Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Plant Physiol ; 173(1): 771-787, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27852951

RESUMO

Membrane-localized proteins perceive and respond to biotic and abiotic stresses. We performed quantitative proteomics on plasma membrane-enriched samples from Arabidopsis (Arabidopsis thaliana) treated with bacterial flagellin. We identified multiple receptor-like protein kinases changing in abundance, including cysteine (Cys)-rich receptor-like kinases (CRKs) that are up-regulated upon the perception of flagellin. CRKs possess extracellular Cys-rich domains and constitute a gene family consisting of 46 members in Arabidopsis. The single transfer DNA insertion lines CRK28 and CRK29, two CRKs induced in response to flagellin perception, did not exhibit robust alterations in immune responses. In contrast, silencing of multiple bacterial flagellin-induced CRKs resulted in enhanced susceptibility to pathogenic Pseudomonas syringae, indicating functional redundancy in this large gene family. Enhanced expression of CRK28 in Arabidopsis increased disease resistance to P. syringae Expression of CRK28 in Nicotiana benthamiana induced cell death, which required intact extracellular Cys residues and a conserved kinase active site. CRK28-mediated cell death required the common receptor-like protein kinase coreceptor BAK1. CRK28 associated with BAK1 as well as the activated FLAGELLIN-SENSING2 (FLS2) immune receptor complex. CRK28 self-associated as well as associated with the closely related CRK29. These data support a model where Arabidopsis CRKs are synthesized upon pathogen perception, associate with the FLS2 complex, and coordinately act to enhance plant immune responses.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Cisteína/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Arabidopsis/imunologia , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Domínio Catalítico , Morte Celular/imunologia , Membrana Celular/imunologia , Flagelina/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Pseudomonas syringae/patogenicidade , Espécies Reativas de Oxigênio/metabolismo , Nicotiana/citologia , Nicotiana/genética
2.
New Phytol ; 211(2): 502-15, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26990325

RESUMO

Bacterial wilt caused by Ralstonia solanacearum is one of the most destructive bacterial plant diseases. Although many molecular determinants involved in R. solanacearum adaptation to hosts and pathogenesis have been described, host components required for disease establishment remain poorly characterized. Phenotypical analysis of Arabidopsis mutants for leucine-rich repeat (LRR)-receptor-like proteins revealed that mutations in the CLAVATA1 (CLV1) and CLAVATA2 (CLV2) genes confer enhanced disease resistance to bacterial wilt. We further investigated the underlying mechanisms using genetic, transcriptomic and molecular approaches. The enhanced resistance of both clv1 and clv2 mutants to the bacteria did not require the well characterized CLV signalling modules involved in shoot meristem homeostasis, and was conditioned by neither salicylic acid nor ethylene defence-related hormones. Gene expression microarray analysis performed on clv1 and clv2 revealed deregulation of genes encoding nuclear transcription factor Y subunit alpha (NF-YA) transcription factors whose post-transcriptional regulation is known to involve microRNAs from the miR169 family. Both clv mutants showed a defect in miR169 accumulation. Conversely, overexpression of miR169 abrogated the resistance phenotype of clv mutants. We propose that CLV1 and CLV2, two receptors involved in CLV3 perception during plant development, contribute to bacterial wilt through a signalling pathway involving the miR169/NF-YA module.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/microbiologia , Proteínas de Membrana/metabolismo , MicroRNAs/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Ralstonia solanacearum/patogenicidade , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Resistência à Doença , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Proteínas de Membrana/genética , MicroRNAs/genética , Mutação/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas Serina-Treonina Quinases/genética , Ácido Salicílico/metabolismo , Transdução de Sinais , Virulência
3.
Plant Physiol ; 169(4): 2950-62, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26432875

RESUMO

Receptor-like cytoplasmic kinases (RLCKs) are a subset of plant receptor-like kinases lacking both extracellular and transmembrane domains. Some of the 46 members in the Arabidopsis (Arabidopsis thaliana) RLCK subfamily VII have been linked to plant innate immunity; however, most remain uncharacterized. Thus, multiple subfamily VII members are expected to be involved in plant immune signaling. Here, we investigate the role of AvrPphB SUSCEPTIBLE1-LIKE13 (PBL13), a subfamily VII RLCK with unique domain architecture. Unlike other characterized RLCKs, PBL13 transfer DNA insertion lines exhibit enhanced disease resistance after inoculation with virulent Pseudomonas syringae. The pbl13-2 knockout also exhibits elevated basal-level expression of the PATHOGENESIS-RELATED GENE1 defense marker gene, enhanced reactive oxygen species (ROS) burst in response to perception of bacterial microbial patterns, and accelerated flagellin-induced activation of mitogen-activated protein kinases. Recombinant PBL13 is an active kinase, and its primary autophosphorylated sites map to a 15-amino acid repeat motif unique to PBL13. Complementation of pbl13-2 with PBL13-3xFLAG converts the enhanced resistance and elevated ROS phenotypes back to wild-type levels. In contrast, kinase-dead PBL13(K111A)-3xFLAG was unable to rescue pbl13-2 disease phenotypes. Consistent with the enhanced ROS burst in the pbl13-2 knockout, PBL13 is able to associate with the nicotinamide adenine dinucleotide phosphate, reduced oxidase RESPIRATORY BURST OXIDASE HOMOLOG PROTEIN D (RBOHD) by split-luciferase complementation assay, and this association is disrupted by flagellin treatment. We conclude that the PBL13 kinase negatively regulates plant innate immunity to pathogenic bacteria and can associate with RBOHD before pathogen perception. These data are consistent with the hypothesis that PBL13 acts to prevent inappropriate activation of defense responses in the absence of pathogen challenge.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Imunidade Vegetal/genética , Proteínas Serina-Treonina Quinases/genética , Arabidopsis/imunologia , Arabidopsis/microbiologia , Proteínas de Arabidopsis/imunologia , Proteínas de Arabidopsis/metabolismo , Western Blotting , Resistência à Doença/genética , Resistência à Doença/imunologia , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/imunologia , Interações Hospedeiro-Patógeno/imunologia , Cloreto de Magnésio/farmacologia , Mutação , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Imunidade Vegetal/imunologia , Plantas Geneticamente Modificadas , Proteínas Serina-Treonina Quinases/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , Pseudomonas syringae/imunologia , Pseudomonas syringae/fisiologia , Espécies Reativas de Oxigênio/imunologia , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Transdução de Sinais/imunologia
4.
Cell Host Microbe ; 16(4): 473-83, 2014 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-25299333

RESUMO

In the absence of pathogen infection, plant effector-triggered immune (ETI) receptors are maintained in a preactivation state by intermolecular interactions with other host proteins. Pathogen effector-induced alterations activate the receptor. In Arabidopsis, the ETI receptor RPM1 is activated via bacterial effector AvrB-induced phosphorylation of the RPM1-interacting protein RIN4 at Threonine 166. We find that RIN4 also interacts with the prolyl-peptidyl isomerase (PPIase) ROC1, which is reduced upon RIN4 Thr166 phosphorylation. ROC1 suppresses RPM1 immunity in a PPIase-dependent manner. Consistent with this, RIN4 Pro149 undergoes cis/trans isomerization in the presence of ROC1. While the RIN4(P149V) mutation abolishes RPM1 resistance, the deletion of Pro149 leads to RPM1 activation in the absence of RIN4 phosphorylation. These results support a model in which RPM1 directly senses conformational changes in RIN4 surrounding Pro149 that is controlled by ROC1. RIN4 Thr166 phosphorylation indirectly regulates RPM1 resistance by modulating the ROC1-mediated RIN4 isomerization.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Proteínas de Transporte/metabolismo , Ciclofilinas/metabolismo , Prolina/metabolismo , Arabidopsis/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Isomerismo , Ligação Proteica
5.
PLoS One ; 9(2): e88230, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24505441

RESUMO

Soil-borne vascular wilt diseases caused by Verticillium spp. are among the most destructive diseases worldwide in a wide range of plant species. The most effective means of controlling Verticillium wilt diseases is the use of genetic resistance. We have previously reported the identification of four activation-tagged Arabidopsis mutants which showed enhanced resistance to Verticillium wilt. Among these, one mutant also showed enhanced resistance to Ralstonia solanacearum, a bacterial vascular wilt pathogen. Cloning of the activation tag revealed an insertion upstream of gene At3g13437, which we designated as EWR1 (for Enhancer of vascular Wilt Resistance 1) that encodes a putatively secreted protein of unknown function. The search for homologs of Arabidopsis EWR1 (AtEWR1) in public databases only identified homologs within the Brassicaceae family. We subsequently cloned the EWR1 homolog from Brassica oleracea (BoEWR1) and show that over-expression in Arabidopsis results in V. dahliae resistance. Moreover, over-expression of AtEWR1 and BoEWR1 in N. benthamiana, a member of the Solanaceae family, results in V. dahliae resistance, suggesting that EWR1 homologs can be used to engineer Verticillium wilt resistance in non-Brassicaceae crops as well.


Assuntos
Brassicaceae/genética , Brassicaceae/microbiologia , Doenças das Plantas/genética , Verticillium/fisiologia , Arabidopsis/genética , Resistência à Doença , Genes de Plantas , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas/genética
6.
New Phytol ; 199(4): 908-15, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23909802

RESUMO

Bacterial pathogens can cause multiple plant diseases and plants rely on their innate immune system to recognize and actively respond to these microbes. The plant innate immune system comprises extracellular pattern recognition receptors that recognize conserved microbial patterns and intracellular nucleotide binding leucine-rich repeat (NLR) proteins that recognize specific bacterial effectors delivered into host cells. Plants lack the adaptive immune branch present in animals, but still afford flexibility to pathogen attack through systemic and transgenerational resistance. Here, we focus on current research in plant immune responses against bacterial pathogens. Recent studies shed light onto the activation and inactivation of pattern recognition receptors and systemic acquired resistance. New research has also uncovered additional layers of complexity surrounding NLR immune receptor activation, cooperation and sub-cellular localizations. Taken together, these recent advances bring us closer to understanding the web of molecular interactions responsible for coordinating defense responses and ultimately resistance.


Assuntos
Bactérias/imunologia , Interações Hospedeiro-Patógeno/imunologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal/imunologia , Plantas/imunologia , Plantas/microbiologia , Padrões de Herança/imunologia
7.
Genome Res ; 23(8): 1271-82, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23685541

RESUMO

Sexual recombination drives genetic diversity in eukaryotic genomes and fosters adaptation to novel environmental challenges. Although strictly asexual microorganisms are often considered as evolutionary dead ends, they comprise many devastating plant pathogens. Presently, it remains unknown how such asexual pathogens generate the genetic variation that is required for quick adaptation and evolution in the arms race with their hosts. Here, we show that extensive chromosomal rearrangements in the strictly asexual plant pathogenic fungus Verticillium dahliae establish highly dynamic lineage-specific (LS) genomic regions that act as a source for genetic variation to mediate aggressiveness. We show that such LS regions are greatly enriched for in planta-expressed effector genes encoding secreted proteins that enable host colonization. The LS regions occur at the flanks of chromosomal breakpoints and are enriched for retrotransposons and other repetitive sequence elements. Our results suggest that asexual pathogens may evolve by prompting chromosomal rearrangements, enabling rapid development of novel effector genes. Likely, chromosomal reshuffling can act as a general mechanism for adaptation in asexually propagating organisms.


Assuntos
Cromossomos Fúngicos/genética , Evolução Molecular , Doenças das Plantas/microbiologia , Verticillium/genética , Adaptação Biológica/genética , Cromossomos Fúngicos/metabolismo , Genoma Fúngico , Dados de Sequência Molecular , Filogenia , Polimorfismo de Nucleotídeo Único , Reprodução Assexuada/genética , Homologia de Sequência do Ácido Nucleico , Verticillium/patogenicidade , Virulência/genética
8.
Front Plant Sci ; 4: 97, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23630534

RESUMO

Vascular wilts are among the most destructive plant diseases that occur in annual crops as well as in woody perennials. These diseases are generally caused by soil-borne bacteria, fungi, and oomycetes that infect through the roots and enter the water-conducting xylem vessels where they proliferate and obstruct the transportation of water and minerals. As a consequence, leaves wilt and die, which may lead to impairment of the whole plant and eventually to death of the plant. Cultural, chemical, and biological measures to control this group of plant pathogens are generally ineffective, and the most effective control strategy is the use of genetic resistance. Owing to the fact that vascular wilt pathogens live deep in the interior of their host plants, studies into the biology of vascular pathogens are complicated. However, to design novel strategies to combat vascular wilt diseases, understanding the (molecular) biology of vascular pathogens and the molecular mechanisms underlying plant defense against these pathogens is crucial. In this review, we discuss the current knowledge on interactions of vascular wilt pathogens with their host plants, with emphasis on host defense responses against this group of pathogens.

9.
Front Plant Sci ; 4: 86, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23596451

RESUMO

The plasma membrane (PM) regulates diverse processes essential to plant growth, development, and survival in an ever-changing environment. In addition to maintaining normal cellular homeostasis and plant nutrient status, PM proteins perceive and respond to a myriad of environmental cues. Here we review recent advances in the analysis of the plant PM proteome with a focus on the model plant Arabidopsis thaliana. Due to membrane heterogeneity, hydrophobicity, and low relative abundance, analysis of the PM proteome has been a special challenge. Various experimental techniques to enrich PM proteins and different protein and peptide separation strategies have facilitated the identification of thousands of integral and membrane-associated proteins. Numerous classes of proteins are present at the PM with diverse biological functions. PM microdomains have attracted much attention. However, it still remains a challenge to characterize these cell membrane compartments. Dynamic changes in the PM proteome in response to different biotic and abiotic stimuli are highlighted. Future prospects for PM proteomics research are also discussed.

10.
Plant Physiol ; 161(4): 2062-74, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23417089

RESUMO

A key virulence strategy of bacterial pathogens is the delivery of multiple pathogen effector proteins into host cells during infection. The Hrp outer protein Q (HopQ1) effector from Pseudomonas syringae pv tomato (Pto) strain DC3000 is conserved across multiple bacterial plant pathogens. Here, we investigated the virulence function and host targets of HopQ1 in tomato (Solanum lycopersicum). Transgenic tomato lines expressing dexamethasone-inducible HopQ1 exhibited enhanced disease susceptibility to virulent Pto DC3000, the Pto ΔhrcC mutant, and decreased expression of a pathogen-associated molecular pattern-triggered marker gene after bacterial inoculation. HopQ1-interacting proteins were coimmunoprecipitated and identified by mass spectrometry. HopQ1 can associate with multiple tomato 14-3-3 proteins, including TFT1 and TFT5. HopQ1 is phosphorylated in tomato, and four phosphorylated peptides were identified by mass spectrometry. HopQ1 possesses a conserved mode I 14-3-3 binding motif whose serine-51 residue is phosphorylated in tomato and regulates its association with TFT1 and TFT5. Confocal microscopy and fractionation reveal that HopQ1 exhibits nucleocytoplasmic localization, while HopQ1 dephosphorylation mimics exhibit more pronounced nuclear localization. HopQ1 delivered from Pto DC3000 was found to promote bacterial virulence in the tomato genotype Rio Grande 76R. However, the HopQ1(S51A) mutant delivered from Pto DC3000 was unable to promote pathogen virulence. Taken together, our data demonstrate that HopQ1 enhances bacterial virulence and associates with tomato 14-3-3 proteins in a phosphorylation-dependent manner that influences HopQ1's subcellular localization and virulence-promoting activities in planta.


Assuntos
Proteínas 14-3-3/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Plantas/metabolismo , Pseudomonas syringae/metabolismo , Pseudomonas syringae/patogenicidade , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas de Bactérias/química , Morte Celular , Suscetibilidade a Doenças , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Espectrometria de Massas , Dados de Sequência Molecular , Mutação/genética , Fosforilação , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas , Ligação Proteica , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Frações Subcelulares/metabolismo , Nicotiana/citologia , Nicotiana/microbiologia
11.
Plant J ; 73(2): 225-39, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22978675

RESUMO

Inactivation of Arabidopsis WAT1 (Walls Are Thin1), a gene required for secondary cell-wall deposition, conferred broad-spectrum resistance to vascular pathogens, including the bacteria Ralstonia solanacearum and Xanthomonas campestris pv. campestris, and the fungi Verticillium dahliae and Verticillium albo-atrum. Introduction of NahG, the bacterial salicylic acid (SA)-degrading salicylate hydroxylase gene, into the wat1 mutant restored full susceptibility to both R. solanacearum and X. campestris pv. campestris. Moreover, SA content was constitutively higher in wat1 roots, further supporting a role for SA in wat1-mediated resistance to vascular pathogens. By combining transcriptomic and metabolomic data, we demonstrated a general repression of indole metabolism in wat1-1 roots as shown by constitutive down-regulation of several genes encoding proteins of the indole glucosinolate biosynthetic pathway and reduced amounts of tryptophan (Trp), indole-3-acetic acid and neoglucobrassicin, the major form of indole glucosinolate in roots. Furthermore, the susceptibility of the wat1 mutant to R. solanacearum was partially restored when crossed with either the trp5 mutant, an over-accumulator of Trp, or Pro35S:AFB1-myc, in which indole-3-acetic acid signaling is constitutively activated. Our original hypothesis placed cell-wall modifications at the heart of the wat1 resistance phenotype. However, the results presented here suggest a mechanism involving root-localized metabolic channeling away from indole metabolites to SA as a central feature of wat1 resistance to R. solanacearum.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Membrana Transportadoras/metabolismo , Ralstonia solanacearum , Ácido Salicílico/metabolismo , Triptofano/metabolismo , Proteínas de Arabidopsis/genética , Fungos/fisiologia , Regulação da Expressão Gênica de Plantas/imunologia , Proteínas de Membrana Transportadoras/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Raízes de Plantas , Pseudomonas syringae , Fatores de Tempo , Xanthomonas campestris
12.
Mol Plant Microbe Interact ; 24(12): 1582-91, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21864046

RESUMO

Verticillium spp. are destructive soilborne fungal pathogens that cause vascular wilt diseases in a wide range of plant species. Verticillium wilts are particularly notorious, and genetic resistance in crop plants is the most favorable means of disease control. In a gain-of-function screen using an activation-tagged Arabidopsis mutant collection, we identified four mutants, A1 to A4, which displayed enhanced resistance toward the vascular wilt species Verticillium dahliae, V. albo-atrum and V. longisporum but not to Fusarium oxysporum f. sp. raphani. Further testing revealed that mutant A2 displayed enhanced Ralstonia solanacearum resistance, while mutants A1 and A3 were more susceptible toward Pseudomonas syringae pv. tomato. Identification of the activation tag insertion site in the A1 mutant revealed an insertion in close proximity to the gene encoding AHL19, which was constitutively expressed in the mutant. AHL19 knock-out alleles were found to display enhanced Verticillium susceptibility whereas overexpression of AHL19 resulted in enhanced Verticillium resistance, showing that AHL19 acts as a positive regulator of plant defense.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Ligação a DNA/metabolismo , Doenças das Plantas/imunologia , Imunidade Vegetal/genética , Verticillium/fisiologia , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Genótipo , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Doenças das Plantas/microbiologia , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/imunologia , Raízes de Plantas/microbiologia
13.
Plant Cell ; 20(7): 1948-63, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18660430

RESUMO

Cladosporium fulvum (syn. Passalora fulva) is a biotrophic fungal pathogen that causes leaf mold of tomato (Solanum lycopersicum). During growth in the apoplast, the fungus establishes disease by secreting effector proteins, 10 of which have been characterized. We have previously shown that the Avr2 effector interacts with the apoplastic tomato Cys protease Rcr3, which is required for Cf-2-mediated immunity. We now show that Avr2 is a genuine virulence factor of C. fulvum. Heterologous expression of Avr2 in Arabidopsis thaliana causes enhanced susceptibility toward extracellular fungal pathogens, including Botrytis cinerea and Verticillium dahliae, and microarray analysis showed that Avr2 expression triggers a global transcriptome reflecting pathogen challenge. Cys protease activity profiling showed that Avr2 inhibits multiple extracellular Arabidopsis Cys proteases. In tomato, Avr2 expression caused enhanced susceptibility toward Avr2-defective C. fulvum strains and also toward B. cinerea and V. dahliae. Cys protease activity profiling in tomato revealed that, in this plant also, Avr2 inhibits multiple extracellular Cys proteases, including Rcr3 and its close relative Pip1. Finally, silencing of Avr2 significantly compromised C. fulvum virulence on tomato. We conclude that Avr2 is a genuine virulence factor of C. fulvum that inhibits several Cys proteases required for plant basal defense.


Assuntos
Cladosporium/patogenicidade , Proteínas Fúngicas/fisiologia , Peptídeo Hidrolases/metabolismo , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Botrytis/genética , Botrytis/patogenicidade , Cladosporium/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/microbiologia , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Peptídeo Hidrolases/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Verticillium/genética , Verticillium/patogenicidade , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA