Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(28): 19105-19116, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38957092

RESUMO

[FeFe]-hydrogenase is nature's most efficient proton reducing and H2-oxidizing enzyme. However, biotechnological applications are hampered by the O2 sensitivity of this metalloenzyme, and the mechanism of aerobic deactivation is not well understood. Here, we explore the oxygen sensitivity of four mimics of the organometallic active site cofactor of [FeFe]-hydrogenase, [Fe2(adt)(CO)6-x(CN)x]x- and [Fe2(pdt)(CO)6-x(CN)x]x- (x = 1, 2) as well as the corresponding cofactor variants of the enzyme by means of infrared, Mössbauer, and NMR spectroscopy. Additionally, we describe a straightforward synthetic recipe for the active site precursor complex Fe2(adt)(CO)6. Our data indicate that the aminodithiolate (adt) complex, which is the synthetic precursor of the natural active site cofactor, is most oxygen sensitive. This observation highlights the significance of proton transfer in aerobic deactivation, and supported by DFT calculations facilitates an identification of the responsible reactive oxygen species (ROS). Moreover, we show that the ligand environment of the iron ions critically influences the reactivity with O2 and ROS like superoxide and H2O2 as the oxygen sensitivity increases with the exchange of ligands from CO to CN-. The trends in aerobic deactivation observed for the model complexes are in line with the respective enzyme variants. Based on experimental and computational data, a model for the initial reaction of [FeFe]-hydrogenase with O2 is developed. Our study underscores the relevance of model systems in understanding biocatalysis and validates their potential as important tools for elucidating the chemistry of oxygen-induced deactivation of [FeFe]-hydrogenase.


Assuntos
Domínio Catalítico , Hidrogenase , Proteínas Ferro-Enxofre , Oxigênio , Hidrogenase/química , Hidrogenase/metabolismo , Oxigênio/química , Oxigênio/metabolismo , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/metabolismo , Teoria da Densidade Funcional
2.
J Am Chem Soc ; 146(23): 15771-15778, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38819401

RESUMO

The active site cofactor of [FeFe]-hydrogenases consists of a cubane [4Fe-4S]-cluster and a unique [2Fe-2S]-cluster, harboring unusual CO- and CN--ligands. The biosynthesis of the [2Fe-2S]-cluster requires three dedicated maturation enzymes called HydG, HydE and HydF. HydG and HydE are both involved in synthesizing a [2Fe-2S]-precursor, still lacking parts of the azadithiolate (adt) moiety that bridge the two iron atoms. This [2Fe-2S]-precursor is then finalized within the scaffold protein HydF, which binds and transfers the [2Fe-2S]-precursor to the hydrogenase. However, its exact binding mode within HydF is still elusive. Herein, we identified the binding location of the [2Fe-2S]-precursor by altering size and charge of a highly conserved protein pocket via site directed mutagenesis (SDM). Moreover, we identified two serine residues that are essential for binding and assembling the [2Fe-2S]-precursor. By combining SDM and molecular docking simulations, we provide a new model on how the [2Fe-2S]-cluster is bound to HydF and demonstrate the important role of one highly conserved aspartate residue, presumably during the bioassembly of the adt moiety.


Assuntos
Hidrogenase , Proteínas Ferro-Enxofre , Hidrogenase/química , Hidrogenase/metabolismo , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/metabolismo , Sítios de Ligação , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Ferro/química , Ferro/metabolismo , Modelos Moleculares
3.
ChemSusChem ; 17(3): e202301365, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-37830175

RESUMO

[FeFe]-hydrogenases are capable of reducing protons at a high rate. However, molecular oxygen (O2 ) induces the degradation of their catalytic cofactor, the H-cluster, which consists of a cubane [4Fe4S] subcluster (4FeH ) and a unique diiron moiety (2FeH ). Previous attempts to prevent O2 -induced damage have focused on enhancing the protein's sieving effect for O2 by blocking the hydrophobic gas channels that connect the protein surface and the 2FeH . In this study, we aimed to block an O2 diffusion pathway and shield 4FeH instead. Molecular dynamics (MD) simulations identified a novel water channel (WH ) surrounding the H-cluster. As this hydrophilic path may be accessible for O2 molecules we applied site-directed mutagenesis targeting amino acids along WH in proximity to 4FeH to block O2 diffusion. Protein film electrochemistry experiments demonstrate increased O2 stabilities for variants G302S and S357T, and MD simulations based on high-resolution crystal structures confirmed an enhanced local sieving effect for O2 in the environment of the 4FeH in both cases. The results strongly suggest that, in wild type proteins, O2 diffuses from the 4FeH to the 2FeH . These results reveal new strategies for improving the O2 stability of [FeFe]-hydrogenases by focusing on the O2 diffusion network near the active site.


Assuntos
Aquaporinas , Hidrogenase , Proteínas Ferro-Enxofre , Hidrogênio/química , Hidrogenase/química , Prótons , Oxigênio/química , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/metabolismo
4.
J Am Chem Soc ; 145(48): 26068-26074, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-37983562

RESUMO

[FeFe]-hydrogenases are efficient H2 converting biocatalysts that are inhibited by formaldehyde (HCHO). The molecular mechanism of this inhibition has so far not been experimentally solved. Here, we obtained high-resolution crystal structures of the HCHO-treated [FeFe]-hydrogenase CpI from Clostridium pasteurianum, showing HCHO reacts with the secondary amine base of the catalytic cofactor and the cysteine C299 of the proton transfer pathway which both are very important for catalytic turnover. Kinetic assays via protein film electrochemistry show the CpI variant C299D is significantly less inhibited by HCHO, corroborating the structural results. By combining our data from protein crystallography, site-directed mutagenesis and protein film electrochemistry, a reaction mechanism involving the cofactor's amine base, the thiol group of C299 and HCHO can be deduced. In addition to the specific case of [FeFe]-hydrogenases, our study provides additional insights into the reactions between HCHO and protein molecules.


Assuntos
Hidrogenase , Proteínas Ferro-Enxofre , Hidrogenase/química , Prótons , Catálise , Formaldeído/farmacologia , Aminas , Hidrogênio/química , Proteínas Ferro-Enxofre/química
5.
Chembiochem ; 24(11): e202300222, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36944179

RESUMO

The active site of [FeFe]-hydrogenases contains a cubane [4Fe-4S]-cluster and a unique diiron cluster with biologically unusual CO and CN- ligands. The biogenesis of this diiron site, termed [2FeH ], requires the maturation proteins HydE, HydF and HydG. During the maturation process HydF serves as a scaffold protein for the final assembly steps and the subsequent transfer of the [2FeH ] precursor, termed [2FeP ], to the [FeFe]-hydrogenase. The binding site of [2FeP ] in HydF has not been elucidated, however, the [4Fe-4S]-cluster of HydF was considered as a possible binding partner of [2FeP ]. By targeting individual amino acids in HydF from Thermosipho melanesiensis using site directed mutagenesis, we examined the postulated binding mechanism as well as the importance and putative involvement of the [4Fe-4S]-cluster for binding and transferring [2FeP ]. Surprisingly, our results suggest that binding or transfer of [2FeP ] does not involve the proposed binding mechanism or the presence of a [4Fe-4S]-cluster at all.


Assuntos
Hidrogenase , Proteínas Ferro-Enxofre , Hidrogenase/metabolismo , Proteínas/metabolismo , Sítios de Ligação , Domínio Catalítico , Proteínas Ferro-Enxofre/química
6.
ACS Catal ; 13(2): 856-865, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36733639

RESUMO

The high turnover rates of [FeFe]-hydrogenases under mild conditions and at low overpotentials provide a natural blueprint for the design of hydrogen catalysts. However, the unique active site (H-cluster) degrades upon contact with oxygen. The [FeFe]-hydrogenase fromClostridium beijerinckii (CbA5H) is characterized by the flexibility of its protein structure, which allows a conserved cysteine to coordinate to the active site under oxidative conditions. Thereby, intrinsic cofactor degradation induced by dioxygen is minimized. However, the protection from O2 is only partial, and the activity of the enzyme decreases upon each exposure to O2. By using site-directed mutagenesis in combination with electrochemistry, ATR-FTIR spectroscopy, and molecular dynamics simulations, we show that the kinetics of the conversion between the oxygen-protected inactive state (cysteine-bound) and the oxygen-sensitive active state can be accelerated by replacing a surface residue that is very distant from the active site. This sole exchange of methionine for a glutamate residue leads to an increased resistance of the hydrogenase to dioxygen. With our study, we aim to understand how local modifications of the protein structure can have a crucial impact on protein dynamics and how they can control the reactivity of inorganic active sites through outer sphere effects.

7.
Chem Soc Rev ; 50(3): 1668-1784, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33305760

RESUMO

While hydrogen plays an ever-increasing role in modern society, nature has utilized hydrogen since a very long time as an energy carrier and storage molecule. Among the enzymatic systems that metabolise hydrogen, [FeFe]-hydrogenases are one of the most powerful systems to perform this conversion. In this light, we will herein present an overview on developments in [FeFe]-hydrogenase research with a strong focus on synthetic mimics and their application within the native enzymatic environment. This review spans from the biological assembly of the natural enzyme and the highly controversial discussed mechanism for the hydrogen generation to the synthesis of multiple mimic platforms as well as their electrochemical behaviour.


Assuntos
Materiais Biomiméticos/metabolismo , Hidrogenase/metabolismo , Materiais Biomiméticos/química , Catálise , Clostridium/enzimologia , Complexos de Coordenação/química , Complexos de Coordenação/metabolismo , Hidrogênio/química , Hidrogênio/metabolismo , Hidrogenase/química , Hidrogenase/genética , Metais/química , Mutagênese Sítio-Dirigida
8.
J Am Chem Soc ; 142(12): 5493-5497, 2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-32125830

RESUMO

[FeFe] hydrogenases are highly efficient catalysts for reversible dihydrogen evolution. H2 turnover involves different catalytic intermediates including a recently characterized hydride state of the active site (H-cluster). Applying cryogenic infrared and electron paramagnetic resonance spectroscopy to an [FeFe] model hydrogenase from Chlamydomonas reinhardtii (CrHydA1), we have discovered two new hydride intermediates and spectroscopic evidence for a bridging CO ligand in two reduced H-cluster states. Our study provides novel insights into these key intermediates, their relevance for the catalytic cycle of [FeFe] hydrogenase, and novel strategies for exploring these aspects in detail.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA