Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
J Hepatol ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960375

RESUMO

BACKGROUND: The underlying mechanisms for the link between steatotic liver disease and cardiovascular and cancer outcomes are poorly understood. We aimed to use MRI-derived measures of liver fat and genetics to investigate causal mechanisms that link higher liver fat to various health outcomes. METHODS: We conducted a genome-wide association study on 37,358 UK Biobank participants to identify genetic variants associated with liver fat measured from MRI scans. We used Mendelian randomization approach to investigate the causal effect of liver fat on health outcomes independent of BMI, alcohol consumption and lipids using data from published GWAS and FinnGen. RESULTS: We identified 13 genetic variants associated with liver fat that showed differing risks to health outcomes. Genetic variants associated with impaired hepatic triglyceride export showed liver fat-increasing alleles to be correlated with a reduced risk of coronary artery disease and myocardial infarction but an elevated risk of type 2 diabetes; and variants associated with enhanced de novo lipogenesis showed liver fat-increasing alleles to be linked to a higher risk of myocardial infarction and coronary artery disease. Genetically higher liver fat content increased the risk of non-alcohol liver cirrhosis, hepatocellular and Intrahepatic bile ducts and gallbladder cancers, exhibiting a dose-dependent relationship, irrespective of the mechanism. CONCLUSION: This study provides fresh insight into the heterogeneous effect of liver fat on health outcomes. It challenges the notion that liver fat per se is an independent risk factor for cardiovascular disease, underscoring the dependency of this association on the specific mechanisms that drive fat accumulation in the liver. However, excess liver fat, regardless of how achieved, appears to be causally linked to liver cirrhosis and cancers in a dose dependent manner. IMPACT AND IMPLICATION: This research advances our understanding of the heterogeneity in mechanisms influencing liver fat accumulation, providing new insights into how liver fat accumulation may impact various health outcomes. The findings challenge the notion that liver fat is an independent risk factor for cardiovascular disease and highlight the mechanistic effect of some genetic variants on fat accumulation and the development of cardiovascular diseases. This study is of particular importance for healthcare professionals including physicians and researchers as well as patients as it allows for more targeted and personalised treatment by understanding the relationship between liver fat and various health outcomes. The findings emphasise the need for a personalised management approach and a reshaping of risk assessment criteria. It also provides room for prioritising a clinical intervention aimed at reducing liver fat content (likely by intentional weight loss, however, achieved) that could help protect against liver related fibrosis and cancer.

2.
J Diabetes Investig ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970407

RESUMO

INTRODUCTION: Neonatal diabetes mellitus (NDM) is a rare non-immunological monogenic disorder characterized by hyperglycemic conditions primarily occurring within the first 6 months of life. The majority of cases are attributed to pathogenic variants in genes affecting beta-cell survival, insulin regulation, and secretion. This study aims to investigate the genetic landscape of NDM in Iran. METHODS: We recruited a total of 135 patients who were initially diagnosed with diabetes at <12 months of age in Iran and referred to pediatric endocrinology clinics across the country. These patients underwent genetic diagnostic tests conducted by the Exeter Molecular Genetics Laboratory in the UK. The pathogenic variants identified were sorted and described based on type, pathogenicity (according to ACMG/AMP criteria), novelty, and the affected protein domain. RESULTS: Genetic defects were identified in 93 probands, presenting various pathogenic abnormalities associated with NDM and its associated syndromes. 76% of the patients were born as a result of consanguineous marriage, and a familial history of diabetes was found in 43% of the cases. A total of 58 distinct variants in 14 different genes were discovered, including 20 variants reported for the first time. Causative variants were most frequently identified in EIF2AK3, KCNJ11, and ABCC8, respectively. Notably, EIF2AK3 and ABCC8 exhibited the highest number of novel variants. DISCUSSION: These findings provide valuable insights into the genetic landscape of NDM in the Iranian population and contribute to the knowledge of novel pathogenic variants within known causative genes.

3.
Diabetes ; 73(6): 1012-1025, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38530928

RESUMO

We aimed to unravel the mechanisms connecting adiposity to type 2 diabetes. We used MR-Clust to cluster independent genetic variants associated with body fat percentage (388 variants) and BMI (540 variants) based on their impact on type 2 diabetes. We identified five clusters of adiposity-increasing alleles associated with higher type 2 diabetes risk (unfavorable adiposity) and three clusters associated with lower risk (favorable adiposity). We then characterized each cluster based on various biomarkers, metabolites, and MRI-based measures of fat distribution and muscle quality. Analyzing the metabolic signatures of these clusters revealed two primary mechanisms connecting higher adiposity to reduced type 2 diabetes risk. The first involves higher adiposity in subcutaneous tissues (abdomen and thigh), lower liver fat, improved insulin sensitivity, and decreased risk of cardiometabolic diseases and diabetes complications. The second mechanism is characterized by increased body size and enhanced muscle quality, with no impact on cardiometabolic outcomes. Furthermore, our findings unveil diverse mechanisms linking higher adiposity to higher disease risk, such as cholesterol pathways or inflammation. These results reinforce the existence of adiposity-related mechanisms that may act as protective factors against type 2 diabetes and its complications, especially when accompanied by reduced ectopic liver fat.


Assuntos
Adiposidade , Diabetes Mellitus Tipo 2 , Medicina de Precisão , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Adiposidade/genética , Índice de Massa Corporal , Resistência à Insulina/genética , Predisposição Genética para Doença
4.
Front Endocrinol (Lausanne) ; 14: 1223162, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37900132

RESUMO

Background: Sex hormones and sex hormone-binding globulin (SHBG) may play a role in fatty liver development. We sought to examine the association of various endogenous sex hormones, including testosterone (T), and SHBG with liver fat using complementary observational and Mendelian randomization (MR) analyses. Methods: The observational analysis included a total of 2,239 participants (mean age 60 years; 35% postmenopausal women) from the population-based KORA study (average follow-up time: 6.5 years). We conducted linear regression analysis to investigate the sex-specific associations of sex hormones and SHBG with liver fat, estimated by fatty liver index (FLI). For MR analyses, we selected genetic variants associated with sex hormones and SHBG and extracted their associations with magnetic resonance imaging measured liver fat from the largest up to date European genome-wide associations studies. Results: In the observational analysis, T, dihydrotestosterone (DHT), progesterone and 17α-hydroxyprogesterone (17-OHP) were inversely associated with FLI in men, with beta estimates ranging from -4.23 to -2.30 [p-value <0.001 to 0.003]. Whereas in women, a positive association of free T with FLI (ß = 4.17, 95%CI: 1.35, 6.98) was observed. SHBG was inversely associated with FLI across sexes [men: -3.45 (-5.13, -1.78); women: -9.23 (-12.19, -6.28)]. No causal association was found between genetically determined sex hormones and liver fat, but higher genetically determined SHBG was associated with lower liver fat in women (ß = -0.36, 95% CI: -0.61, -0.12). Conclusion: Our results provide suggestive evidence for a causal association between SHBG and liver fat in women, implicating the protective role of SHBG against liver fat accumulation.


Assuntos
Fígado Gorduroso , Globulina de Ligação a Hormônio Sexual , Masculino , Humanos , Feminino , Pessoa de Meia-Idade , Globulina de Ligação a Hormônio Sexual/genética , Globulina de Ligação a Hormônio Sexual/análise , Análise da Randomização Mendeliana , Di-Hidrotestosterona , Fígado Gorduroso/epidemiologia , Fígado Gorduroso/genética
5.
Diabet Med ; 40(12): e15226, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37704218

RESUMO

Obesity is a complex and multifactorial condition that poses significant health risks. Recent advancements in our understanding of obesity have highlighted the heterogeneity within this disorder. Identifying distinct subtypes of obesity is crucial for personalised treatment and intervention strategies. This review paper aims to examine studies that have utilised clinical biomarkers and genetic data to identify clusters or subtypes of obesity. The findings of these studies may provide valuable insights into the underlying mechanisms and potential targeted approaches for managing obesity-related health issues such as type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/genética , Obesidade/genética , Biomarcadores
6.
Diabet Med ; 40(12): e15213, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37638553

RESUMO

AIM: This study aims to investigate the associations between genetic risk scores (GRS) for favourable and unfavourable adiposity and a wide range of adiposity-related outcomes across diverse populations. METHODS: We utilised previously identified variants associated with favourable (36 variants) and unfavourable (38 variants) adiposity to create GRS for each adiposity phenotype. We used summary statistics from 39 outcomes generated by the Pan-UKB genome-wide association studies Version 0.3, incorporating covariates such as age, sex and principal components in six populations: European (n = 420,531), African (6636), American (980), Central/South Asian (8876), East Asian (2709) and Middle Eastern (1599). RESULTS: The favourable adiposity GRS was associated with a healthy metabolic profile, including lower risk of type 2 diabetes, lower liver enzyme levels, lower blood pressure, higher HDL-cholesterol, lower triglycerides, higher apolipoprotein A, lower apolipoprotein B, higher testosterone, lower calcium and lower insulin-like growth factor 1 generally consistently across all the populations. In contrast, the unfavourable adiposity GRS was associated with an adverse metabolic profile, including higher risk of type 2 diabetes, higher random glucose levels, higher HbA1c, lower HDL-cholesterol, higher triglycerides, higher liver enzyme levels, lower testosterone, and higher C-reactive protein generally consistently across all the populations. CONCLUSION: The study provides evidence that the genetic scores associated with favourable and unfavourable adiposity have consistent effects on metabolic profiles and disease risk across diverse ethnic groups. These findings deepen our understanding of distinct adiposity subtypes and their impact on metabolic health.


Assuntos
Adiposidade , Diabetes Mellitus Tipo 2 , Humanos , Adiposidade/genética , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/genética , Etnicidade/genética , Estudo de Associação Genômica Ampla , Obesidade/epidemiologia , Obesidade/genética , Fatores de Risco , HDL-Colesterol/metabolismo , Triglicerídeos , Metaboloma , Testosterona , Apolipoproteínas/genética , Apolipoproteínas/metabolismo
7.
Diabetes Care ; 46(10): 1783-1791, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37556814

RESUMO

OBJECTIVE: To investigate the causal association of type 2 diabetes and its components with risk of vascular complications independent of shared risk factors obesity and hypertension and to identify the main driver of this risk. RESEARCH DESIGN AND METHODS: We conducted Mendelian randomization (MR) using independent genetic variants previously associated with type 2 diabetes, fasting glucose, HbA1c, fasting insulin, BMI, and systolic blood pressure as instrumental variables. We obtained summary-level data for 18 vascular diseases (15 for type 2 diabetes) from FinnGen and publicly available genome-wide association studies as our outcomes. We conducted univariable and multivariable MR, in addition to sensitivity tests to detect and minimize pleiotropic effects. RESULTS: Univariable MR analysis showed that type 2 diabetes was associated with 9 of 15 outcomes; BMI and systolic blood pressure were associated with 13 and 15 of 18 vascular outcomes, respectively; and fasting insulin was associated with 4 and fasting glucose with 2. No robust association was found for HbA1c instruments. With adjustment for correlated traits in the multivariable test, BMI and systolic blood pressure, consistent causal effects were maintained, while five associations with type 2 diabetes (chronic kidney disease, ischemic heart disease, heart failure, subarachnoid hemorrhage, and intracerebral hemorrhage) were attenuated to null. CONCLUSIONS: Our findings add strong evidence to support the importance of BMI and systolic blood pressure in the development of vascular complications in people with type 2 diabetes. Such findings strongly support the need for better weight and blood pressure management in type 2 diabetes, independent of glucose lowering, to limit important complications.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Pressão Sanguínea , Hemoglobinas Glicadas , Estudo de Associação Genômica Ampla , Controle Glicêmico , Glicemia/análise , Índice de Massa Corporal , Fatores de Risco , Insulina/genética , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único
8.
Cancer Med ; 12(15): 16482-16489, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37305903

RESUMO

BACKGROUND: The associations of adiposity with aggressive prostate cancer risk are unclear. Using two-sample Mendelian randomization, we assessed the association of metabolically unfavourable adiposity (UFA), favourable adiposity (FA) and for comparison body mass index (BMI), with prostate cancer, including aggressive prostate cancer. METHODS: We examined the association of these genetically predicted adiposity-related traits with risk of prostate cancer overall, aggressive and early onset disease using outcome summary statistics from the PRACTICAL consortium (including 15,167 aggressive cases). RESULTS: In inverse-variance weighted models, there was little evidence that genetically predicted one standard deviation higher UFA, FA and BMI were associated with aggressive prostate cancer [OR: 0.85 (95% CI:0.61-1.19), 0.80 (0.53-1.23) and 0.97 (0.88-1.08), respectively]; these associations were largely consistent in sensitivity analyses accounting for horizontal pleiotropy. There was no strong evidence that genetically determined UFA, FA or BMI were associated with overall prostate cancer or early age of onset prostate cancer. CONCLUSIONS: We did not find differences in the associations of UFA and FA with prostate cancer risk, which suggest that adiposity is unlikely to influence prostate cancer via the metabolic factors assessed; however, these did not cover some aspects related to metabolic health that may link obesity with aggressive prostate cancer, which should be explored in future studies.


Assuntos
Adiposidade , Neoplasias da Próstata , Masculino , Humanos , Adiposidade/genética , Predisposição Genética para Doença , Análise da Randomização Mendeliana , Obesidade/complicações , Obesidade/epidemiologia , Obesidade/genética , Índice de Massa Corporal , Neoplasias da Próstata/epidemiologia , Neoplasias da Próstata/genética , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único
9.
Obesity (Silver Spring) ; 31(1): 267-278, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36502291

RESUMO

OBJECTIVE: This analysis assessed the putative causal association between genetically predicted percent body fat and areal bone mineral density (aBMD) and, more specifically, the association between genetically predicted metabolically "favorable adiposity" (MFA) and aBMD at clinically relevant bone sites. METHODS: Mendelian randomization was used to assess the relationship of MFA and percent body fat with whole-body, lumbar spine, femoral neck, and forearm aBMD. Sex-stratified and age-stratified exploratory analyses were conducted. RESULTS: In all MR analyses, genetically predicted MFA was inversely associated with aBMD for the whole body (ß = -0.053, p = 0.0002), lumbar spine (ß = -0.075; p = 0.0001), femoral neck (ß = -0.045; p = 0.008), and forearm (ß = -0.115; p = 0.001). This negative relationship was strongest in older individuals and did not differ by sex. The relationship between genetically predicted percent body fat and aBMD was nonsignificant across all Mendelian randomization analyses. Several loci that were associated at a genome-wide significance level (p < 5 × 10-8 ) in opposite directions with body fat and aBMD measures were also identified. CONCLUSIONS: This study did not support the hypothesis that MFA protects against low aBMD. Instead, it showed that MFA may result in lower aBMD. Further research is needed to understand how MFA affects aBMD and other components of bone health such as bone turnover, bone architecture, and osteoporotic fractures.


Assuntos
Densidade Óssea , Análise da Randomização Mendeliana , Humanos , Idoso , Densidade Óssea/genética , Adiposidade/genética , Absorciometria de Fóton , Obesidade
10.
Diabet Med ; 39(12): e14982, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36256488

RESUMO

The role of diabetes in developing microvascular and macrovascular complications has been subject to extensive research. Despite multiple observational and genetic studies, the causal inference of diabetes (and associated risk factors) on those complications remains incomplete. In this review, we focused on type 2 diabetes, as the major form of diabetes, and investigated the evidence of causality provided by observational and genetic studies. We found that genetic studies based on Mendelian randomization provided consistent evidence of causal inference of type 2 diabetes on macrovascular complications; however, the evidence for causal inference on microvascular complications has been somewhat limited. We also noted high BMI could be causal for several diabetes complications, notable given high BMI is commonly upstream of type 2 diabetes and the recent calls to target weight loss more aggressively. We emphasize the need for further studies to identify type 2 diabetes components that mostly drive the risk of those complications. Even so, the genetic evidence summarized broadly concurs with the need for a multifactorial risk reduction approach in type 2 diabetes, including addressing excess adiposity.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/genética , Análise da Randomização Mendeliana , Adiposidade/genética , Fatores de Risco , Obesidade/complicações , Obesidade/genética
12.
Hepatol Int ; 16(3): 702-711, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35397106

RESUMO

BACKGROUND: A genetic variant in the manganese transporter SLC30A10 (rs188273166, p.Thr95Ile) was associated with increased plasma alanine transaminase (ALT) in a recent genome-wide association study in the UK Biobank (UKB). The aims of the present study were to test the association of rs188273166 with ALT in an independent cohort, and to begin to assess the clinical, hepatic, and biochemical phenotypes associated with the variant. METHODS: We included n = 334,886 white participants from UKB, including 14,462 with hepatic magnetic resonance imaging (MRI), and n = 113,612 individuals from the Copenhagen City Heart Study and the Copenhagen General Population Study combined. RESULTS: Genotyping SLC30A10 p.Thr95Ile identified 816 heterozygotes in the UKB and 111 heterozygotes in the Copenhagen cohort. Compared to noncarriers, heterozygotes had 4 and 5 U/L higher levels of ALT in the UKB and Copenhagen cohort, respectively, and 3 U/L higher plasma aspartate transaminase and gamma-glutamyl transferase in the UKB. Heterozygotes also had higher corrected T1 on liver MRI, a marker of hepatic inflammation (p = 4 × 10-7), but no change in MRI-quantified steatosis (p = 0.57). Plasma manganese was within the normal range in nine heterozygotes that provided new blood samples. SLC30A10 p.Thr95Ile heterozygotes had an eightfold increased risk of biliary tract cancer in UKB (p = 4 × 10-7), but this association was not replicated in the Copenhagen cohort. CONCLUSIONS: SLC30A10 p.Thr95Ile was associated with elevated liver enzymes in two large general population cohorts, and with MRI-quantified hepatic inflammation. A rare genetic variant (p.Thr95Ile) in the manganese transporter SLC30A10 is associated with elevated plasma alanine transaminase (ALT) and higher corrected T1 on liver MRI, markers of liver inflammation. These data support that the variant may increase the risk of liver disease.


Assuntos
Proteínas de Transporte de Cátions/genética , Hepatopatias/genética , Alanina Transaminase , Estudo de Associação Genômica Ampla , Humanos , Inflamação/patologia , Fígado/patologia , Hepatopatias/enzimologia , Hepatopatias/patologia , Manganês/metabolismo
13.
Elife ; 112022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35074047

RESUMO

Background: Some individuals living with obesity may be relatively metabolically healthy, whilst others suffer from multiple conditions that may be linked to adverse metabolic effects or other factors. The extent to which the adverse metabolic component of obesity contributes to disease compared to the non-metabolic components is often uncertain. We aimed to use Mendelian randomisation (MR) and specific genetic variants to separately test the causal roles of higher adiposity with and without its adverse metabolic effects on diseases. Methods: We selected 37 chronic diseases associated with obesity and genetic variants associated with different aspects of excess weight. These genetic variants included those associated with metabolically 'favourable adiposity' (FA) and 'unfavourable adiposity' (UFA) that are both associated with higher adiposity but with opposite effects on metabolic risk. We used these variants and two sample MR to test the effects on the chronic diseases. Results: MR identified two sets of diseases. First, 11 conditions where the metabolic effect of higher adiposity is the likely primary cause of the disease. Here, MR with the FA and UFA genetics showed opposing effects on risk of disease: coronary artery disease, peripheral artery disease, hypertension, stroke, type 2 diabetes, polycystic ovary syndrome, heart failure, atrial fibrillation, chronic kidney disease, renal cancer, and gout. Second, 9 conditions where the non-metabolic effects of excess weight (e.g. mechanical effect) are likely a cause. Here, MR with the FA genetics, despite leading to lower metabolic risk, and MR with the UFA genetics, both indicated higher disease risk: osteoarthritis, rheumatoid arthritis, osteoporosis, gastro-oesophageal reflux disease, gallstones, adult-onset asthma, psoriasis, deep vein thrombosis, and venous thromboembolism. Conclusions: Our results assist in understanding the consequences of higher adiposity uncoupled from its adverse metabolic effects, including the risks to individuals with high body mass index who may be relatively metabolically healthy. Funding: Diabetes UK, UK Medical Research Council, World Cancer Research Fund, National Cancer Institute.


Assuntos
Adiposidade/genética , Análise da Randomização Mendeliana/métodos , Obesidade/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Índice de Massa Corporal , Fatores de Risco Cardiometabólico , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade
14.
Diabetes Care ; 45(2): 460-468, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34983059

RESUMO

OBJECTIVE: Fat content and volume of liver and pancreas are associated with risk of diabetes in observational studies; whether these associations are causal is unknown. We conducted a Mendelian randomization (MR) study to examine causality of such associations. RESEARCH DESIGN AND METHODS: We used genetic variants associated (P < 5 × 10-8) with the exposures (liver and pancreas volume and fat content) using MRI scans of UK Biobank participants (n = 32,859). We obtained summary-level data for risk of type 1 (9,358 cases) and type 2 (55,005 cases) diabetes from the largest available genome-wide association studies. We performed inverse-variance weighted MR as main analysis and several sensitivity analyses to assess pleiotropy and to exclude variants with potential pleiotropic effects. RESULTS: Observationally, liver fat and volume were associated with type 2 diabetes (odds ratio per 1 SD higher exposure 2.16 [2.02, 2.31] and 2.11 [1.96, 2.27], respectively). Pancreatic fat was associated with type 2 diabetes (1.42 [1.34, 1.51]) but not type 1 diabetes, and pancreas volume was negatively associated with type 1 diabetes (0.42 [0.36, 0.48]) and type 2 diabetes (0.73 [0.68, 0.78]). MR analysis provided evidence only for a causal role of liver fat and pancreas volume in risk of type 2 diabetes (1.27 [1.08, 1.49] or 27% increased risk and 0.76 [0.62, 0.94] or 24% decreased risk per 1SD, respectively) and no causal associations with type 1 diabetes. CONCLUSIONS: Our findings assist in understanding the causal role of ectopic fat in the liver and pancreas and of organ volume in the pathophysiology of type 1 and type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Análise da Randomização Mendeliana , Diabetes Mellitus Tipo 2/genética , Estudo de Associação Genômica Ampla , Humanos , Fígado/diagnóstico por imagem , Pâncreas/diagnóstico por imagem , Polimorfismo de Nucleotídeo Único , Fatores de Risco
15.
J Clin Res Pediatr Endocrinol ; 14(1): 87-95, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-34927408

RESUMO

Objective: Congenital hyperinsulinism (CHI) is the most frequent cause of severe and persistent hypoglycaemia from birth. Understanding the pathophysiology and genetic defects behind hyperinsulinism and its complications provides clues to timely diagnosis and management. The aim of this study was to evaluate the underlying genetic aetiology of a specific Iranian pediatric cohort with CHI. Methods: A total of 44 unrelated children, 20 girls and 24 boys, with an initial diagnosis or history of CHI from all regions of Iran were recruited between 2016 and 2019. Targeted next generation sequencing (tNGS) was performed for the genes found in about half of CHI patients. Results: Mutations were identified in 24 cases (55%). Patients with a confirmed genetic cause were mainly diagnosed below age of one year old (p=0.01), had fewer other syndromic features, excluding seizure, (p=0.03), were less diazoxide responsive (p=0.04) and were more diazoxide unresponsive leading to pancreatectomy (p=0.007) compared to those with no identified mutations. Among 24 patients with identified genetic mutations, 17 (71%) had a mutation in ABCC8, 3 (12%) in KCNJ11, 3 (12%) in HADH, and 1 patient had a mutation in KMT2D. These included five novel mutations in ABCC8, KCNJ11, and KMT2D. Conclusion: This is the biggest genetic study of CHI in Iran. A high frequency of recessive forms of CHI, especially HADH mutations, in our study could be due to a high rate of consanguineous marriage. We recommend tNGS to screen for all the CHI genes.


Assuntos
Hiperinsulinismo Congênito , Criança , Hiperinsulinismo Congênito/diagnóstico , Hiperinsulinismo Congênito/genética , Diazóxido , Feminino , Humanos , Lactente , Irã (Geográfico) , Masculino , Mutação , Receptores de Sulfonilureias/genética
16.
Hum Mol Genet ; 31(11): 1762-1775, 2022 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-34897462

RESUMO

BACKGROUND: Higher birthweight is associated with higher adult body mass index (BMI). Alleles that predispose to greater adult adiposity might act in fetal life to increase fetal growth and birthweight. Whether there are fetal effects of recently identified adult metabolically favorable adiposity alleles on birthweight is unknown. AIM: We aimed to test the effect on birthweight of fetal genetic predisposition to higher metabolically favorable adult adiposity and compare that with the effect of fetal genetic predisposition to higher adult BMI. METHODS: We used published genome wide association study data (n = upto 406 063) to estimate fetal effects on birthweight (adjusting for maternal genotype) of alleles known to raise metabolically favorable adult adiposity or BMI. We combined summary data across single nucleotide polymorphisms (SNPs) with random effects meta-analyses. We performed weighted linear regression of SNP-birthweight effects against SNP-adult adiposity effects to test for a dose-dependent association. RESULTS: Fetal genetic predisposition to higher metabolically favorable adult adiposity and higher adult BMI were both associated with higher birthweight (3 g per effect allele (95% CI: 1-5) averaged over 14 SNPs; P = 0.002; 0.5 g per effect allele (95% CI: 0-1) averaged over 76 SNPs; P = 0.042, respectively). SNPs with greater effects on metabolically favorable adiposity tended to have greater effects on birthweight (R2 = 0.2912, P = 0.027). There was no dose-dependent association for BMI (R2 = -0.0019, P = 0.602). CONCLUSIONS: Fetal genetic predisposition to both higher adult metabolically favorable adiposity and BMI is associated with birthweight. Fetal effects of metabolically favorable adiposity-raising alleles on birthweight are modestly proportional to their effects on future adiposity, but those of BMI-raising alleles are not.


Assuntos
Adiposidade , Estudo de Associação Genômica Ampla , Adiposidade/genética , Adulto , Alelos , Peso ao Nascer/genética , Índice de Massa Corporal , Predisposição Genética para Doença , Humanos , Obesidade/genética , Polimorfismo de Nucleotídeo Único/genética
17.
Diabetologia ; 64(12): 2790-2802, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34542646

RESUMO

AIMS/HYPOTHESIS: Higher maternal BMI during pregnancy is associated with higher offspring birthweight, but it is not known whether this is solely the result of adverse metabolic consequences of higher maternal adiposity, such as maternal insulin resistance and fetal exposure to higher glucose levels, or whether there is any effect of raised adiposity through non-metabolic (e.g. mechanical) factors. We aimed to use genetic variants known to predispose to higher adiposity, coupled with a favourable metabolic profile, in a Mendelian randomisation (MR) study comparing the effect of maternal 'metabolically favourable adiposity' on offspring birthweight with the effect of maternal general adiposity (as indexed by BMI). METHODS: To test the causal effects of maternal metabolically favourable adiposity or general adiposity on offspring birthweight, we performed two-sample MR. We used variants identified in large, published genetic-association studies as being associated with either higher adiposity and a favourable metabolic profile, or higher BMI (n = 442,278 and n = 322,154 for metabolically favourable adiposity and BMI, respectively). We then extracted data on the metabolically favourable adiposity and BMI variants from a large, published genetic-association study of maternal genotype and offspring birthweight controlling for fetal genetic effects (n = 406,063 with maternal and/or fetal genotype effect estimates). We used several sensitivity analyses to test the reliability of the results. As secondary analyses, we used data from four cohorts (total n = 9323 mother-child pairs) to test the effects of maternal metabolically favourable adiposity or BMI on maternal gestational glucose, anthropometric components of birthweight and cord-blood biomarkers. RESULTS: Higher maternal adiposity with a favourable metabolic profile was associated with lower offspring birthweight (-94 [95% CI -150, -38] g per 1 SD [6.5%] higher maternal metabolically favourable adiposity, p = 0.001). By contrast, higher maternal BMI was associated with higher offspring birthweight (35 [95% CI 16, 53] g per 1 SD [4 kg/m2] higher maternal BMI, p = 0.0002). Sensitivity analyses were broadly consistent with the main results. There was evidence of outlier SNPs for both exposures; their removal slightly strengthened the metabolically favourable adiposity estimate and made no difference to the BMI estimate. Our secondary analyses found evidence to suggest that a higher maternal metabolically favourable adiposity decreases pregnancy fasting glucose levels while a higher maternal BMI increases them. The effects on neonatal anthropometric traits were consistent with the overall effect on birthweight but the smaller sample sizes for these analyses meant that the effects were imprecisely estimated. We also found evidence to suggest that higher maternal metabolically favourable adiposity decreases cord-blood leptin while higher maternal BMI increases it. CONCLUSIONS/INTERPRETATION: Our results show that higher adiposity in mothers does not necessarily lead to higher offspring birthweight. Higher maternal adiposity can lead to lower offspring birthweight if accompanied by a favourable metabolic profile. DATA AVAILABILITY: The data for the genome-wide association studies (GWAS) of BMI are available at https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files . The data for the GWAS of body fat percentage are available at https://walker05.u.hpc.mssm.edu .


Assuntos
Adiposidade , Estudo de Associação Genômica Ampla , Adiposidade/genética , Peso ao Nascer , Índice de Massa Corporal , Feminino , Humanos , Recém-Nascido , Gravidez , Reprodutibilidade dos Testes
18.
Nat Genet ; 53(9): 1300-1310, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34475573

RESUMO

Trait-associated genetic variants affect complex phenotypes primarily via regulatory mechanisms on the transcriptome. To investigate the genetics of gene expression, we performed cis- and trans-expression quantitative trait locus (eQTL) analyses using blood-derived expression from 31,684 individuals through the eQTLGen Consortium. We detected cis-eQTL for 88% of genes, and these were replicable in numerous tissues. Distal trans-eQTL (detected for 37% of 10,317 trait-associated variants tested) showed lower replication rates, partially due to low replication power and confounding by cell type composition. However, replication analyses in single-cell RNA-seq data prioritized intracellular trans-eQTL. Trans-eQTL exerted their effects via several mechanisms, primarily through regulation by transcription factors. Expression of 13% of the genes correlated with polygenic scores for 1,263 phenotypes, pinpointing potential drivers for those traits. In summary, this work represents a large eQTL resource, and its results serve as a starting point for in-depth interpretation of complex phenotypes.


Assuntos
Proteínas Sanguíneas/genética , Regulação da Expressão Gênica/genética , Locos de Características Quantitativas/genética , Estudo de Associação Genômica Ampla , Humanos , Herança Multifatorial/genética , Polimorfismo de Nucleotídeo Único/genética , Transcriptoma/genética
19.
Hum Mol Genet ; 30(24): 2371-2382, 2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34270736

RESUMO

Higher adiposity is an established risk factor for psychiatric diseases including depression and anxiety. The associations between adiposity and depression may be explained by the metabolic consequences and/or by the psychosocial impact of higher adiposity. We performed one- and two- sample Mendelian randomization (MR) in up to 145 668 European participants from the UK Biobank to test for a causal effect of higher adiposity on 10 well-validated mental health and well-being outcomes derived using the Mental Health Questionnaire (MHQ). We used three sets of adiposity genetic instruments: (a) a set of 72 BMI genetic variants, (b) a set of 36 favourable adiposity variants and (c) a set of 38 unfavourable adiposity variants. We additionally tested causal relationships (1) in men and women separately, (2) in a subset of individuals not taking antidepressants and (3) in non-linear MR models. Two-sample MR provided evidence that a genetically determined one standard deviation (1-SD) higher BMI (4.6 kg/m2) was associated with higher odds of current depression [OR: 1.50, 95%CI: 1.15, 1.95] and lower well-being [ß: -0.15, 95%CI: -0.26, -0.04]. Findings were similar when using the metabolically favourable and unfavourable adiposity variants, with higher adiposity associated with higher odds of depression and lower well-being scores. Our study provides further evidence that higher BMI causes higher odds of depression and lowers well-being. Using genetics to separate out metabolic and psychosocial effects, our study suggests that in the absence of adverse metabolic effects higher adiposity remains causal to depression and lowers well-being.


Assuntos
Adiposidade , Análise da Randomização Mendeliana , Adiposidade/genética , Índice de Massa Corporal , Feminino , Humanos , Masculino , Saúde Mental , Obesidade/complicações
20.
Diabetes ; 70(8): 1843-1856, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33980691

RESUMO

To understand the causal role of adiposity and ectopic fat in type 2 diabetes and cardiometabolic diseases, we aimed to identify two clusters of adiposity genetic variants: one with "adverse" metabolic effects (UFA) and the other with, paradoxically, "favorable" metabolic effects (FA). We performed a multivariate genome-wide association study using body fat percentage and metabolic biomarkers from UK Biobank and identified 38 UFA and 36 FA variants. Adiposity-increasing alleles were associated with an adverse metabolic profile, higher risk of disease, higher CRP, and higher fat in subcutaneous and visceral adipose tissue, liver, and pancreas for UFA and a favorable metabolic profile, lower risk of disease, higher CRP and higher subcutaneous adipose tissue but lower liver fat for FA. We detected no sexual dimorphism. The Mendelian randomization studies provided evidence for a risk-increasing effect of UFA and protective effect of FA for type 2 diabetes, heart disease, hypertension, stroke, nonalcoholic fatty liver disease, and polycystic ovary syndrome. FA is distinct from UFA by its association with lower liver fat and protection from cardiometabolic diseases; it was not associated with visceral or pancreatic fat. Understanding the difference in FA and UFA may lead to new insights in preventing, predicting, and treating cardiometabolic diseases.


Assuntos
Adiposidade/genética , Gordura Intra-Abdominal/metabolismo , Fígado/metabolismo , Síndrome Metabólica/genética , Pâncreas/metabolismo , Adulto , Idoso , Fatores de Risco Cardiometabólico , Feminino , Humanos , Masculino , Síndrome Metabólica/metabolismo , Pessoa de Meia-Idade , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA