Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 10(23): e2204681, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37217831

RESUMO

Aerogel-based biomaterials are increasingly being considered for biomedical applications due to their unique properties such as high porosity, hierarchical porous network, and large specific pore surface area. Depending on the pore size of the aerogel, biological effects such as cell adhesion, fluid absorption, oxygen permeability, and metabolite exchange can be altered. Based on the diverse potential of aerogels in biomedical applications, this paper provides a comprehensive review of fabrication processes including sol-gel, aging, drying, and self-assembly along with the materials that can be used to form aerogels. In addition to the technology utilizing aerogel itself, it also provides insight into the applicability of aerogel based on additive manufacturing technology. To this end, how microfluidic-based technologies and 3D printing can be combined with aerogel-based materials for biomedical applications is discussed. Furthermore, previously reported examples of aerogels for regenerative medicine and biomedical applications are thoroughly reviewed. A wide range of applications with aerogels including wound healing, drug delivery, tissue engineering, and diagnostics are demonstrated. Finally, the prospects for aerogel-based biomedical applications are presented. The understanding of the fabrication, modification, and applicability of aerogels through this study is expected to shed light on the biomedical utilization of aerogels.


Assuntos
Materiais Biocompatíveis , Engenharia Tecidual , Dessecação/métodos , Cicatrização
2.
Adv Healthc Mater ; 11(7): e2102054, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34990081

RESUMO

Laponite is a clay-based material composed of synthetic disk-shaped crystalline nanoparticles with highly ionic, large surface area. These characteristics enable the intercalation and dissolution of biomolecules in Laponite-based drug delivery systems. Furthermore, Laponite's innate physicochemical properties and architecture enable the development of tunable pH-responsive drug delivery systems. Laponite's coagulation capacity and cation exchangeability determine its exchange capabilities, drug encapsulation efficiency, and release profile. These parameters are exploited to design highly controlled and efficacious drug delivery platforms for sustained drug release. In this review, they provide an overview of how to design efficient delivery of therapeutics by leveraging the properties and specific interactions of various Laponite-polymer composites and drug moieties.


Assuntos
Nanopartículas , Nanoestruturas , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Nanoestruturas/química , Silicatos/química
3.
Biomater Sci ; 9(20): 6653-6672, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34550125

RESUMO

Over the decades, researchers have strived to synthesize and modify nature-inspired biomaterials, with the primary aim to address the challenges of designing functional biomaterials for regenerative medicine and tissue engineering. Among these challenges, biocompatibility and cellular interactions have been extensively investigated. Some of the most desirable characteristics for biomaterials in these applications are the loading of bioactive molecules, strong adhesion to moist areas, improvement of cellular adhesion, and self-healing properties. Mussel-inspired biomaterials have received growing interest mainly due to the changes in mechanical and biological functions of the scaffold due to catechol modification. Here, we summarize the chemical and biological principles and the latest advancements in production, as well as the use of mussel-inspired biomaterials. Our main focus is the polydopamine coating, the conjugation of catechol with other polymers, and the biomedical applications that polydopamine moieties are used for, such as matrices for drug delivery, tissue regeneration, and hemostatic control. We also present a critical conclusion and an inspired view on the prospects for the development and application of mussel-inspired materials.


Assuntos
Bivalves , Animais , Materiais Biocompatíveis , Adesão Celular , Medicina Regenerativa , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA