Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Pharmacol ; 12: 733789, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899293

RESUMO

Hyperlipidemia is an important lipid disorder and a risk factor for health. Aspirin eugenol ester (AEE) is a novel synthetic compound which is made up of two chemical structural units from aspirin and eugenol. Therapeutic effect of AEE on hyperlipidemia has been confirmed in animal model. But the action mechanism of AEE on hyperlipidemia is still poorly understood. In this study, we investigated the effects of AEE on liver and feces metabolic profile through UPLC-Q-TOF/MS-based untargeted metabolomics in hyperlipidemia hamster induced with high fat diet (HFD), and the effects of AEE on the expression of genes and proteins related to cholesterol and bile acid (BA) in HFD-induced hyperlipidemia SD rat. The concentrations of 26 bile acids (BAs) in the liver from hyperlipidemia SD rat were also quantified with the application of BA targeted metabolomics. The results of untargeted metabolomics showed that the underlying mechanism of AEE on hyperlipidemia was mainly associated with amino acid metabolism, glutathione metabolism, energy metabolism, BA metabolism, and glycerophospholipid metabolism. AEE induced the expression of the BA-synthetic enzymes cholesterol 7α-hydroxylase (CYP7A1) by the inhibition of BA nuclear receptor farnesoid X receptor (FXR) in liver, which resulted in accelerating the conversion of cholesterol into bile acids and excrete in feces. The results of BA targeted metabolomics showed that AEE elevated the glycine-conjugated BA level and decreased the tauro-conjugated BA level. In conclusion, this study found that AEE decreased FXR and increased CYP7A1 in the liver, which might be the possible molecular mechanisms and targets of AEE for anti-hyperlipidemia therapies.

2.
Environ Entomol ; 44(3): 582-7, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26313963

RESUMO

The specific primers of five species of endosymbiotic bacteria were designed to determine their numbers in three virulent populations of brown planthopper, Nilapavata lugens Stål, and to assess changes during adaptation to different resistant varieties using fluorescent quantitative PCR. The results showed that Chryseobacterium was the dominant bacteria in all three populations of brown planthopper, followed by Acinetobacter in TN1 population, Arsenophonus and Serratia in Mudgo population, and Arthrobacter and Acinetobacter in ASD7 population. When the TN1 population of brown planthopper was transferred to ASD7 (with resistant gene bph2) rice plants, Chryseobacterium was still the dominant bacteria, but the originally subdominant Acinetobacter declined to a level that was not significantly different from that of other endosymbiotic bacteria. After they were transferred to Mudgo (with resistant gene Bph1), Serratia and Arsenophonus increased significantly and became the dominant bacteria. However, they declined to a level that was not significantly different from that of the three other species after two generations. When ASD7 and Mudgo populations of brown planthopper were transferred to the susceptible variety TN1, the community of endosymbiotic bacteria in the ASD7 population of brown planthopper showed no significant changes. However, the numbers of Acinetobacter and Arthrobacter in the Mudgo population of brown planthopper exhibited a transient increase and returned to their original levels after two generations. After the Mudgo population of brown planthopper was transferred to ASD7 rice plants, the quantity of endosymbiotic bacteria fluctuated, but the bacterial structure did not change significantly. However, after the ASD7 population of brown planthopper was transferred to the Mudgo rice plants, the bacterial structure changed significantly. Serratia and Arsenophonus increased significantly and became dominant. Although Serratia and Arsenophonus decreased significantly after a generation, they were still greater than Chryseobacterium. It was presumed that Chryseobacterium was dominant in all three populations of virulent brown planthoppers, but had no significant effect on virulence variation of brown planthopper. However, Serratia and Arsenophonus might be correlated with virulence variation of brown planthopper.


Assuntos
Adaptação Fisiológica , Bactérias/classificação , Bactérias/isolamento & purificação , Hemípteros/microbiologia , Hemípteros/fisiologia , Oryza/genética , Simbiose , Animais , DNA Bacteriano/genética , DNA Ribossômico/genética , Dados de Sequência Molecular , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA