Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Am J Transl Res ; 14(10): 7027-7039, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36398274

RESUMO

To study the effect of miR-153-3p on the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) in a high glucose environment and its potential mechanism. The results showed that high glucose inhibited the osteogenic differentiation of BMSCs, and the expression of miR-153-3p increased during osteogenic differentiation. Further experiments found that in BMSCs induced by high glucose, overexpression of miR-153-3p inhibited the osteogenic differentiation of BMSCs, and the expressions of osteogenesis-related genes bone sialoprotein, Collagen I and alkaline phosphatase were down-regulated, while silencing of miR-153-3p alleviated the inhibition effect. The dual-luciferase reporter gene assay confirmed that the 3'-untranslated region (3'-UTR) of runt related transcription factor 2 (RUNX2) had a targeted binding site with miR-153-3p and a negative regulatory effect. Molecular studies further confirmed that miR-153-3p inhibited the osteogenic differentiation of BMSCs by targeting the 3'-UTR of RUNX2. In conclusion, our study found that as one key regulator of high glucose affecting the osteogenic differentiation of BMSCs, miR-153-3p may play a negative regulatory role by inhibiting the expression of RUNX2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA