Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Front Immunol ; 13: 1081047, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36685601

RESUMO

Understanding the T-cell responses involved in inhibiting COVID-19 severity is crucial for developing new therapeutic and vaccine strategies. Here, we characterized SARS-CoV-2 spike-specific CD8+ T cells in vaccinees longitudinally. The BNT162b2 mRNA vaccine can induce spike-specific CD8+ T cells cross-reacting to BA.1, whereas the T-cell receptor (TCR) repertoire usages decreased with time. Furthermore the mRNA vaccine induced spike-specific CD8+ T cells subpopulation expressing Granzyme A (GZMA), Granzyme B (GZMB) and Perforin simultaneously in healthy donors at 4 weeks after the second vaccination. The induced subpopulation was not maintained at 12 weeks after the second vaccination. Incorporating factors that efficiently induce CD8+ T cells with highly cytotoxic activity could improve future vaccine efficacy against such variants.


Assuntos
Antineoplásicos , COVID-19 , Humanos , Linfócitos T CD8-Positivos , SARS-CoV-2 , Vacina BNT162 , COVID-19/prevenção & controle , Vacinação , RNA Mensageiro/genética
2.
Biochem Biophys Res Commun ; 516(2): 480-485, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31230747

RESUMO

Although Th17 cells are closely linked to cutaneous graft-versus-host-disease (GVHD) in mouse models, this association remains unclear in human GVHD. In this study, we established a novel xenogeneic cutaneous GVHD model using humanized mice. To induce the differentiation of human Th17 cells, we created transgenic NOG mice expressing human IL-1ß and IL-23 cytokines (hIL-1ß/23 Tg) and transplanted with human CD4+ T cells. The pathologies of cutaneous GVHD, such as a decrease in body weight, alopecia, and T cell inflammation in the skin, were observed much earlier in hIL-1ß/23 Tg mice compared with non-Tg mice after human CD4+ T cell transplantation. In the skin of Tg mice, IL-17- and IFNγ-producing pathogenic Th17 cells were significantly accumulated. Furthermore, high infiltration of murine neutrophils was seen in the skin of Tg mice, but not non-Tg mice, which may have been the cause of the severe alopecia. CD4+ T-cell-transferred hIL-1ß/23 Tg mice were therefore highly sensitive models for inducing cutaneous GVHD mediated by human pathogenic Th17 cells.


Assuntos
Progressão da Doença , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/patologia , Interleucina-1beta/metabolismo , Interleucina-23/metabolismo , Transplante de Pele/efeitos adversos , Células Th17/patologia , Animais , Humanos , Interferon gama/metabolismo , Contagem de Linfócitos , Camundongos Transgênicos
3.
Genes Cells ; 24(7): 473-484, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31099158

RESUMO

Induced pluripotent stem (iPS) cells hold great promise for regenerative medicine and the treatment of various diseases. Before proceeding to clinical trials, it is important to test the efficacy and safety of iPS cell-based treatments using experimental animals. The common marmoset is a new world monkey widely used in biomedical studies. However, efficient methods that could generate iPS cells from a variety of cells have not been established. Here, we report that marmoset cells are efficiently reprogrammed into iPS cells by combining RNA transfection and chemical compounds. Using this novel combination, we generate transgene integration-free marmoset iPS cells from a variety of cells that are difficult to reprogram using conventional RNA transfection method. Furthermore, we show this is similarly effective for human and cynomolgus monkey iPS cell generation. Thus, the addition of chemical compounds during RNA transfection greatly facilitates reprogramming and efficient generation of completely integration-free safe iPS cells in primates, particularly from difficult-to-reprogram cells.


Assuntos
Reprogramação Celular , Fibroblastos/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Preparações Farmacêuticas/administração & dosagem , RNA/administração & dosagem , Transfecção/métodos , Idoso , Animais , Diferenciação Celular , Células Cultivadas , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/fisiologia , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/fisiologia , Platirrinos
4.
Exp Anim ; 68(3): 361-370, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-30996149

RESUMO

In Japan, it is possible to generate chimeric animals from specified embryos by combining animal blastocysts with human pluripotent stem (PS) cells (animal-human PS chimera). However, the production of animal-human PS chimeras has been restricted because of ethical concerns, such as the development of human-like intelligence and formation of humanized gametes in the animals, owing to the contributions of human PS cells to the brain and reproductive organs. To solve these problems, we established a novel blastocyst complementation technology that does not contribute to the gametes or the brain. First, we established GFP-expressing mouse embryonic stem cells (G-mESCs) in which the Prdm14 and Otx2 genes were knocked out and generated chimeric mice by injecting them into PDX-1-deficient blastocysts. The results showed that the G-mESCs did not contribute to the formation of gametes and the brain. Therefore, in the PDX-1-deficient mice complemented by G-mESCs without the Prdm14 and Otx2 genes, the germline was not transmitted to the next generations. This approach could address concerns regarding the development of both human gametes and a human-like brain upon mouse blastocyst complementation using human stem cells.


Assuntos
Blastocisto/citologia , Diferenciação Celular/fisiologia , Técnicas de Cultura Embrionária/métodos , Transferência Embrionária/métodos , Células-Tronco Embrionárias Murinas/citologia , Animais , Encéfalo/fisiologia , Feminino , Células Germinativas/fisiologia , Japão , Masculino , Camundongos , Camundongos Endogâmicos ICR
5.
JCI Insight ; 3(21)2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30385714

RESUMO

Asthma is one of the most common immunological diseases and is characterized by airway hyperresponsiveness (AHR), mucus overproduction, and airway eosinophilia. Although mouse models have provided insight into the mechanisms by which type-2 cytokines induce asthmatic airway inflammation, differences between the rodent and human immune systems hamper efforts to improve understanding of human allergic diseases. In this study, we aim to establish a preclinical animal model of asthmatic airway inflammation using humanized IL-3/GM-CSF or IL-3/GM-CSF/IL-5 Tg NOD/Shi-scid-IL2rγnull (NOG) mice and investigate the roles of human type-2 immune responses in the asthmatic mice. Several important characteristics of asthma - such as AHR, goblet cell hyperplasia, T cell infiltration, IL-13 production, and periostin secretion - were induced in IL-3/GM-CSF Tg mice by intratracheally administered human IL-33. In addition to these characteristics, human eosinophilic inflammation was observed in IL-3/GM-CSF/IL-5 Tg mice. The asthmatic mechanisms of the humanized mice were driven by activation of human Th2 and mast cells by IL-33 stimulation. Furthermore, treatment of the humanized mice with an anti-human IL-13 antibody significantly suppressed these characteristics. Therefore, the humanized mice may enhance our understanding of the pathophysiology of allergic disorders and facilitate the preclinical development of new therapeutics for IL-33-mediated type-2 inflammation in asthma.


Assuntos
Asma/imunologia , Inflamação/imunologia , Interleucina-13/administração & dosagem , Interleucina-33/administração & dosagem , Animais , Asma/fisiopatologia , Citocinas/imunologia , Modelos Animais de Doenças , Eosinófilos/imunologia , Células Caliciformes/imunologia , Células Caliciformes/metabolismo , Células Caliciformes/patologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Humanos , Interleucina-13/imunologia , Interleucina-13/farmacologia , Interleucina-33/imunologia , Interleucina-33/farmacologia , Camundongos , Camundongos Endogâmicos NOD , Hipersensibilidade Respiratória/imunologia , Hipersensibilidade Respiratória/fisiopatologia
6.
Transgenic Res ; 27(2): 193-201, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29546522

RESUMO

DNA site-specific recombination by Cre/loxP is a powerful tool for gene manipulation in experimental animals. VCre/VloxP and SCre/SloxP are novel site-specific recombination systems, consisting of a recombinase and its specific recognition sequences, which function in a manner similar to Cre/loxP. Previous reports using Escherichia coli and Oryzias latipes demonstrated the existence of stringent specificity between each recombinase and its target sites; VCre/VloxP, SCre/SloxP, and Cre/loxP have no cross-reactivity with each other. In this study, we established four novel knock-in (KI) mouse strains in which VloxP-EGFP, SloxP-tdTomato, CAG-VCre, and CAG-SCre genes were inserted into the ROSA26 locus. VloxP-EGFP and SloxP-tdTomato KI mice were reporter mice carrying EGFP or tdTomato genes posterior to the stop codon, which was floxed by VloxP or SloxP fragments, respectively. CAG-VCre and CAG-SCre KI mice carried VCre or SCre genes that were expressed ubiquitously. These two reporter mice were crossed with three different deleter mice, CAG-VCre KI, CAG-SCre KI, and Cre-expressing transgenic mice. Through these matings, we found that VCre/VloxP and SCre/SloxP systems were functional in mice similar to Cre/loxP, and that the recombinases showed tight specificity for their recognition sequences. Our results suggest that these novel recombination systems allow highly sophisticated genome manipulations and will be useful for tracing the fates of multiple cell lineages or elucidating complex spatiotemporal regulations of gene expression.


Assuntos
Deleção de Genes , Genes Reporter/genética , Integrases/genética , Recombinação Genética , Animais , Linhagem da Célula/genética , DNA Nucleotidiltransferases/genética , Regulação da Expressão Gênica/genética , Técnicas de Introdução de Genes , Genoma/genética , Proteínas de Fluorescência Verde/genética , Camundongos , Camundongos Transgênicos
7.
Exp Anim ; 66(4): 425-435, 2017 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-28679969

RESUMO

Severely immunodeficient NOD/Shi-scid, IL-2Rγnull (NOG) mice provide an in vivo model for human cell/tissue transplantation studies. NOG mice were established by combining interleukin-2 receptor-γ chain knockout mice and NOD/Shi-scid mice. They exhibit a high incidence of thymic lymphomas and immunoglobulin (Ig) leakiness. In this study, we assessed the incidence of malignant lymphomas and the occurrence of leakiness in 2,184 non-experimental NOG retired breeder mice aged 16-40 weeks. We established that the total incidence of lymphomas was only 0.60% (13/2,184). Most lymphomas (10/13) occurred in female mice by the age of around 25 weeks. No mice developed Ig leakiness. All lymphomas were derived from the thymus, and consisted mainly of CD3-positive and CD45R-negative lymphoblastic-like cells. Therefore, based on the absence of Ig leakiness and a very low incidence of lymphomas, including thymic lymphomas, NOG mice may be useful in regeneration medicine for xenotransplantation of human embryonic stem (ES) cells or induced pluripotent stem (iPS) cells, and in transplantation experiments involving tumor cells.


Assuntos
Linfoma , Neoplasias do Timo , Animais , Complexo CD3 , Células-Tronco Embrionárias/transplante , Humanos , Incidência , Células-Tronco Pluripotentes Induzidas/transplante , Subunidade gama Comum de Receptores de Interleucina/genética , Antígenos Comuns de Leucócito , Linfoma/epidemiologia , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Modelos Animais , Transplante de Neoplasias , Neoplasias do Timo/epidemiologia , Transplante Heterólogo
8.
Biochem Biophys Res Commun ; 478(3): 1254-60, 2016 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-27545600

RESUMO

Most in vivo studies on the conversion to insulin-producing cells with AAV carrying PDX1 gene are performed in rodents. However, there is little information regarding Adeno-associated virus (AAV) carrying PDX1 gene transduced to human liver in vivo because accidental death caused by unpredicted factors cannot be denied, such as the hypoglycemic agent troglitazone with hepatic failure. Here we aim to confirm insulin secretion from human liver transduced with AAV carrying PDX1 gene in vivo and any secondary effect using a humanized liver mouse. As the results, AAV2-PG succeeded to improve the hyperglycemia of STZ-induced diabetic humanized liver mice. Then, the analysis of humanized liver mice revealed that the AAV2-PG was more transducible to humanized liver area than to mouse liver area. In conclusion, the humanized liver mouse model could be used to examine AAV transduction of human hepatocytes in vivo and better predict clinical transduction efficiency than nonhumanized mice.


Assuntos
Dependovirus/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/terapia , Terapia Genética , Animais , Diabetes Mellitus Experimental/complicações , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Homeodomínio/metabolismo , Humanos , Hiperglicemia/complicações , Hiperglicemia/terapia , Insulina/metabolismo , Camundongos , Camundongos Transgênicos , Transativadores/metabolismo , Transdução Genética
9.
Lab Anim Res ; 31(2): 93-8, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26155204

RESUMO

We developed pancreatic and duodenal homeobox1 (Pdx1) knockout mice to improve a compensatory hyperinsulinemia, which was induced by hyperplasia in the ß cells or Langerhans' islands, as the diabetic model mice. For targeting of Pdx1 gene by homologous recombination, ES cells derived from a 129(+Ter) /SvJcl×C57BL/6JJcl hybrid mouse were electroporated and subjected to positive-negative selection with hygromycin B and ganciclovir. As these results, one of the three chimeric mice succeeded to produce the next or F1 generation. Then, the mouse fetuses were extracted from the mother's uterus and analyzed immunohistologically for the existence of a pancreas. The fetuses were analyzed at embryonic day 14.5 (E14.5) because Pdx1 knockout could not alive after birth in this study. Immunohistochemical staining revealed that 10 fetuses out of 26 did not have any PDX1 positive primordium of the pancreas and that the PDX1 expresses in both the interior and exterior regions of intestine. In particular, one the exterior of the intestine PDX1 was expressed in glands that would be expected to form the pancreas. The result of PCR genotyping with extracted DNA from the paraffin sections showed existence of 10 Pdx1-knockout mice and corresponded to results of immunostaining. Thus, we succeeded to establish a Pdx1-knockout (Pdx1 (-/-)) mice.

10.
Oncol Rep ; 31(4): 1683-90, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24573400

RESUMO

Glioblastoma multiforme (GBM) is one of the most malignant and aggressive tumors, and has a very poor prognosis with a mean survival time of <2 years, despite intensive treatment using chemo-radiation. Therefore, novel therapeutic approaches including immunotherapy have been developed against GBM. For the purpose of identifying novel target antigens contributing to GBM treatment, we developed 17 primary glioma cell lines derived from high-grade glioma patients, and analyzed the expression of various tumor antigens and glioma-associated markers using a quantitative PCR and immunohistochemistry (IHC). A quantitative PCR using 54 cancer-testis (CT) antigen-specific primers showed that 36 CT antigens were positive in at least 1 of 17 serum-derived cell lines, and 17 antigens were positive in >50% cell lines. Impressively, 6 genes (BAGE, MAGE-A12, CASC5, CTAGE1, DDX43 and IL-13RA2) were detected in all cell lines. The expression of other 13 glioma-associated antigens than CT genes were also investigated, and 10 genes were detected in >70% cell lines. The expression of CT antigen and glioma-associated antigen genes with a high frequency were also verified in IHC analysis. Moreover, a relationship of antigen gene expressions with a high frequency to overall survival was investigated using the Repository of Molecular Brain Neoplasia Data (REMBRANDT) database of the National Cancer Institute, and expression of 6 genes including IL-13RA2 was inversely correlated to overall survival time. Furthermore, 4 genes including DDX43, TDRD1, HER2 and gp100 were identified as MGMT-relevant factors. In the present study, several CT antigen including novel genes were detected in high-grade glioma primary cell lines, which might contribute to developing novel immunotherapy and glioma-specific biomarkers in future.


Assuntos
Antígenos de Neoplasias/biossíntese , Biomarcadores Tumorais/análise , Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , Antígenos de Neoplasias/análise , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Feminino , Glioma/mortalidade , Glioma/patologia , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Reação em Cadeia da Polimerase em Tempo Real
11.
Int J Oncol ; 43(1): 219-27, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23612755

RESUMO

Signal transducer and activator of transcription (STAT) 3, a member of a family of DNA-binding molecules, is a potential target in the treatment of cancer. The highly phosphorylated STAT3 in cancer cells contributes to numerous physiological and oncogenic signaling pathways. Furthermore, a significant association between STAT3 signaling and glioblastoma multiforme stem-like cell (GBM-SC) development and maintenance has been demonstrated in recent studies. Previously, we reported a novel small molecule inhibitor of STAT3 dimerization, STX-0119, as a cancer therapeutic. In the present study, we focused on cancer stem-like cells derived from recurrent GBM patients and investigated the efficacy of STX-0119. Three GBM stem cell lines showed many stem cell markers such as CD133, EGFR, Nanog, Olig2, nestin and Yamanaka factors (c-myc, KLF4, Oct3/4 and SOX2) compared with parental cell lines. These cell lines also formed tumors in vivo and had similar histological to surgically resected tumors. STAT3 phosphorylation was activated more in the GBM-SC lines than serum-derived GB cell lines. The growth inhibitory effect of STX-0119 on GBM-SCs was moderate (IC50 15-44 µM) and stronger compared to that of WP1066 in two cell lines. On the other hand, the effect of temozolomide was weak in all the cell lines (IC50 53-226 µM). Notably, STX-0119 demonstrated strong inhibition of the expression of STAT3 target genes (c-myc, survivin, cyclin D1, HIF-1α and VEGF) and stem cell-associated genes (CD44, Nanog, nestin and CD133) as well as the induction of apoptosis in one stem-like cell line. Interestingly, VEGFR2 mRNA was also remarkably inhibited by STX-0119. In a model using transplantable stem-like cell lines in vivo GB-SCC010 and 026, STX-0119 inhibited the growth of GBM-SCs at 80 mg/kg. STX-0119, an inhibitor of STAT3, may serve as a novel therapeutic compound against GBM-SCs even in temozolomide-resistant GBM patients and has the potential for GBM-SC-specific therapeutics in combination with temozolomide plus radiation therapy.


Assuntos
Proliferação de Células/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Oxidiazóis/administração & dosagem , Quinolinas/administração & dosagem , Fator de Transcrição STAT3/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/genética , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Fator 4 Semelhante a Kruppel , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/patologia , Células-Tronco Neoplásicas/metabolismo , Fosforilação/efeitos dos fármacos , Fator de Transcrição STAT3/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
12.
BMC Cancer ; 12: 623, 2012 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-23270484

RESUMO

BACKGROUND: High-grade gliomas including glioblastoma multiforme (GBM) are among the most malignant and aggressive of tumors, and have a very poor prognosis despite a temozolomide-based intensive treatment. Therefore, a novel therapeutic approach to controlling recurrence is needed. In the present study, we investigated the effect of activated dendritic cell (DC) (α-type-1 polarized DC)-based immunotherapy on high-grade glioma patients with the HLA-A2 or A24 genotype. METHODS: Nine patients with recurrent high-grade gliomas including 7 with GBMs who fulfilled eligibility criteria were enrolled into a phase I study of monocyte-derived DC-based immunotherapy. HLA-genotyping revealed 1 case of HLA-A*0201 and 8 cases of A*2402. Enriched monocytes obtained using OptiPrep(TM) from leukapheresis products on day1, were incubated with GM-CSF and IL-4 in a closed serum-free system, and activated on day6 with TNF-α, IL-1ß, IFN-α, IFN-γ, and poly I/C. After pulsing with a cocktail of 5 synthetic peptides (WT-1, HER2, MAGE-A3, and MAGE-A1 or gp100) restricted to HLA-A2 or A24 and KLH, cells were cryopreserved until used. Thawed DCs were injected intradermally in the posterior neck at a dose per cohort of 1.0, 2.0 and 5.0× 10(7)/body. RESULTS: The frequency of CD14(+) monocytes increased to 44.6% from 11.9% after gradient centrifugation. After a 7-day-incubation with cytokines, the mean percentage of DCs rated as lin(-)HLA-DR(+) in patients was 56.2 ± 19.1%. Most DCs expressed high levels of maturation markers, co-stimulatory molecules and type-1 phenotype (CD11c+HLA-DR+) with a DC1/2 ratio of 35.6. The amount of IL-12 produced from activated DCs was 1025 ± 443 pg/ml per 10(5) cells. All 76 DC injections were well tolerated except for transient liver dysfunction with grade II. Six patients showed positive immunological responses to peptides in an ELISPOT assay, and positive skin tests to peptide-pulsed DC and KLH were recognized in 4 cases. The clinical response to DC injections was as follows :1 SD and 8 PD. Interestingly, the SD patient, given 24 DC injections, showed a long-term recurrence-free and immunological positive response period. CONCLUSIONS: These results indicate peptide cocktail-treated activated α-type-1 DC-based immunotherapy to be a potential therapeutic tool against recurrent high-grade glioma with mainly HLA-A*2402. TRIAL REGISTRATION: Current non-randomized investigational trial UMIN-CTR UMIN ID: 000000914.


Assuntos
Neoplasias Encefálicas/terapia , Vacinas Anticâncer/uso terapêutico , Células Dendríticas/transplante , Glioma/terapia , Imunoterapia Ativa/métodos , Adulto , Idoso , Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/imunologia , Células Dendríticas/imunologia , Feminino , Antígeno HLA-A2/genética , Antígeno HLA-A2/imunologia , Antígeno HLA-A24/genética , Antígeno HLA-A24/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA