Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev E ; 105(2-1): 024105, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35291074

RESUMO

Extended-range percolation on various regular lattices, including all 11 Archimedean lattices in two dimensions and the simple cubic (sc), body-centered cubic (bcc), and face-centered cubic (fcc) lattices in three dimensions, is investigated. In two dimensions, correlations between coordination number z and site thresholds p_{c} for Archimedean lattices up to 10th nearest neighbors (NN) are seen by plotting z versus 1/p_{c} and z versus -1/ln(1-p_{c}) using the data of d'Iribarne et al. [J. Phys. A 32, 2611 (1999)JPHAC50305-447010.1088/0305-4470/32/14/002] and others. The results show that all the plots overlap on a line with a slope consistent with the theoretically predicted asymptotic value of zp_{c}∼4η_{c}=4.51235, where η_{c} is the continuum threshold for disks. In three dimensions, precise site and bond thresholds for bcc and fcc lattices with 2nd and 3rd NN, and bond thresholds for the sc lattice with up to the 13th NN, are obtained by Monte Carlo simulations, using an efficient single-cluster growth method. For site percolation, the values of thresholds for different types of lattices with compact neighborhoods also collapse together, and linear fitting is consistent with the predicted value of zp_{c}∼8η_{c}=2.7351, where η_{c} is the continuum threshold for spheres. For bond percolation, Bethe-lattice behavior p_{c}=1/(z-1) is expected to hold for large z, and the finite-z correction is confirmed to satisfy zp_{c}-1∼a_{1}z^{-x}, with x=2/3 for three dimensions as predicted by Frei and Perkins [Electron. J. Probab. 21, 56 (2016)1083-648910.1214/16-EJP6] and by Xu et al. [Phys. Rev. E 103, 022127 (2021)2470-004510.1103/PhysRevE.103.022127]. Our analysis indicates that for compact neighborhoods, the asymptotic behavior of zp_{c} has universal properties, depending only on the dimension of the system and whether site or bond percolation but not on the type of lattice.

2.
Phys Rev E ; 103(2-1): 022126, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33735955

RESUMO

By means of extensive Monte Carlo simulation, we study extended-range site percolation on square and simple cubic lattices with various combinations of nearest neighbors up to the eighth nearest neighbors for the square lattice and the ninth nearest neighbors for the simple cubic lattice. We find precise thresholds for 23 systems using a single-cluster growth algorithm. Site percolation on lattices with compact neighborhoods of connected sites can be mapped to problems of lattice percolation of extended objects of a given shape, such as disks and spheres, and the thresholds can be related to the continuum thresholds η_{c} for objects of those shapes. This mapping implies zp_{c}∼4η_{c}=4.51235 in two dimensions and zp_{c}∼8η_{c}=2.7351 in three dimensions for large z for circular and spherical neighborhoods, respectively, where z is the coordination number. Fitting our data for compact neighborhoods to the form p_{c}=c/(z+b) we find good agreement with this prediction, c=2^{d}η_{c}, with the constant b representing a finite-z correction term. We also examined results from other studies using this fitting formula. A good fit of the large but finite-z behavior can also be made using the formula p_{c}=1-exp(-2^{d}η_{c}/z), a generalization of a formula of Koza, Kondrat, and Suszcaynski [J. Stat. Mech.: Theor. Exp. (2014) P110051742-546810.1088/1742-5468/2014/11/P11005]. We also study power-law fits which are applicable for the range of values of z considered here.

3.
Phys Rev E ; 102(1-1): 012102, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32795057

RESUMO

We study bond percolation on the simple cubic lattice with various combinations of first, second, third, and fourth nearest neighbors by Monte Carlo simulation. Using a single-cluster growth algorithm, we find precise values of the bond thresholds. Correlations between percolation thresholds and lattice properties are discussed, and our results show that the percolation thresholds of these and other three-dimensional lattices decrease monotonically with the coordination number z quite accurately according to a power-law p_{c}∼z^{-a} with exponent a=1.111. However, for large z, the threshold must approach the Bethe lattice result p_{c}=1/(z-1). Fitting our data and data for additional nearest neighbors, we find p_{c}(z-1)=1+1.224z^{-1/2}.

4.
Artigo em Inglês | MEDLINE | ID: mdl-23679391

RESUMO

In order to more accurately describe the fracture process of extensive biological fibers, a fiber-bundle model with stick-slip dynamics and a variable Young modulus is constructed. In this model, the Young modulus of a fiber is assumed to increase or decrease by multiplying with a changing ratio after local sliding events. So, the maximum number of stick-slip events of a single fiber and the changing ratio of the Young modulus are the two key parameters of the model. By means of analytical theory and numerical simulation, the constitutive law, the critical stress, the average size of the largest avalanche, and the avalanche size distribution are shown against the two parameters of the model. From a macroscopic viewpoint, the constitutive curves show different morphologies varying from a local plastic state to a unimodal parabola, while from a microscopic viewpoint, the avalanche size distributions can be well fitted into a power law relationship, which is in accord with the classical fiber-bundle model.


Assuntos
Módulo de Elasticidade , Modelos Biológicos , Fenômenos Biomecânicos
5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(4 Pt 1): 041126, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22680438

RESUMO

Extensive kinetic Monte Carlo simulations are presented for the Wolf-Villain model in (1+1) dimensions. Asymptotic dynamic scaling is found for lattice sizes L≥2048. The exponents obtained from our simulations, α=0.50±0.02 and ß=0.25±0.02, are in excellent agreement with the exact values α=1/2 and ß=1/4 for the one-dimensional Edwards-Wilkinson equation. Our findings explain the widespread discrepancies of previous reports for exponents of the Wolf-Villain model in (1+1) dimensions, and the results are also consistent with the theoretical predictions of López et al. [J. M. López, M. Castro, and R. Gallego, Phys. Rev. Lett. 94, 166103 (2005)].


Assuntos
Modelos Químicos , Modelos Moleculares , Método de Monte Carlo , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA