Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Arch Microbiol ; 206(7): 288, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38834761

RESUMO

Bone infections caused by Staphylococcus aureus may lead to an inflammatory condition called osteomyelitis, which results in progressive bone loss. Biofilm formation, intracellular survival, and the ability of S. aureus to evade the immune response result in recurrent and persistent infections that present significant challenges in treating osteomyelitis. Moreover, people with diabetes are prone to osteomyelitis due to their compromised immune system, and in life-threatening cases, this may lead to amputation of the affected limbs. In most cases, bone infections are localized; thus, early detection and targeted therapy may prove fruitful in treating S. aureus-related bone infections and preventing the spread of the infection. Specific S. aureus components or overexpressed tissue biomarkers in bone infections could be targeted to deliver active therapeutics, thereby reducing drug dosage and systemic toxicity. Compounds like peptides and antibodies can specifically bind to S. aureus or overexpressed disease markers and combining these with therapeutics or imaging agents can facilitate targeted delivery to the site of infection. The effectiveness of photodynamic therapy and hyperthermia therapy can be increased by the addition of targeting molecules to these therapies enabling site-specific therapy delivery. Strategies like host-directed therapy focus on modulating the host immune mechanisms or signaling pathways utilized by S. aureus for therapeutic efficacy. Targeted therapeutic strategies in conjunction with standard surgical care could be potential treatment strategies for S. aureus-associated osteomyelitis to overcome antibiotic resistance and disease recurrence. This review paper presents information about the targeting strategies and agents for the therapy and diagnostic imaging of S. aureus bone infections.


Assuntos
Antibacterianos , Osteomielite , Infecções Estafilocócicas , Staphylococcus aureus , Osteomielite/microbiologia , Osteomielite/tratamento farmacológico , Humanos , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Antibacterianos/uso terapêutico , Biofilmes/efeitos dos fármacos , Animais
2.
Oncogene ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719949

RESUMO

Epigenetic regulation established during development to maintain patterns of transcriptional expression and silencing for metabolism and other fundamental cell processes can be reprogrammed in cancer, providing a molecular mechanism for persistent alterations in phenotype. Metabolic deregulation and reprogramming are thus an emerging hallmark of cancer with opportunities for molecular classification as a critical preliminary step for precision therapeutic intervention. Yet, acquisition of therapy resistance against most conventional treatment regimens coupled with tumor relapse, continue to pose unsolved problems for precision healthcare, as exemplified in breast cancer where existing data informs both cancer genotype and phenotype. Furthermore, epigenetic reprograming of the metabolic milieu of cancer cells is among the most crucial determinants of therapeutic resistance and cancer relapse. Importantly, subtype-specific epigenetic-metabolic interplay profoundly affects malignant transformation, resistance to chemotherapy, and response to targeted therapies. In this review, we therefore prismatically dissect interconnected epigenetic and metabolic regulatory pathways and then integrate them into an observable cancer metabolism-therapy-resistance axis that may inform clinical intervention. Optimally coupling genome-wide analysis with an understanding of metabolic elements, epigenetic reprogramming, and their integration by metabolic profiling may decode missing molecular mechanisms at the level of individual tumors. The proposed approach of linking metabolic biochemistry back to genotype, epigenetics, and phenotype for specific tumors and their microenvironment may thus enable successful mechanistic targeting of epigenetic modifiers and oncometabolites despite tumor metabolic heterogeneity.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38237655

RESUMO

The present study explores growth potential of two medicinal herbs, Withania somnifera (Ashwagandha or 'A') and Asparagus racemosus (Shatavari or 'S') after their dietary inclusion in fish, Channa punctatus (13.5 ± 2 g; 11.5 ± 1 cm). Three hundred well-acclimatized fish were distributed into 10 groups- C (Control), S1 (1% S), S2 (2% S), S3 (3% S), A1 (1% A), A2 (2% A), A3 (3% A), AS1 (1% A and S), AS2 (2% A and S), and AS3 (3% A and S), each having 10 specimens. Fish were fed with these diets for 60 days. The study was performed in triplicate. Growth indices- weight gain (WG), specific growth rate percentage (SGR%), feed intake (FI), and condition factor (CF), after 30 and 60 days, were found significantly (p < 0.05) up-regulated in all the groups, except S1, when compared to the C. A significant (p < 0.05) increase in final body weight (FBW) was noticed in all the groups, except S1, after 60 days. Relative to the control group, activities of lipase and amylase in the gut tissue were elevated in all groups, at both sampling times, with the exception of lipase in S1 at 60 days, and amylase in S1 at day 30 and day 60 and S2 at day 60. The mRNA expression of myogenic regulatory factors (MRFs) was also found to be significantly (p < 0.05) up-regulated with the highest fold changes recorded in AS3 for myoD (3.93 ± 0.91); myoG (6.71 ± 0.30); myf5 (4.40 ± 0.33); MRF4 (4.94 ± 0.21) in comparison to the C.


Assuntos
Channa punctatus , Fatores de Regulação Miogênica , Withania , Animais , Withania/genética , Dieta/veterinária , Peixes , Amilases , Lipase , Ração Animal/análise
4.
Biochim Biophys Acta Gene Regul Mech ; 1866(4): 194979, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37633647

RESUMO

The ubiquitin proteasomal system (UPS) represents a highly regulated protein degradation pathway essential for maintaining cellular homeostasis. This system plays a critical role in several cellular processes, which include DNA damage repair, cell cycle checkpoint control, and immune response regulation. Recently, the UPS has emerged as a promising target for cancer therapeutics due to its involvement in oncogenesis and tumor progression. Here we aim to summarize the key aspects of the UPS and its significance in cancer therapeutics. We begin by elucidating the fundamental components of the UPS, highlighting the role of ubiquitin, E1-E3 ligases, and the proteasome in protein degradation. Furthermore, we discuss the intricate process of ubiquitination and proteasomal degradation, emphasizing the specificity and selectivity achieved through various signaling pathways. The dysregulation of the UPS has been implicated in cancer development and progression. Aberrant ubiquitin-mediated degradation of key regulatory proteins, such as tumor suppressors and oncoproteins, can lead to uncontrolled cell proliferation, evasion of apoptosis, and metastasis. We outline the pivotal role of the UPS in modulating crucial oncogenic pathways, including the regulation of cyclins, transcription factors, Replication stress components and DNA damage response. The increasing recognition of the UPS as a target for cancer therapeutics has spurred the development of small molecules, peptides, and proteasome inhibitors with the potential to restore cellular balance and disrupt tumor growth. We provide an overview of current therapeutic strategies aimed at exploiting the UPS, including the use of proteasome inhibitors, deubiquitinating enzyme inhibitors, and novel E3 ligase modulators. We further discuss novel emerging strategies for the development of next-generation drugs that target proteasome inhibitors. Exploiting the UPS for cancer therapeutics offers promising avenues for developing innovative and effective treatment strategies, providing hope for improved patient outcomes in the fight against cancer.


Assuntos
Neoplasias , Inibidores de Proteassoma , Humanos , Inibidores de Proteassoma/uso terapêutico , Ubiquitinação , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo
5.
Vet Immunol Immunopathol ; 258: 110561, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36801726

RESUMO

With the progression of aquaculture industry, there has been a spurt in dietary supplementation with economically viable medicinal herbs having enough immunostimulatory potential. This also aids in avoidance of environmentally undesirable therapeutics that are almost inevitable to safeguard fish against an array of diseases in aquaculture practices. The study aims to determine the optimal dose of herbs that can stimulate substantial immune response in fish for reclamation of aquaculture. Immunostimulatory potential of the two medicinal herbs- Asparagus racemosus (Shatavari), Withania somnifera (Ashwagandha), individually, and in combination, with a basal diet was screened up to 60 days in Channa punctatus. 300 laboratory acclimatized healthy fish (14 ± 1 g; 11 ± 1 cm) were divided into ten groups- C, S1, S2, S3, A1, A2, A3, AS1, AS2, and AS3, based on the composition of dietary supplementation, in triplicates, with 10 specimens per group. The hematological index, total protein and lysozyme enzyme activity were performed after 30 and 60 days, while qRT-PCR analysis of lysozyme expression was done after 60 days of the feeding trial. The significant (P < 0.05) increments in hematological indices- (TEC, TLC, DLC, Hb, Hct, MCV, MCH and MCHC), total protein content and serum lysozyme activity, after 30 and 60 days; whereas upregulation of lysozyme transcript levels, both in liver and muscle tissues after 60 days of the feeding trial were recorded in groups- AS1, AS2, and AS3. The maximal increment in lysozyme expression was recorded in AS3, both in liver and muscle tissues, with 3.75 ± 0.13 and 3.21 ± 0.18-folds, respectively. However, increments were non-significant (P > 0.05) for MCV in AS2 and AS3 after 30 days; and for MCHC in AS1 for both the durations; whereas in AS2 and AS3, after 60 days of the feeding trial. A positive correlation (P < 0.05) among lysozyme expression, MCH, lymphocytes, neutrophils, total protein content, and serum lysozyme activity in AS3, after 60 days, conclusively, evinces that a 3% dietary supplementation with both A. racemosus and W. somnifera enhances immunity and health profile of the fish, C. punctatus. The study, thus finds ample scope in augmentation of aquaculture production and also paves the way for more researches for biological screenings of potential immunostimulatory medicinal herbs that can be appropriately incorporated in the fish diet.


Assuntos
Doenças dos Peixes , Withania , Animais , Ração Animal/análise , Dieta/veterinária , Suplementos Nutricionais/análise , Peixes , Muramidase
6.
Cancer Res ; 83(5): 657-666, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36661847

RESUMO

Therapy resistance is imposing a daunting challenge on effective clinical management of breast cancer. Although the development of resistance to drugs is multifaceted, reprogramming of energy metabolism pathways is emerging as a central but heterogenous regulator of this therapeutic challenge. Metabolic heterogeneity in cancer cells is intricately associated with alterations of different signaling networks and activation of DNA damage response pathways. Here we consider how the dynamic metabolic milieu of cancer cells regulates their DNA damage repair ability to ultimately contribute to development of therapy resistance. Diverse epigenetic regulators are crucial in remodeling the metabolic landscape of cancer. This epigenetic-metabolic interplay profoundly affects genomic stability of the cancer cells as well as their resistance to genotoxic therapies. These observations identify defining mechanisms of cancer epigenetics-metabolism-DNA repair axis that can be critical for devising novel, targeted therapeutic approaches that could sensitize cancer cells to conventional treatment strategies.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Resistencia a Medicamentos Antineoplásicos/genética , Reparo do DNA , Dano ao DNA , Epigênese Genética
7.
Recent Adv Food Nutr Agric ; 13(1): 27-50, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36173075

RESUMO

The drug-food interaction brings forth changes in the clinical effects of drugs. While favourable interactions bring positive clinical outcomes, unfavourable interactions may lead to toxicity. This article reviews the impact of food intake on drug-food interactions, the clinical effects of drugs, and the effect of drug-food in correlation with diet and precision medicine. Emerging areas in drug-food interactions are the food-genome interface (nutrigenomics) and nutrigenetics. Understanding the molecular basis of food ingredients, including genomic sequencing and pharmacological implications of food molecules, helps to reduce the impact of drug-food interactions. Various strategies are being leveraged to alleviate drug-food interactions; measures including patient engagement, digital health, approaches involving machine intelligence, and big data are a few of them. Furthermore, delineating the molecular communications across dietmicrobiome- drug-food-drug interactions in a pharmacomicrobiome framework may also play a vital role in personalized nutrition. Determining nutrient-gene interactions aids in making nutrition deeply personalized and helps mitigate unwanted drug-food interactions, chronic diseases, and adverse events from their onset. Translational bioinformatics approaches could play an essential role in the next generation of drug-food interaction research. In this landscape review, we discuss important tools, databases, and approaches along with key challenges and opportunities in drug-food interaction and its immediate impact on precision medicine.


Assuntos
Big Data , Interações Alimento-Droga , Humanos , Nutrigenômica , Dieta , Inteligência Artificial
8.
Cells ; 11(11)2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35681523

RESUMO

Organ-on-a-chip (OOAC) is an emerging technology based on microfluid platforms and in vitro cell culture that has a promising future in the healthcare industry. The numerous advantages of OOAC over conventional systems make it highly popular. The chip is an innovative combination of novel technologies, including lab-on-a-chip, microfluidics, biomaterials, and tissue engineering. This paper begins by analyzing the need for the development of OOAC followed by a brief introduction to the technology. Later sections discuss and review the various types of OOACs and the fabrication materials used. The implementation of artificial intelligence in the system makes it more advanced, thereby helping to provide a more accurate diagnosis as well as convenient data management. We introduce selected OOAC projects, including applications to organ/disease modelling, pharmacology, personalized medicine, and dentistry. Finally, we point out certain challenges that need to be surmounted in order to further develop and upgrade the current systems.


Assuntos
Inteligência Artificial , Dispositivos Lab-On-A-Chip , Materiais Biocompatíveis , Microfluídica , Engenharia Tecidual
9.
Cancers (Basel) ; 14(11)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35681714

RESUMO

The impact of pelvic inflammation on prostate cancer (PCa) biology and aggressive phenotype has never been studied. Our study objective was to evaluate the role of pelvic inflammation on PCa aggressiveness and its association with clinical outcomes in patients following radical prostatectomy (RP). This study has been conducted on a retrospective single-institutional consecutive cohort of 2278 patients who underwent robot-assisted laparoscopic prostatectomy (RALP) between 01/2013 and 10/2019. Data from 2085 patients were analyzed to study the association between pelvic inflammation and adverse pathology (AP), defined as Gleason Grade Group (GGG) > 2 and ≥ pT3 stage, at resection. In a subset of 1997 patients, the association between pelvic inflammation and biochemical recurrence (BCR) was studied. Alteration in tumor transcriptome and inflammatory markers in patients with and without pelvic inflammation were studied using microarray analysis, immunohistochemistry, and culture supernatants derived from inflamed sites used in functional assays. Changes in blood inflammatory markers in the study cohort were analyzed by O-link. In univariate analyses, pelvic inflammation emerged as a significant predictor of AP. Multivariate cox proportional-hazards regression analyses showed that high pelvic inflammation with pT3 stage and positive surgical margins significantly affected the time to BCR (p ≤ 0.05). PCa patients with high inflammation had elevated levels of pro-inflammatory cytokines in their tissues and in blood. Genes involved in epithelial-to-mesenchymal transition (EMT) and DNA damage response were upregulated in patients with pelvic inflammation. Attenuation of STAT and IL-6 signaling decreased tumor driving properties of conditioned medium from inflamed sites. Pelvic inflammation exacerbates the progression of prostate cancer and drives an aggressive phenotype.

10.
J Cell Biol ; 220(10)2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34323918

RESUMO

Lipid droplets store neutral lipids, primarily triacylglycerol and steryl esters. Seipin plays a role in lipid droplet biogenesis and is thought to determine the site of lipid droplet biogenesis and the size of newly formed lipid droplets. Here we show a seipin-independent pathway of lipid droplet biogenesis. In silico and in vitro experiments reveal that retinyl esters have the intrinsic propensity to sequester and nucleate in lipid bilayers. Production of retinyl esters in mammalian and yeast cells that do not normally produce retinyl esters causes the formation of lipid droplets, even in a yeast strain that produces only retinyl esters and no other neutral lipids. Seipin does not determine the size or biogenesis site of lipid droplets composed of only retinyl esters or steryl esters. These findings indicate that the role of seipin in lipid droplet biogenesis depends on the type of neutral lipid stored in forming droplets.


Assuntos
Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Gotículas Lipídicas/metabolismo , Ésteres de Retinil/metabolismo , Triglicerídeos/metabolismo , Animais , Células Cultivadas , Cricetulus , Subunidades gama da Proteína de Ligação ao GTP/deficiência , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
11.
Commun Biol ; 4(1): 670, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34083737

RESUMO

Racial disparities in prostate cancer have not been well characterized on a genomic level. Here we show the results of a multi-institutional retrospective analysis of 1,152 patients (596 African-American men (AAM) and 556 European-American men (EAM)) who underwent radical prostatectomy. Comparative analyses between the race groups were conducted at the clinical, genomic, pathway, molecular subtype, and prognostic levels. The EAM group had increased ERG (P < 0.001) and ETS (P = 0.02) expression, decreased SPINK1 expression (P < 0.001), and basal-like (P < 0.001) molecular subtypes. After adjusting for confounders, the AAM group was associated with higher expression of CRYBB2, GSTM3, and inflammation genes (IL33, IFNG, CCL4, CD3, ICOSLG), and lower expression of mismatch repair genes (MSH2, MSH6) (p < 0.001 for all). At the pathway level, the AAM group had higher expression of genes sets related to the immune response, apoptosis, hypoxia, and reactive oxygen species. EAM group was associated with higher levels of fatty acid metabolism, DNA repair, and WNT/beta-catenin signaling. Based on cell lines data, AAM were predicted to have higher potential response to DNA damage. In conclusion, biological characteristics of prostate tumor were substantially different in AAM when compared to EAM.


Assuntos
Negro ou Afro-Americano/genética , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Genômica/métodos , Neoplasias da Próstata/genética , População Branca/genética , Negro ou Afro-Americano/estatística & dados numéricos , Idoso , Disparidades nos Níveis de Saúde , Humanos , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Prognóstico , Neoplasias da Próstata/etnologia , Neoplasias da Próstata/imunologia , Estudos Retrospectivos , Estados Unidos , População Branca/estatística & dados numéricos
12.
Oncologist ; 26(7): e1226-e1239, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33829580

RESUMO

BACKGROUND: Racial disparities among clinical trial participants present a challenge to assess whether trial results can be generalized into patients representing diverse races and ethnicities. The objective of this study was to evaluate the impact of race and ethnicity on treatment response in patients with advanced non-small cell lung cancer (aNSCLC) treated with programmed cell death-1 (PD-1) or programmed cell death-ligand 1 (PD-L1) inhibitors through analysis of real-world data (RWD). MATERIALS AND METHODS: A retrospective cohort study of 11,138 patients with lung cancer treated at hospitals within the Mount Sinai Health System was performed. Patients with confirmed aNSCLC who received anti-PD-1/PD-L1 treatment were analyzed for clinical outcomes. Our cohort included 249 patients with aNSCLC who began nivolumab, pembrolizumab, or atezolizumab treatment between November 2014 and December 2018. Time-to-treatment discontinuation (TTD) and overall survival (OS) were the analyzed clinical endpoints. RESULTS: After a median follow-up of 14.8 months, median TTD was 7.8 months (95% confidence interval, 5.4-not estimable [NE]) in 75 African American patients versus 4.6 (2.4-7.2) in 110 White patients (hazard ratio [HR], 0.63). Median OS was not reached (18.4-NE) in African American patients versus 11.6 months (9.7-NE) in White patients (HR, 0.58). Multivariable Cox regression conducted with potential confounders confirmed longer TTD (adjusted HR, 0.65) and OS (adjusted HR, 0.60) in African American versus White patients. Similar real-world response rate (42.6% vs. 43.5%) and disease control rate (59.6% vs. 56.5%) were observed in the African American and White patient populations. Further investigation revealed the African American patient group had lower incidence (14.7%) of putative hyperprogressive diseases (HPD) upon anti-PD-1/PD-L1 treatment than the White patient group (24.5%). CONCLUSION: Analysis of RWD showed longer TTD and OS in African American patients with aNSCLC treated with anti-PD-1/PD-L1 inhibitors. Lower incidence of putative HPD is a possible reason for the favorable outcomes in this patient population. IMPLICATIONS FOR PRACTICE: There is a significant underrepresentation of minority patients in randomized clinical trials, and this study demonstrates that real-world data can be used to investigate the impact of race and ethnicity on treatment response. In retrospective analysis of patients with advanced non-small cell lung cancer treated with programmed cell death-1 or programmed cell death-ligand 1 inhibitors, African American patients had significantly longer time-to-treatment discontinuation and longer overall survival. Analysis of real-world data can yield clinical insights and establish a more complete picture of medical interventions in routine clinical practice.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Apoptose , Antígeno B7-H1 , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Etnicidade , Humanos , Inibidores de Checkpoint Imunológico , Ligantes , Neoplasias Pulmonares/tratamento farmacológico , Estudos Retrospectivos
13.
Urol Oncol ; 39(1): 63-71, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32712138

RESUMO

Epitranscriptomic analysis has recently led to the profiling of modified nucleosides in cancer cell biological matrices, helping to elucidate their functional roles in cancer and reigniting interest in exploring their use as potential markers of cancer development and progression. Pseudouridine, one of the most well-known and the most abundant of the RNA nucleotide modifications, is the C5-glycoside isomer of uridine and its distinctive physiochemical properties allows it to perform many essential functions. Pseudouridine functionally (a) confers rigidity to local RNA structure by enhancing RNA stacking, engaging in a cooperative effect on neighboring nucleosides that overall contributes to RNA stabilization (b) refines the structure of tRNAs, which influences their decoding activity (c) facilitates the accuracy of decoding and proofreading during translation and efficiency of peptide bond formation, thus collectively improving the fidelity of protein biosynthesis and (e) dynamically regulates mRNA coding and translation. Biochemical synthesis of pseudouridine is carried out by pseudouridine synthases. In this review we discuss the evidence supporting an association between elevated pseudouridine levels with the incidence and progression of human prostate cancer and the translational significance of the value of this modified nucleotide as a novel biomarker in prostate cancer progression to advanced disease.


Assuntos
Biomarcadores Tumorais/análise , Neoplasias da Próstata/química , Neoplasias da Próstata/metabolismo , Pseudouridina/análise , Previsões , Humanos , Masculino , Pseudouridina/biossíntese , Pseudouridina/química , Pseudouridina/fisiologia
14.
Am J Clin Exp Urol ; 7(4): 262-272, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31511832

RESUMO

BACKGROUND: Recent studies have shown that certain small nucleolar RNAs (H/ACA snoRNAs) and the protein dyskerin (DKC1) are upregulated in prostate cancer and are thought to contribute to progression of disease. These components convert uridine to pseudouridine (abbreviated ψ), a type of post-transcriptional modification of RNA. Given the increased abundance of H/ACA snoRNAs and expression of DKC1 in prostate carcinomas, and because whole-body turnover of RNA increases in support of rapidly-growing cancer cells, we examined the value of pseudouridine as a biomarker for prostate cancer. METHODS: Using a monoclonal antibody against pseudouridine, we tested its ability to distinguish between two 25-base RNA oligonucleotide sequences that differed by only one ψ-substitution, and subsequently measured ψ in RNA isolated from several prostate cancer cell lines representing different stages of disease using dot blot assays and pseudouridinylated RNA linked immunosorbent assay (PURLISA). We also performed immunohistochemistry on a tissue micro array (12 cases/24 cores) containing prostate adenocarcinomas and normal adjacent tissue (NAT). RESULTS: High levels of pseudouridine were detected in androgen-independent cell lines (PC3 and Du145) compared to androgen-sensitive (LNCaP) and immortalized human prostate (RWPE) cells. Immunohistochemistry of a tissue micro array (TMA) containing normal adjacent and cancerous prostate tissue revealed a significant difference in immunoreactivity between normal and malignant tissue (P ≤ 0.0001). CONCLUSION: Our results provide new information on the relationship between pseudouridine expression and clinical progression of prostate cancer.

15.
Biol Open ; 8(9)2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31515254

RESUMO

Mouse Apolipoprotein L9 is a 34-kDa phosphatidylethanolamine (PE)-binding protein. The gene is present only in mouse and rat genomes; hence it is restricted to two species. To understand why, it is essential to uncover details about its functions in cellular processes. Here we show that ApoL9 interacts with the proteins of the LC3 and GABARAP subfamilies, which are key players in macroautophagy. In vitro binding studies show a strong association with GABARAP, and in amino acid-starved cells it preferentially interacts with lipidated LC3B, likely by binding to its PE moiety through its lipid-binding domain. On treatment with autophagy inhibitors bafilomycin A1 and chloroquine, ApoL9 is found near swollen mitochondria and on lysosomes/LAMP1-positive compartments. However, ApoL9 itself does not seem to be degraded as a result of autophagy, suggesting that it is not an autophagy cargo receptor. Deletions in a putative transmembrane region between amino acids 110 and 145 abolish binding to PE. In addition, ApoL9 can redistribute to stress granules, can homo-oligomerize, and is a microtubule-associated protein. In short, its distribution in the cell is quite widespread, suggesting that it could have functions at the intersection of membrane binding and reorganization, autophagy, cellular stress and intracellular lipid transport.This article has an associated First Person interview with the first author of the paper.

16.
J Urol ; 202(3): 498-505, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30958743

RESUMO

PURPOSE: We sought to 1) assess the association of radiomics features based on multiparametric magnetic resonance imaging with histopathological Gleason score, gene signatures and gene expression levels in prostate cancer and 2) build machine learning models based on radiomics features to predict adverse histopathological scores and the Decipher® genomics metastasis risk score. MATERIALS AND METHODS: We retrospectively analyzed the records of 64 patients with prostate cancer with a mean age of 64 years (range 41 to 76) who underwent magnetic resonance imaging between January 2016 and January 2017 before radical prostatectomy. A total of 226 magnetic resonance imaging radiomics features, including histogram and texture features in addition to lesion size and the PI-RADS™ (Prostate Imaging Reporting and Data System) score, were extracted from T2-weighted, apparent diffusion coefficient and diffusion kurtosis imaging maps. Radiomics features were correlated with the pathological Gleason score, 40 gene expression signatures, including Decipher, and 698 prostate cancer related gene expression levels. Cross-validated, lasso regularized, logistic regression machine learning models based on radiomics features were built and evaluated for the prediction of Gleason score 8 or greater and Decipher score 0.6 or greater. RESULTS: A total of 14 radiomics features significantly correlated with the Gleason score (highest correlation r = 0.39, p = 0.001). A total of 31 texture and histogram features significantly correlated with 19 gene signatures, particularly with the PORTOS (Post-Operative Radiation Therapy Outcomes Score) signature (strongest correlation r = -0.481, p = 0.002). A total of 40 diffusion-weighted imaging features correlated significantly with 132 gene expression levels. Machine learning prediction models showed fair performance to predict a Gleason score of 8 or greater (AUC 0.72) and excellent performance to predict a Decipher score of 0.6 or greater (AUC 0.84). CONCLUSIONS: Magnetic resonance imaging radiomics features are promising markers of prostate cancer aggressiveness on the histopathological and genomics levels.


Assuntos
Imageamento por Ressonância Magnética/métodos , Modelos Biológicos , Próstata/patologia , Neoplasias da Próstata/diagnóstico por imagem , Adulto , Idoso , Perfilação da Expressão Gênica , Genômica/métodos , Humanos , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Estudos Observacionais como Assunto , Valor Preditivo dos Testes , Próstata/diagnóstico por imagem , Próstata/cirurgia , Prostatectomia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Neoplasias da Próstata/cirurgia , Estudos Retrospectivos
17.
Cell ; 177(2): 463-477.e15, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30951672

RESUMO

To develop a map of cell-cell communication mediated by extracellular RNA (exRNA), the NIH Extracellular RNA Communication Consortium created the exRNA Atlas resource (https://exrna-atlas.org). The Atlas version 4P1 hosts 5,309 exRNA-seq and exRNA qPCR profiles from 19 studies and a suite of analysis and visualization tools. To analyze variation between profiles, we apply computational deconvolution. The analysis leads to a model with six exRNA cargo types (CT1, CT2, CT3A, CT3B, CT3C, CT4), each detectable in multiple biofluids (serum, plasma, CSF, saliva, urine). Five of the cargo types associate with known vesicular and non-vesicular (lipoprotein and ribonucleoprotein) exRNA carriers. To validate utility of this model, we re-analyze an exercise response study by deconvolution to identify physiologically relevant response pathways that were not detected previously. To enable wide application of this model, as part of the exRNA Atlas resource, we provide tools for deconvolution and analysis of user-provided case-control studies.


Assuntos
Comunicação Celular/fisiologia , RNA/metabolismo , Adulto , Líquidos Corporais/química , Ácidos Nucleicos Livres/metabolismo , MicroRNA Circulante/metabolismo , Vesículas Extracelulares/metabolismo , Feminino , Humanos , Masculino , Reprodutibilidade dos Testes , Análise de Sequência de RNA/métodos , Software
19.
Cancer Rep (Hoboken) ; 2(2): e1153, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-32721098

RESUMO

BACKGROUND: Prostate cancer (PCa) is the second most leading cause of death in men worldwide. African-American men (AA) represent more aggressive form of the disease compared to Caucasian (CA) counterparts. Several lines of evidences suggest that biological factors are responsible for the observed racial disparity. AIM: This study was aimed at identifying the epigenetic variation among AA and CA PCa patients and whether DNA methylation differences have an association with clinical outcomes in the two races. METHODS AND RESULTS: The cancer genome atlas (TCGA) dataset (2015) was used to identify existing epigenetic variation in AA and CA PCa patients. Reduced Representation Bisulfite Sequencing (RRBS) was performed to identify global DNA methylation changes in a small cohort of AA and CA PCa patients. The RRBS data were then used to identify survival and recurrence outcomes in AA and CA PCa patients using publicly available datasets. The TCGA data analysis revealed epigenetic heterogeneity, which could be categorized into four classes. AA associated primarily to methylation cluster 1 (p = 0.048), and CA associated to methylation cluster 3 (p = 0.000146). Enrichment of the Wnt signaling pathway was identified in both the races; however, they were differentially activated in terms of canonical and non-canonical Wnt signaling. This was further validated using the Decipher Genomics Resource Information Database (GRID). The RRBS data also identified discrete methylation patterns in AA compared with CA and, in part, validated our TCGA findings. Survival analysis using the RRBS data suggested hypomethylated genes to be significantly associated with recurrence of PCa in CA (p = 6.07 × 10-6) as well as in AA (p = 0.0077). CONCLUSION: Overall, we observed epigenetic-based racial disparity in PCa which could affect survival and should be considered during prognosis and treatment.


Assuntos
População Negra/genética , Metilação de DNA , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , População Branca/genética , Biomarcadores Tumorais/genética , Biologia Computacional/métodos , Bases de Dados Genéticas , Epigênese Genética , Humanos , Masculino , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , Prognóstico , Neoplasias da Próstata/etnologia , Neoplasias da Próstata/metabolismo , Fatores Raciais , Taxa de Sobrevida
20.
Rev Urol ; 20(3): 125-130, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30473638

RESUMO

We report changes in the histopathology of prostate cancer diagnosed in a large urology group practice after the final United States Preventive Services Task Force (USPSTF) Grade D recommendation against prostate-specific antigen screening. All prostate biopsies performed from 2011 through 2015 in a large urology group practice were retrospectively reviewed; 2012 was excluded as a transition year. The changes in biopsy data in years following the USPSTF decision (2013-2015) were then compared with baseline (2011). A total of 10,944 biopsies were evaluated during the study period. Positive biopsy rates rose from 39.1% at baseline to 45.2% in 2015 (P < 0.01) with a marked shift toward more aggressive cancer throughout the study period. The absolute number of patients presenting with Gleason Grade Group 4 or 5 increased from 155/year at baseline to 231, 297, and 285 in 2013, 2014, and 2015, respectively (P < 0.05), unrelated to age or racial changes over time. Black men represented 16% of the cohort. Since the USPSTF recommendation against prostate cancer screening, trends toward a substantial upward grade migration and increased volume of cancers were noted in a cohort of nearly 11,000 patients in a real-world clinical practice. Additionally, continuing reductions in cancer detection in the United States may exacerbate these trends.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA