranded DNA-binding protein, plays essential role in homologous recombination. However, because deletion of RPA causes embryonic lethality in mammals, the exact function of RPA in meiosis remains unclear. In this study, we generated an rpa1a mutant using CRISPR/Cas9 technology and explored its function in rice (Oryza sativa) meiosis. In rpa1a, 12 bivalents were formed at metaphase I, just like in wild-type, but chromosome fragmentations were consistently observed at anaphase I. Fluorescence in situ hybridization assays indicated that these fragmentations were due to the failure of the recombination intermediates to resolve. Importantly, the mutant had a highly elevated chiasma number, and loss of RPA1a could completely restore the 12 bivalent formations in the zmm (for ZIP1-4, MSH4/5, and MER3) mutant background. Protein-protein interaction assays showed that RPA1a formed a complex with the methyl methansulfonate and UV sensitive 81 (and the Fanconi anemia complementation group M-Bloom syndrome protein homologs (RECQ4A)-Topoisomerase3α-RecQ-mediated genome instability 1 complex to regulate chiasma formation and processing of the recombination intermediates. Thus, our data establish a pivotal role for RPA1a in promoting the accurate resolution of recombination intermediates and in limiting redundant chiasma formation during rice meiosis.


Assuntos
Proteínas de Ligação a DNA/genética , Meiose , Oryza/genética , Proteínas de Plantas/genética , Proteína de Replicação A/genética , Proteínas de Ligação a DNA/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Proteína de Replicação A/metabolismo
10.
New Phytol ; 230(2): 585-600, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33421144

RESUMO

The bipolar spindle structure in meiosis is essential for faithful chromosome segregation. PUTATIVE RECOMBINATION INITIATION DEFECT 1 (PRD1) previously has been shown to participate in the formation of DNA double strand breaks (DSBs). However, the role of PRD1 in meiotic spindle assembly has not been elucidated. Here, we reveal by both genetic analysis and immunostaining technology that PRD1 is involved in spindle assembly in rice (Oryza sativa) meiosis. We show that DSB formation and bipolar spindle assembly are disturbed in prd1 meiocytes. PRD1 signals display a dynamic pattern of localization from covering entire chromosomes at leptotene to congregating at the centromere region after leptotene. Centromeric localization of PRD1 signals depends on the organization of leptotene chromosomes, but not on DSB formation and axis establishment. PRD1 exhibits interaction and co-localization with several kinetochore components. We also find that bi-orientation of sister kinetochores within a univalent induced by mutation of REC8 can restore bipolarity in prd1. Furthermore, PRD1 directly interacts with REC8 and SGO1, suggesting that PRD1 may play a role in regulating the orientation of sister kinetochores. Taken together, we speculate that PRD1 promotes bipolar spindle assembly, presumably by modulating the orientation of sister kinetochores in rice meiosis.


Assuntos
Oryza , Segregação de Cromossomos/genética , Recombinação Homóloga , Cinetocoros , Meiose , Oryza/genética , Fatores de Iniciação de Peptídeos , Fuso Acromático
11.
Int J Mol Sci ; 21(8)2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32326368

RESUMO

Plants retain the ability to produce new organs throughout their life cycles. Continuous aboveground organogenesis is achieved by meristems, which are mainly organized, established, and maintained in the shoot apex and leaf axils. This paper will focus on reviewing the recent progress in understanding the regulation of shoot apical meristem and axillary meristem development. We discuss the genetics of plant meristems, the role of plant hormones and environmental factors in meristem development, and the impact of epigenetic factors on meristem organization and function.


Assuntos
Meristema/fisiologia , Desenvolvimento Vegetal , Meio Ambiente , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Brotos de Planta/fisiologia , Células-Tronco/metabolismo , Transcrição Gênica
12.
Nat Commun ; 11(1): 1886, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32312999

RESUMO

In higher eukaryotes, heterochromatin is mainly composed of transposable elements (TEs) silenced by epigenetic mechanisms. But, the silencing of certain heterochromatin-associated TEs is disrupted by heat stress. By comparing genome-wide high-resolution chromatin packing patterns under normal or heat conditions obtained through Hi-C analysis, we show here that heat stress causes global rearrangement of the 3D genome in Arabidopsis thaliana. Contacts between pericentromeric regions and distal chromosome arms, as well as proximal intra-chromosomal interactions along the chromosomes, are enhanced. However, interactions within pericentromeres and those between distal intra-chromosomal regions are decreased. Many inter-chromosomal interactions, including those within the KNOT, are also reduced. Furthermore, heat activation of TEs exhibits a high correlation with the reduction of chromosomal interactions involving pericentromeres, the KNOT, the knob, and the upstream and downstream flanking regions of the activated TEs. Together, our results provide insights into the relationship between TE activation and 3D genome reorganization.


Assuntos
Arabidopsis/genética , Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Resposta ao Choque Térmico , Cromatina/química , Cromossomos de Plantas , Elementos de DNA Transponíveis/fisiologia , Inativação Gênica , Genoma de Planta , Estudo de Associação Genômica Ampla , Heterocromatina , Conformação Molecular
13.
Proc Natl Acad Sci U S A ; 116(32): 15967-15972, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31341087

RESUMO

The organization of microtubules into a bipolar spindle is essential for chromosome segregation. Both centrosome and chromatin-dependent spindle assembly mechanisms are well studied in mouse, Drosophila melanogaster, and Xenopus oocytes; however, the mechanism of bipolar spindle assembly in plant meiosis remains elusive. According to our observations of microtubule assembly in Oryza sativa, Zea mays, Arabidopsis thaliana, and Solanum lycopersicum, we propose that a key step of plant bipolar spindle assembly is the correction of the multipolar spindle into a bipolar spindle at metaphase I. The multipolar spindles failed to transition into bipolar ones in OsmtopVIB with the defect in double-strand break (DSB) formation. However, bipolar spindles were normally assembled in several other mutants lacking DSB formation, such as Osspo11-1, pair2, and crc1, indicating that bipolar spindle assembly is independent of DSB formation. We further revealed that the mono-orientation of sister kinetochores was prevalent in OsmtopVIB, whereas biorientation of sister kinetochores was frequently observed in Osspo11-1, pair2, and crc1 In addition, mutations of the cohesion subunit OsREC8 resulted in biorientation of sister kinetochores as well as bipolar spindles even in the background of OsmtopVIB Therefore, we propose that biorientation of the kinetochore is required for bipolar spindle assembly in the absence of homologous recombination.


Assuntos
Meiose , Oryza/citologia , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Fuso Acromático/metabolismo , Quebras de DNA de Cadeia Dupla , Haploidia , Cinetocoros/metabolismo , Modelos Biológicos , Mutação/genética
14.
New Phytol ; 222(2): 805-819, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30584664

RESUMO

Meiotic recombination is closely linked with homologous pairing and synapsis. Previous studies have shown that HOMOLOGOUS PAIRING PROTEIN2 (HOP2), plays an essential role in homologous pairing and synapsis. However, the mechanism by which HOP2 regulates crossover (CO) formation has not been elucidated. Here, we show that OsHOP2 mediates the maturation of COs by promoting homologous pairing and synapsis in rice (Oryza sativa) meiosis. We used a combination of genetic analysis, immunolocalization and super-resolution imaging to analyze the function of OsHOP2 in rice meiosis. We showed that full-length pairing, synapsis and CO formation are disturbed in Oshop2 meiocytes. Moreover, structured illumination microscopy showed that OsHOP2 localized to chromatin and displayed considerable co-localization with axial elements (AEs) and central elements (CEs). Importantly, the interaction between OsHOP2 and a transverse filament protein of synaptonemal complex (ZEP1), provided further evidence that OsHOP2 was involved in assembly or stabilization of the structure of the synaptonemal complex (SC). Although the initiation of recombination and CO designation occur normally in Oshop2 mutants, mature COs were severely reduced, and human enhancer of invasion 10 (HEI10)10 foci were only present on the synapsed region. Putting the data together, we speculate that OsHOP2 may serve as a global regulator to coordinate homologous pairing, synapsis and meiotic recombination in rice meiosis.


Assuntos
Pareamento Cromossômico , Troca Genética , Recombinação Homóloga , Oryza/genética , Proteínas de Plantas/metabolismo , Sequência de Bases , Cromatina/metabolismo , Cromossomos de Plantas/genética , Modelos Biológicos , Mutação/genética , Ligação Proteica , Complexo Sinaptonêmico/metabolismo
15.
Front Plant Sci ; 9: 1236, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30210516

RESUMO

The repair of SPO11-dependent double-strand breaks (DSBs) by homologous recombination (HR) ensures the correct segregation of homologous chromosomes. In yeast and human, RAD17 is involved in DNA damage checkpoint control and DSB repair. However, little is known about its function in plants. In this study, we characterized the RAD17 homolog in rice. In Osrad17 pollen mother cells (PMCs), associations between non-homologous chromosomes and chromosome fragmentation were constantly observed. These aberrant chromosome associations were dependent on the formation of programmed DSBs. OsRAD17 interacts with OsRAD1 and the meiotic phenotype of Osrad1 Osrad17 is indistinguishable from the two single mutants which have similar phenotypes, manifesting they could act in the same pathway. OsZIP4, OsMSH5 and OsMER3 are members of ZMM proteins in rice that are required for crossover formation. We found that homologous pairing and synapsis, which was roughly unaffected in Oszip4 and Osrad17 single mutant, was severely disturbed in the Oszip4 Osrad17 double mutant. Similar phenotypes were observed in the Osmsh5 Osrad17 and Osmer3 Osrad1 double mutants, suggesting the cooperation between the checkpoint proteins and ZMM proteins in assuring accurate HR in rice.

16.
Plant J ; 96(4): 842-854, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30144334

RESUMO

Nitrogen is one of the most important nutrient element that is essential for plant growth and development. Many genes have been reported to contribute to nitrogen absorption and transportation. However, genes involved in nitrogen reutilization are seldom reported. Ornithine δ-aminotransferase (δOAT) is the enzyme connecting arginine cycling and proline cycling. Here, we found that OsOAT, the homologue of δOAT in rice, is essential for nitrogen reutilization through mediating arginase activity. In the Osoat mutant, metabolic abnormality induced by nitrogen deficiency in floret causes malformed glumes, incapable glume opening and anther indehiscence. These defects in the mutant affect the pollination process and lead to a low seed setting rate as well as abnormal seed shape. Intriguingly, urea can rescue the phenotypes of the Osoat mutant. Therefore, OsOAT is crucial for nitrogen reutilization and plays a critical role in floret development and seed setting in rice.


Assuntos
Nitrogênio/metabolismo , Ornitina-Oxo-Ácido Transaminase/genética , Ornitina-Oxo-Ácido Transaminase/metabolismo , Oryza/enzimologia , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Sementes/metabolismo , Arginase/metabolismo , Arginina/metabolismo , Regulação da Expressão Gênica de Plantas , Redes e Vias Metabólicas/genética , Mutação , Oryza/genética , Oryza/crescimento & desenvolvimento , Fenótipo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/metabolismo , Polinização , Sementes/crescimento & desenvolvimento , Alinhamento de Sequência , Análise de Sequência de Proteína , Transcriptoma , Ureia/metabolismo
17.
New Phytol ; 218(2): 789-803, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29479720

RESUMO

In angiosperms, the key step in sexual reproduction is successful acquisition of meiotic fate. However, the molecular mechanism determining meiotic fate remains largely unknown. Here, we report that OsSPOROCYTELESS (OsSPL) is critical for meiotic entry in rice (Oryza sativa). We performed a large-scale genetic screen of rice sterile mutants aimed to identify genes regulating meiotic entry and identified OsSPL using map-based cloning. We showed that meiosis-specific callose deposition, chromatin organization, and centromere-specific histone H3 loading were altered in the cells corresponding to pollen mother cells in Osspl anthers. Global transcriptome analysis showed that the enriched differentially expressed genes in Osspl were mainly related to redox status, meiotic process, and parietal cell development. OsSPL might form homodimers and interact with TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factor OsTCP5 via the SPL dimerization and TCP interaction domain. OsSPL also interacts with TPL (TOPLESS) corepressors, OsTPL2 and OsTPL3, via the EAR motif. Our results suggest that the OsSPL-mediated signaling pathway plays a crucial role in rice meiotic entry, which appears to be a conserved regulatory mechanism for meiotic fate acquisition in angiosperms.


Assuntos
Meiose , Oryza/citologia , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Arabidopsis/metabolismo , Diferenciação Celular/genética , Gametogênese Vegetal/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Mitose/genética , Modelos Biológicos , Mutação/genética , Proteínas Nucleares/metabolismo , Oryza/genética , Oxirredução , Filogenia , Proteínas de Plantas/genética , Pólen/citologia , Pólen/metabolismo , Ligação Proteica , Multimerização Proteica , Transcrição Gênica
18.
Plant Cell ; 29(10): 2597-2609, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28939596

RESUMO

Telomere bouquet formation, a highly conserved meiotic event, plays an important role in homologous pairing and therefore progression of meiosis; however, the underlying molecular mechanism remains largely unknown. Here, we identified ZYGOTENE1 (ZYGO1), a novel F-box protein in rice (Oryza sativa), and verified its essential role in bouquet formation during early meiosis. In zygo1 mutants, zygotene chromosome aggregation and telomere clustering failed to occur. The suppressed telomere clustering in homologous pairing aberration in rice meiosis1 (pair1) zygo1 and rice completion of meiotic recombination (Oscom1) zygo1 double mutants, together with the altered localization of OsSAD1 (a SUN protein associated with the nuclear envelope) in zygo1, showed that ZYGO1 has a significant function in bouquet formation. In addition, the interaction between ZYGO1 and rice SKP1-like protein 1 suggested that ZYGO1 might modulate bouquet formation as a component of the SKP1-Cullin1-F-box complex. Although double-strand break formation and early recombination element installation occurred normally, zygo1 mutants showed defects in full-length pairing and synaptonemal complex assembly. Furthermore, crossover (CO) formation was disturbed, and foci of Human enhancer of invasion 10 were restricted to the partially synapsed chromosome regions, indicating that CO reduction might be caused by the failure of full-length chromosome alignment in zygo1 Therefore, we propose that ZYGO1 mediates bouquet formation to efficiently promote homolog pairing, synapsis, and CO formation in rice meiosis.


Assuntos
Meiose/genética , Oryza/genética , Proteínas de Plantas/metabolismo , Pareamento Cromossômico/genética , Pareamento Cromossômico/fisiologia , Meiose/fisiologia , Oryza/citologia , Proteínas de Plantas/genética
19.
Proc Natl Acad Sci U S A ; 113(38): 10577-82, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27601671

RESUMO

The human mitotic arrest-deficient 2 (Mad2) binding protein p31(comet) participates in the spindle checkpoint and coordinates cell cycle events in mitosis although its function in meiosis remains unknown in all organisms. Here, we reveal P31(comet) as a synaptonemal complex (SC) protein in rice (Oryza sativa L.). In p31(comet), homologous pairing and synapsis are eliminated, leading to the homologous nondisjunction and complete sterility. The failure in loading of histone H2AX phosphorylation (γH2AX) in p31(comet), together with the suppressed chromosome fragmentation in rice completion of meiotic recombination 1 (com1) p31(comet) and radiation sensitive 51c (rad51c) p31(comet) double mutants, indicates that P31(comet) plays an essential role in double-strand break (DSB) formation. Interestingly, the dynamic colocalization pattern between P31(comet) and ZEP1 (a transverse filament protein of SC) by immunostaining, as well as the interaction between P31(comet) and CENTRAL REGION COMPONENT 1 (CRC1) in yeast two-hybrid assays, suggests possible involvement of P31(comet) in SC installation. Together, these data indicate that P31(comet) plays a key role in DSB formation and SC installation, mainly through its cooperation with CRC1.


Assuntos
Recombinação Homóloga/genética , Proteínas Nucleares/genética , Oryza/genética , Complexo Sinaptonêmico/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Ciclo Celular/genética , Quebras de DNA de Cadeia Dupla , Pontos de Checagem da Fase M do Ciclo Celular , Meiose/genética , Mitose/genética , Proteínas Nucleares/química , Fosforilação , Proteínas de Plantas/genética , Fuso Acromático/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA