Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Heliyon ; 10(13): e33821, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39040387

RESUMO

Introduction: & Objective: Cerebral ischemia/reperfusion (I/R) injury, the second cause of death globally, involves increased NMDA receptor activity leading to neuronal damage due to excessive sodium and calcium ion entry. Therefore, targeting NMDA receptor may potentially reduce cell death induced by brain injury. Our study aimed to investigate the role of NMDA receptors in hippocampal neuronal activity induced by I/R. Methods: In this study, Wistar rats were divided into four groups: sham, I/R, I/R + MK801, and I/R + NMDA. Cerebral I/R injury was induced by temporarily occluding the common and vertebral carotid arteries, followed by reperfusion. MK801 or NMDA was administered to the rats after a specific reperfusion time. Neuronal density and cell morphology in the hippocampal CA1 region were assessed using Nissl and H&E staining. The expression of BDNF, p-CREB, and c-fos was evaluated through Western blot analysis. Additionally, neuronal activity in CA1 pyramidal neurons were examined using single unit recording technique. Results: Our results showed that cerebral I/R injury caused significant damage to CA1 pyramidal neurons compared to the sham group. However, treatment with MK-801 improved hippocampal cell survival compared to the I/R group. Furthermore, MK-801 administration in I/R rats increased BDNF, c-fos, and p-CREB levels while decreasing cleaved caspase-3 activity compared to the I/R group. Additionally, electrophysiological data showed that MK-801 increased firing rates of CA1 pyramidal neurons during the reperfusion phase. Conclusion: MK-801 shows promise as a therapeutic agent for cerebral I/R injury by enhancing cell survival, upregulating neuroplasticity factors, and increasing firing rates of CA1 pyramidal neurons. It exerts a specific protective effect against cerebral I/R injury.

2.
Neurochem Res ; 49(3): 583-596, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38114727

RESUMO

Neurological disorders are a major group of non-communicable diseases affecting quality of life. Non-Coding RNAs (ncRNAs) have an important role in the etiology of neurological disorders. In studies on the genesis of neurological diseases, aquaporin 4 (AQP4) expression and activity have both been linked to ncRNAs. The upregulation or downregulation of several ncRNAs leads to neurological disorder progression by targeting AQP4. The role of ncRNAs and AQP4 in neurological disorders is discussed in this review.


Assuntos
MicroRNAs , Doenças do Sistema Nervoso , Humanos , Aquaporina 4/genética , Aquaporina 4/metabolismo , Qualidade de Vida , RNA não Traduzido/metabolismo , Doenças do Sistema Nervoso/genética , Regulação para Baixo
3.
Mol Neurobiol ; 61(7): 4508-4537, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38102518

RESUMO

Apoptosis can be known as a key factor in the pathogenesis of neurodegenerative disorders. In disease conditions, the rate of apoptosis expands and tissue damage may become apparent. Recently, the scientific studies of the non-coding RNAs (ncRNAs) has provided new information of the molecular mechanisms that contribute to neurodegenerative disorders. Numerous reports have documented that ncRNAs have important contributions to several biological processes associated with the increase of neurodegenerative disorders. In addition, microRNAs (miRNAs), circular RNAs (circRNAs), as well as, long ncRNAs (lncRNAs) represent ncRNAs subtypes with the usual dysregulation in neurodegenerative disorders. Dysregulating ncRNAs has been associated with inhibiting or stimulating apoptosis in neurodegenerative disorders. Therefore, this review highlighted several ncRNAs linked to apoptosis in neurodegenerative disorders. CircRNAs, lncRNAs, and miRNAs were also illustrated completely regarding the respective signaling pathways of apoptosis.


Assuntos
Apoptose , Doenças Neurodegenerativas , RNA não Traduzido , Apoptose/genética , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Humanos , Animais , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Transdução de Sinais/genética , MicroRNAs/genética , MicroRNAs/metabolismo
4.
Behav Brain Res ; 433: 114001, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35809694

RESUMO

Stem cell-based treatments have been recommended as a feasible therapy for stroke victims due to their potential for angiogenesis, neurogenesis, and synaptic plasticity. The intracellular mechanisms of stem cells against cerebral hypoperfusion are not well recognized. In this study, by releasing the clips, the reperfusion period was extended to 96 h, and two hours after cerebral ischemia, animals received adipose-derived MSCs. MSCs were isolated from the inguinal fat pads of rats and injected into two-vessel occlusion (2VO) rats 1 h after ischemia induction. Ninety-six hours after 2VO induction, behavioral and molecular tests were assessed. Adipose-derived MSCs treatment improves neurological scores, passive avoidance memory, and novel object recognition tests in the 2VO model compared to 2VO rats (P < 0.001). MSCs treatment decreased TNF-α (P < 0.01) and IL-6 (P < 0.01) and apoptotic factors (Bax/Bcl-2 ratio and caspase-3 level (P < 0.01)) compared with ischemic rats. MSCs treatment of ischemic rats could enhance Klotho-α and AMPK-α compared with ischemic rats (P < 0.001). The study disclosed that adipose-derived MSCs could improve neurological damage and memory deficits by reducing neuronal death in cerebral ischemia. Data proposed that adipose-derived MSCs inhibit pro-inflammatory factors such as IL-6 and TNF-α, consequently decreasing apoptosis in the hippocampus of CCAO rats. Besides, the Klotho-α and AMPK-α measurements found that MSCs might induce intracellular neuroprotective pathways via activation of Klotho-α/AMPK-α signaling.


Assuntos
Isquemia Encefálica , Ataque Isquêmico Transitório , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Apoptose , Isquemia Encefálica/metabolismo , Isquemia Encefálica/terapia , Modelos Animais de Doenças , Interleucina-6/metabolismo , Ataque Isquêmico Transitório/metabolismo , Ratos , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA