Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Hepatol Commun ; 8(9)2024 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-39185904

RESUMO

BACKGROUND: Metabolic dysfunction-associated steatotic liver disease (MASLD) is strongly associated with obesity. Sex and age affect MASLD prevalence and pathophysiology. The use of animal models fed Western-style diets is vital for investigating the molecular mechanisms contributing to metabolic dysregulation and for facilitating novel drug target identification. However, the sex-associated and age-associated mechanisms underlying the pathophysiology remain poorly understood. This knowledge gap limits the development of personalized sex-specific and age-specific drug treatments. METHODS: Young (7 wk) and aged (52 wk) male and female mice were fed a high-fat diet (HFD) or low-fat diet. Liver metabolome (>600 molecules) and transcriptome profiles were analyzed. RESULTS: Male and female mice fed an HFD developed obesity, glucose intolerance, and hepatic steatosis. However, fasting blood glucose, insulin, and serum alanine aminotransferase levels were higher in males fed an HFD, indicating a more severe metabolic disease. In addition, males showed significant increases in liver diacylglycerides and glycosylceramides (known mediators of insulin resistance and fibrosis), and more changes in the transcriptome: extracellular matrix organization and proinflammatory genes were elevated only in males. In contrast, no major increase in damaging lipid classes was observed in females fed an HFD. However, aging affected the liver to a greater extent in females. Acylcarnitine levels were significantly reduced, suggestive of changes in fatty acid oxidation, and broad changes in the transcriptome were observed, including reduced oxidative stress response gene expression and alterations in lipid partitioning genes. CONCLUSIONS: Here, we show distinct responses to an HFD between males and females. Our study underscores the need for using both sexes in drug target identification studies, and characterizing the molecular mechanisms contributing to the MASLD pathophysiology in aging animals.


Assuntos
Dieta Hiperlipídica , Obesidade , Animais , Feminino , Masculino , Camundongos , Dieta Hiperlipídica/efeitos adversos , Fatores Sexuais , Fatores Etários , Obesidade/metabolismo , Obesidade/fisiopatologia , Modelos Animais de Doenças , Fígado/metabolismo , Fígado/fisiopatologia , Transcriptoma , Fígado Gorduroso/metabolismo , Fígado Gorduroso/fisiopatologia , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Hepatopatia Gordurosa não Alcoólica/etiologia , Resistência à Insulina , Metaboloma , Intolerância à Glucose/fisiopatologia , Intolerância à Glucose/metabolismo
2.
J Biomol Struct Dyn ; : 1-12, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37874077

RESUMO

Azaheterocycles are three-membered rings, known as aziridines, that occur naturally and have pharmaceutical applications.These compounds are present as several secondary metabolites produced by plants and microorganisms.Recent studies have demonstrated the effectiveness of aziridine derivatives (N-H/N-Me) as anticancer agents.We synthesized 18 compounds containing an N-Me enone aziridine group, the chemistry of which has been previously published. However, these compounds have drug-likeness properties; therefore, we aimed to demonstrate their drug-like properties using in silico and in vitro investigations.The molecular structures of the compounds were optimized using density functional theory (DFT). The ADMET parameters of the derivatives were calculated using SwissADME and PreADMET. Additionally, these derivatives were evaluated for their ability to bind to caspase-3 and caspase-9 and then subjected to molecular docking. The lead chemical AY128 maintained stable complexes with target proteins during molecular dynamics simulations, as evidenced by the root mean square deviation (RMSD) and root mean square fluctuation (RMSF) parameters. In vitro cytotoxicity and ELISA tests showed that the novel aziridine derivatives, especially AY128, had strong anticancer activity against HepG2 hepatocellular carcinoma cells.Our study suggests that AY128 may be a potential drug candidate for hepatocellular carcinoma through the caspase-3 and caspase-9-dependent apoptotic pathways.Communicated by Ramaswamy H. Sarma.

3.
Ann Med Surg (Lond) ; 85(2): 191-194, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36845787

RESUMO

Guillain-Barré syndrome (GBS) is an immune-mediated disorder of the central nervous system presenting as symmetrical, progressive weakness and areflexia. The incidence of GBS is very low during pregnancy, but the risk increases in the postpartum period. The management is done by intravenous immunoglobulin or conservatively. Case Presentation: Case of 27 years female with parity 1, living 1, on postpartum day 20 presented to the emergency department (ED) with weakness over legs and hands since 20 days following emergency lower segment cesarean section for her delivery. The weakness prevailed over the lower extremities and progressed to the upper extremities in 4-5 days, affecting her grip strength and ability to stand alone. No history of prior diarrheal or respiratory illness. Cerebrospinal fluid analysis revealed albuminocytologic dissociation. A nerve conduction study showed in-excitable bilateral radial, median, ulnar, and sural nerves. Intravenous immunoglobulin was administered at the rate of 0.4 g/kg once daily for 5 days. Patient was discharged after 2 weeks with regular physiotherapy follow-up. Conclusion: GBS in the postpartum period is very rare. There must be a high degree of suspicion among physicians for GBS if a pregnant female or a woman during her postpartum period presents with ascending muscle paralysis, even if there is no recent antecedent history of diarrheal episodes or respiratory illness. An early diagnosis with multidisciplinary supportive measures helps improve the prognosis for both the mother and the fetus.

4.
J Viral Hepat ; 30(4): 327-334, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36597176

RESUMO

HBV entry to the host cells and its successful infection depends on its ability to modulate the host restriction factors. DEAD box RNA helicase, DDX3, is shown to inhibit HBV replication. However, the exact mechanism of inhibition still remains unclear. DDX3 is involved in multitude or RNA metabolism processes including biogenesis of miRNAs. In this study, we sought to determine the mechanism involved in DDX3-mediated HBV inhibition. First, we observed that HBx protein of HBV downregulated DDX3 expression in HBV-infected cells. Overexpression of DDX3 inhibited HBx, HBsAg and total viral load, while its knockdown reversed the result in Hep G2.2.15 cells. Expression of miR-34 was downregulated in HBV-infected cells. Overexpression of pHBV1.3 further confirmed that HBV downregulates miR-34 expression. Consistent with the previous finding that DDX3 is involved in miRNA biogenesis, we observed that expression of miR-34 positively corelated with DDX3 expression. miRNA target prediction tools showed that miR-34 can target autophagy pathway which is hijacked by HBV for the benefit of its own replication. Indeed, transfection with miR-34 oligos downregulated the expression of autophagy marker proteins in HBV-expressing cells. Overexpression of DDX3 in HBV-expressing cells, downregulated expression of autophagy proteins while silencing of DDX3 reversed the results. These results led us to conclude that DDX3 upregulates miR-34 expression and thus inhibits autophagy in HBV-expressing cells while HBx helps HBV evade DDX3-mediated inhibition by downregulating DDX3 expression in HBV-infected cells.


Assuntos
Vírus da Hepatite B , MicroRNAs , Humanos , Vírus da Hepatite B/genética , Replicação Viral , Hepatócitos , MicroRNAs/genética , Células Hep G2 , Autofagia
5.
Microbiol Spectr ; 11(1): e0123522, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36519846

RESUMO

Hepatitis B virus (HBV) infection targets host restriction factors that inhibit its replication and survival. Previous studies have shown that barriers to autointegration factor1 (BANF1) inhibited the replication of herpes simplex virus and vaccinia virus by binding to phosphate backbone of dsDNA. To date, no reports are available for the interplay between BANF1 and HBV. In this study, we elucidated the mechanisms by which HBV inhibit BANF1. First, the effect of HBV on BANF1 was observed in Huh-7, Hep G2, and Hep G2.2.15 cells. Huh-7 cells were transfected with pHBV1.3 or HBx plasmids. The results showed that there was a decreased expression of BANF1 in Hep G2.2.15 cells (P ≤ 0.005) or in HBV/HBx expressing Huh-7 cells (P ≤ 0.005), whereas BANF1 overexpression decreased viral replication (P ≤ 0.05). To study whether phosphorylation/dephosphorylation of BANF1 was responsible for antiviral activity, mutants were created, and it was found that inhibition due to mutants was less significant compared to BANF1 wild type. Previous studies have shown that HBV, at least in part, could regulate the expression of host miRNAs via HBx. It was found that miR-203 expression was high in Hep G2.2.15 cells (P ≤ 0.005) compared to Hep G2 cells. Next, the effect of HBx on miR-203 expression was studied and result showed that HBx upregulated miR-203 expression (P ≤ 0.005). Overexpression of miR-203 downregulated BANF1 expression (P ≤ 0.05) and viral titer was upregulated (P ≤ 0.05), while inhibition of miR-203, reversed these changes. In conclusion, BANF1 downregulated HBV, whereas HBV inhibited BANF1, at least in part, via HBx-mediated miR-203 upregulation in hepatic cells. IMPORTANCE In this study, for the first time, we found that BANF1 inhibited HBV replication and restricted the viral load. However, as previously reported for other viruses, the results in this study showed that BAF1 phosphorylation/dephosphorylation is not involved in its antiviral activity against HBV. HBV infection inhibited the intracellular expression of BANF1, via HBx-mediated upregulation of miR-203 expression. Overexpression of miR-203 downregulated BANF1 and increased the viral titer, while inhibition of miR-203 reversed these changes. This study helped us to understand the molecular mechanisms by which HBV survives and replicates in the host cells.


Assuntos
Hepatite B , MicroRNAs , Transativadores , Proteínas Virais Reguladoras e Acessórias , Humanos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Hepatite B/genética , Hepatite B/metabolismo , Hepatite B/virologia , Vírus da Hepatite B/genética , Hepatócitos/metabolismo , Hepatócitos/virologia , MicroRNAs/genética , MicroRNAs/metabolismo , Transativadores/genética , Transativadores/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo
6.
Life Sci ; 301: 120625, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35551953

RESUMO

AIMS: Non-alcoholic fatty liver disease is one of the major health concerns in the World. The dietary free fatty acids (FFAs) affect the metabolic status of the hepatocytes by modulating cellular pathways. In this study, we showed that free fatty acids stimulate apoptosis by upregulating miR-181a-5p expression, which in turn targets XIAP and Bcl2. METHODS: Huh7 cells were incubated with FFAs for 72 h and the expression of XIAP, Bcl2, bax, pAkt, Akt, PTEN and ß-actin were determined by Western blots, and miR-181a-5p expression was determined using real-time RT-PCR. The Huh7 cells were transfected with either miR-181a-5p pre-miRs or anti-miR-181a-5p and the regulation of apoptosis and proliferation was studied. Three groups of C57BL/6 mice (n = 6 per group) were fed with standard diet, CSAA or CDAA diet for 6, 18, 32 and 54 weeks. Total protein and RNA were isolated from the liver tissues and used for Western blots and real-time RT-PCR respectively. KEY FINDINGS: FFAs inhibited Akt phosphorylation, expression of XIAP and Bcl2, while upregulating the expression of PTEN, bax, and miR-181a-5p in Huh7 cells. Similar results were observed when the Huh7 cells were transfected with miR-181a-5p premiRs, while these changes were reversed in anti-miR-181a-5p-transfected, FFA-treated Huh7 cells. The CDAA-fed mice showed a significant inhibition of Akt phosphorylation, XIAP and Bcl2, whereas PTEN and bax expression were upregulated. The expression of miR-181a-5p was also significantly higher in CDAA-fed mice. SIGNIFICANCE: These findings showed that free fatty acids induced apoptosis via upregulating miR-181a-5p in hepatic cells.


Assuntos
MicroRNAs , Animais , Antagomirs , Apoptose/genética , Proliferação de Células/genética , Ácidos Graxos não Esterificados/farmacologia , Hepatócitos/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína X Associada a bcl-2/genética
7.
J Org Chem ; 87(5): 3751-3757, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35171590

RESUMO

The first direct general method for N-Me aziridination of electron-deficient olefins, enones, is described using N-methyl-O-tosylhydroxylamine as the aminating agent in the presence of a Cu(OTf)2 catalyst. The aziridination of vinyl ketones, hitherto unknown for N-Me as well as N-H, has been achieved efficiently. The open-flask reaction is stereospecific, operationally simple, and additive-free. It also efficiently affords N-H aziridinated products under a similar reaction condition.


Assuntos
Aziridinas , Alcenos , Catálise , Cetonas , Estrutura Molecular
8.
Nature ; 601(7894): 556-561, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35082421

RESUMO

As the length scales of materials decrease, the heterogeneities associated with interfaces become almost as important as the surrounding materials. This has led to extensive studies of emergent electronic and magnetic interface properties in superlattices1-9. However, the interfacial vibrations that affect the phonon-mediated properties, such as thermal conductivity10,11, are measured using macroscopic techniques that lack spatial resolution. Although it is accepted that intrinsic phonons change near boundaries12,13, the physical mechanisms and length scales through which interfacial effects influence materials remain unclear. Here we demonstrate the localized vibrational response of interfaces in strontium titanate-calcium titanate superlattices by combining advanced scanning transmission electron microscopy imaging and spectroscopy, density functional theory calculations and ultrafast optical spectroscopy. Structurally diffuse interfaces that bridge the bounding materials are observed and this local structure creates phonon modes that determine the global response of the superlattice once the spacing of the interfaces approaches the phonon spatial extent. Our results provide direct visualization of the progression of the local atomic structure and interface vibrations as they come to determine the vibrational response of an entire superlattice. Direct observation of such local atomic and vibrational phenomena demonstrates that their spatial extent needs to be quantified to understand macroscopic behaviour. Tailoring interfaces, and knowing their local vibrational response, provides a means of pursuing designer solids with emergent infrared and thermal responses.

9.
Nature ; 592(7854): 376-380, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33854251

RESUMO

The collective dynamics of topological structures1-6 are of interest from both fundamental and applied perspectives. For example, studies of dynamical properties of magnetic vortices and skyrmions3,4 have not only deepened our understanding of many-body physics but also offered potential applications in data processing and storage7. Topological structures constructed from electrical polarization, rather than electron spin, have recently been realized in ferroelectric superlattices5,6, and these are promising for ultrafast electric-field control of topological orders. However, little is known about the dynamics underlying the functionality of such complex extended nanostructures. Here, using terahertz-field excitation and femtosecond X-ray diffraction measurements, we observe ultrafast collective polarization dynamics that are unique to polar vortices, with orders-of-magnitude higher frequencies and smaller lateral size than those of experimentally realized magnetic vortices3. A previously unseen tunable mode, hereafter referred to as a vortexon, emerges in the form of transient arrays of nanoscale circular patterns of atomic displacements, which reverse their vorticity on picosecond timescales. Its frequency is considerably reduced (softened) at a critical strain, indicating a condensation (freezing) of structural dynamics. We use first-principles-based atomistic calculations and phase-field modelling to reveal the microscopic atomic arrangements and corroborate the frequencies of the vortex modes. The discovery of subterahertz collective dynamics in polar vortices opens opportunities for electric-field-driven data processing in topological structures with ultrahigh speed and density.

10.
Biochem Biophys Rep ; 24: 100846, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33319070

RESUMO

USP5 and USP8 (Deubiquitinating enzyme) are highly overexpressed and more recognized as poor prognosis marker in various cancers. Depleting USP5 or USP8 to assess the synergism with proteasome inhibitor (Bortezomib) were measured. Furthermore, in present finding USP5 cooperates hnRNPA1 & USP8 cooperate SF2/ASF1, therefore gain in expression of either hnRNPA1 or SF2/ASF1 is sufficient to promote cell survival. On the other side, apoptosis markers were more pronounced in U87 or T98G cells devoid of either USP5 or USP8. However, apparent increase in SF2/ASF1 in absence of USP5, providing resistant factor is new. Antiapoptotic activity due to rise in SF2/ASF1 was validated after co-knock down of SF2/ASF1 in addition to USP5 induces more apoptosis comparing to individual knock down of USP5 or SF2/ASF1. This reveals SF2/ASF1 (RNA binding protein) delayed the apoptotic effect due to loss of USP5, lends ubiquitination of hnRNPA1. In presence of USP5, PI3 kinase inhibition promotes even more interaction between USP5 and hnRNPA1, thereby stabilizes hnRNPA1 in U87MG. In that way hnRNPA1 and SF2/ASF1 impart oncogenic activity. In conclusion, siRNA based strategy against USP5 is not enough to inhibit glioma, moreover targeting additionally SF2/ASF1 by knocking down USP8 is suitably more effective to deal with glioma tumour reoccurrence by indirectly targeting both SF2/ASF1 and hnRNPA1 oncogene.

12.
Nature ; 580(7804): 478-482, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32322080

RESUMO

Ultrathin ferroelectric materials could potentially enable low-power perovskite ferroelectric tetragonality logic and nonvolatile memories1,2. As ferroelectric materials are made thinner, however, the ferroelectricity is usually suppressed. Size effects in ferroelectrics have been thoroughly investigated in perovskite oxides-the archetypal ferroelectric system3. Perovskites, however, have so far proved unsuitable for thickness scaling and integration with modern semiconductor processes4. Here we report ferroelectricity in ultrathin doped hafnium oxide (HfO2), a fluorite-structure oxide grown by atomic layer deposition on silicon. We demonstrate the persistence of inversion symmetry breaking and spontaneous, switchable polarization down to a thickness of one nanometre. Our results indicate not only the absence of a ferroelectric critical thickness but also enhanced polar distortions as film thickness is reduced, unlike in perovskite ferroelectrics. This approach to enhancing ferroelectricity in ultrathin layers could provide a route towards polarization-driven memories and ferroelectric-based advanced transistors. This work shifts the search for the fundamental limits of ferroelectricity to simpler transition-metal oxide systems-that is, from perovskite-derived complex oxides to fluorite-structure binary oxides-in which 'reverse' size effects counterintuitively stabilize polar symmetry in the ultrathin regime.

13.
Hepatol Res ; 49(11): 1341-1352, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31267617

RESUMO

AIM: Hepatocytes can proliferate and regenerate when injured by toxins, viral infections, and so on. Augmenter of liver regeneration (ALR) is a key regulator of liver regeneration, but the mechanism is unknown. The role of ALR in other cell types is not known. In the present study, we investigated the relationship between microRNA (miRNA)-26a and ALR in the Huh7 cell line and adipose tissue-derived mesenchymal cells from chronic liver disease patients and healthy individuals. METHODS: Huh7 cells were transfected independently with ALR and miRNA-26a expression vectors, and their effects on cell proliferation, the expression of miRNA-26a, and activation of the phosphatase and tensin homolog and Akt signaling pathways were determined. The experiments were repeated on mesenchymal stem cells derived from healthy individuals and chronic liver disease patients to see whether the observations can be replicated in primary cells. RESULTS: Overexpression of ALR or miRNA-26a resulted in an increase of the phosphorylation of Akt and cyclin D1 expression, whereas it resulted in decreased levels of p-GSK-3ß and phosphatase and tensin homolog in Huh7 cells. The inhibition of ALR expression by ALR siRNA or anti-miR-26a decreased the Akt/cyclin D1 signaling pathway, leading to decreased proliferation. Mesenchymal stem cells isolated from the chronic liver disease patients had a higher ALR expression, while the mesenchymal stem cells isolated from healthy volunteers responded to the growth factor treatments for increased ALR expression. It was found that there was a significant increase in miRNA-26a expression and proliferation. CONCLUSIONS: These data clearly showed that ALR induced the expression of miRNA-26a, which downregulated phosphatase and tensin homolog, resulting in an increased p-Akt/cyclin D1 pathway and enhanced proliferation in hepatic cells.

14.
PLoS One ; 14(6): e0214534, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31166951

RESUMO

OBJECTIVE: To study the role of miRNA-181a and augmenter of liver regeneration in TGF-ß-induced fibrosis in hepatic stellate cells. METHODS: LX2 cells were treated with 20 ng/ml TGF-ß for 24 h. miRNA-181a, ALR plasmid and empty vectors were transfected using siPORT NeoFx reagent. Cells were harvested after 48 h or 72 h of transfection for protein or RNA analysis. Western blotting was performed for ALR, TGF-ß receptor II (TGFß-RII), collagen 1A1 (COLL1A1), alpha-smooth muscle cell actin (α-SMA), rac1, E-cadherin and ß-actin. Quantitative RT-PCR was performed for ALR, GAPDH, miRNA-181a or 5S rRNA. RESULTS: TGF-ß induced the expression of miRNA-181a, which in turn down-regulated ALR thereby induced the fibrosis markers, such as COLL1A1, α-SMA and rac1 in hepatic stellate cells. Over-expression of miRNA-181a down-regulated expression of ALR and up-regulated expression of fibrosis markers. On the other hand, ALR over-expression resulted in a decrease in miRNA-181a expression and fibrosis markers. Over-expression of ALR also inhibited the expression of TGFß-RII and increased expression E-cadherin. CONCLUSION: TGF-ß induced miRNA-181a, which in turn induced fibrosis, at least in part, by inhibiting ALR. ALR inhibited TGF-ß action by decreasing the expression of TGFß-RII, thereby inhibiting miRNA-181a expression and fibrosis markers. ALR could serve as a potential molecule to inhibit liver fibrosis.


Assuntos
Células Estreladas do Fígado/citologia , Cirrose Hepática/genética , MicroRNAs/genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Fator de Crescimento Transformador beta/farmacologia , Actinas/metabolismo , Biomarcadores/metabolismo , Linhagem Celular , Colágeno Tipo I/metabolismo , Cadeia alfa 1 do Colágeno Tipo I , Regulação para Baixo , Regulação da Expressão Gênica/efeitos dos fármacos , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Humanos , Cirrose Hepática/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
16.
Nature ; 565(7740): 468-471, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30643207

RESUMO

Negative capacitance is a newly discovered state of ferroelectric materials that holds promise for electronics applications by exploiting a region of thermodynamic space that is normally not accessible1-14. Although existing reports of negative capacitance substantiate the importance of this phenomenon, they have focused on its macroscale manifestation. These manifestations demonstrate possible uses of steady-state negative capacitance-for example, enhancing the capacitance of a ferroelectric-dielectric heterostructure4,7,14 or improving the subthreshold swing of a transistor8-12. Yet they constitute only indirect measurements of the local state of negative capacitance in which the ferroelectric resides. Spatial mapping of this phenomenon would help its understanding at a microscopic scale and also help to achieve optimal design of devices with potential technological applications. Here we demonstrate a direct measurement of steady-state negative capacitance in a ferroelectric-dielectric heterostructure. We use electron microscopy complemented by phase-field and first-principles-based (second-principles) simulations in SrTiO3/PbTiO3 superlattices to directly determine, with atomic resolution, the local regions in the ferroelectric material where a state of negative capacitance is stabilized. Simultaneous vector mapping of atomic displacements (related to a complex pattern in the polarization field), in conjunction with reconstruction of the local electric field, identify the negative capacitance regions as those with higher energy density and larger polarizability: the domain walls where the polarization is suppressed.

17.
J Org Chem ; 83(19): 12255-12260, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30192145

RESUMO

Unactivated aziridines are the core substructures in a plethora of bioactive natural products and serve as building blocks in organic synthesis. Despite this, very limited methods are available to access them directly from olefins, as most of the known methods are devoted to their activated counterparts. Herein, we have developed a highly efficient Rh(II)-catalyzed method for the direct preparation of unactivated aziridines from olefins using O-(sulfonyl)hydroxylamines as the aminating agent. The reactions proceed with a high stereospecificity.

18.
Oncotarget ; 9(26): 18351-18366, 2018 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-29719610

RESUMO

Hypoxia is a characteristic of solid tumors especially Glioblastoma and is critical to chemoresistance. Cancer stem cells present in hypoxic niches are known to be a major cause of the progression, metastasis and relapse. We tried to identify synergistic combinations of drugs effective in both hypoxia and normoxia in tumor cells as well as in cancer stem cells. Since COX-2 is over-expressed in subset of glioblastoma and is also induced in hypoxia, we studied combinations of a prototype Cyclooxygenase (COX-2) inhibitor, NS-398 with various drugs (BCNU, Temozolomide, 2-Deoxy-D-glucose and Cisplatin) for their ability to abrogate chemoresistance under both severe hypoxia (0.2% O2) and normoxia (20% O2) in glioma cells. The only effective combination was of NS-398 and BCNU which showed a synergistic effect in both hypoxia and normoxia. This synergism was evident at sub-lethal doses for either of the single agent. The effectiveness of the combination resulted from increased pro- apoptotic and decreased anti-apoptotic molecules and increased caspase activity. PGE2 levels, a manifestation of COX-2 activity were increased during hypoxia, but were reduced by the combination during both hypoxia and normoxia. The combination reduced the levels of epithelial-mesenchymal transition (EMT) markers. It also resulted in a greater reduction of cell migration. While single drugs could reduce the number of gliomaspheres, the combination successfully abrogated their formation. The combination also resulted in a greater reduction of the cancer stem cell marker CD133. This combination could be a prototype of possible therapy in a tumor with a high degree of hypoxia like glioma.

19.
Proc Natl Acad Sci U S A ; 115(5): 915-920, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29339493

RESUMO

Chirality is a geometrical property by which an object is not superimposable onto its mirror image, thereby imparting a handedness. Chirality determines many important properties in nature-from the strength of the weak interactions according to the electroweak theory in particle physics to the binding of enzymes with naturally occurring amino acids or sugars, reactions that are fundamental for life. In condensed matter physics, the prediction of topologically protected magnetic skyrmions and related spin textures in chiral magnets has stimulated significant research. If the magnetic dipoles were replaced by their electrical counterparts, then electrically controllable chiral devices could be designed. Complex oxide BaTiO3/SrTiO3 nanocomposites and PbTiO3/SrTiO3 superlattices are perfect candidates, since "polar vortices," in which a continuous rotation of ferroelectric polarization spontaneously forms, have been recently discovered. Using resonant soft X-ray diffraction, we report the observation of a strong circular dichroism from the interaction between circularly polarized light and the chiral electric polarization texture that emerges in PbTiO3/SrTiO3 superlattices. This hallmark of chirality is explained by a helical rotation of electric polarization that second-principles simulations predict to reside within complex 3D polarization textures comprising ordered topological line defects. The handedness of the texture can be topologically characterized by the sign of the helicity number of the chiral line defects. This coupling between the optical and novel polar properties could be exploited to encode chiral signatures into photon or electron beams for information processing.

20.
Redox Biol ; 12: 340-349, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28288414

RESUMO

Butyrate is one of the short chain fatty acids, produced by the gut microbiota during anaerobic fermentation of dietary fibres. It has been shown that it can inhibit tumor progression via suppressing histone deacetylase and can induce apoptosis in cancer cells. However, the comprehensive pathway by which butyrate mediates apoptosis and growth arrest in cancer cells still remains unclear. In this study, the role of miR-22 in butyrate-mediated ROS release and induction of apoptosis was determined in hepatic cells. Intracellular expression of miR-22 was increased when the Huh 7 cells were incubated with sodium butyrate. Over-expression of miR-22 or addition of sodium butyrate inhibited SIRT-1 expression and enhanced the ROS production. Incubation of cells with anti-miR-22 reversed the effects of butyrate. Butyrate induced apoptosis via ROS production, cytochrome c release and activation of caspase-3, whereas addition of N-acetyl cysteine or anti-miR-22 reversed these butyrate-induced effects. Furthermore, sodium butyrate inhibited cell growth and proliferation, whereas anti-miR-22 inhibited these butyrate-mediated changes. The expression of PTEN and gsk-3 was found to be increased while p-akt and ß-catenin expression was decreased significantly by butyrate. These data showed that butyrate modulated both apoptosis and proliferation via miR-22 expression in hepatic cells.


Assuntos
Antineoplásicos/farmacologia , Ácido Butírico/farmacologia , Neoplasias Hepáticas/genética , MicroRNAs/genética , Espécies Reativas de Oxigênio/metabolismo , Sirtuína 1/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA