Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Bone Joint Surg Am ; 106(8): 735-745, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38194481

RESUMO

BACKGROUND: Multiple animal models have previously been utilized to investigate anterior fusion techniques, but a mouse model has yet to be developed. The purpose of this study was to develop murine anterior interbody and posterolateral fusion techniques. METHODS: Mice underwent either anterior interbody or posterolateral spinal fusion. A protocol was developed for both procedures, including a description of the relevant anatomy. Samples were subjected to micro-computed tomography to assess fusion success and underwent biomechanical testing with use of 4-point bending. Lastly, samples were fixed and embedded for histologic evaluation. RESULTS: Surgical techniques for anterior interbody and posterolateral fusion were developed. The fusion rate was 83.3% in the anterior interbody model and 100% in the posterolateral model. Compared with a control, the posterolateral model exhibited a greater elastic modulus. Histologic analysis demonstrated endochondral ossification between bridging segments, further confirming the fusion efficacy in both models. CONCLUSIONS: The murine anterior interbody and posterolateral fusion models are efficacious and provide an ideal platform for studying the molecular and cellular mechanisms mediating spinal fusion. CLINICAL RELEVANCE: Given the extensive genetic tools available in murine disease models, use of fusion models such as ours can enable determination of the underlying genetic pathways involved in spinal fusion.


Assuntos
Vértebras Lombares , Fusão Vertebral , Animais , Camundongos , Vértebras Lombares/cirurgia , Fusão Vertebral/métodos , Microtomografia por Raio-X , Osteogênese , Modelos Animais de Doenças
2.
Nature ; 621(7979): 602-609, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37704733

RESUMO

Vertebral bone is subject to a distinct set of disease processes from long bones, including a much higher rate of solid tumour metastases1-4. The basis for this distinct biology of vertebral bone has so far remained unknown. Here we identify a vertebral skeletal stem cell (vSSC) that co-expresses ZIC1 and PAX1 together with additional cell surface markers. vSSCs display formal evidence of stemness, including self-renewal, label retention and sitting at the apex of their differentiation hierarchy. vSSCs are physiologic mediators of vertebral bone formation, as genetic blockade of the ability of vSSCs to generate osteoblasts results in defects in the vertebral neural arch and body. Human counterparts of vSSCs can be identified in vertebral endplate specimens and display a conserved differentiation hierarchy and stemness features. Multiple lines of evidence indicate that vSSCs contribute to the high rates of vertebral metastatic tropism observed in breast cancer, owing in part to increased secretion of the novel metastatic trophic factor MFGE8. Together, our results indicate that vSSCs are distinct from other skeletal stem cells and mediate the unique physiology and pathology of vertebrae, including contributing to the high rate of vertebral metastasis.


Assuntos
Neoplasias da Mama , Linhagem da Célula , Metástase Neoplásica , Coluna Vertebral , Células-Tronco , Humanos , Neoplasias da Mama/patologia , Diferenciação Celular , Autorrenovação Celular , Metástase Neoplásica/patologia , Osteoblastos/citologia , Osteoblastos/patologia , Coluna Vertebral/citologia , Coluna Vertebral/patologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Células-Tronco/patologia , Biomarcadores
3.
Nature ; 621(7980): 804-812, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37730988

RESUMO

Craniosynostosis is a group of disorders of premature calvarial suture fusion. The identity of the calvarial stem cells (CSCs) that produce fusion-driving osteoblasts in craniosynostosis remains poorly understood. Here we show that both physiologic calvarial mineralization and pathologic calvarial fusion in craniosynostosis reflect the interaction of two separate stem cell lineages; a previously identified cathepsin K (CTSK) lineage CSC1 (CTSK+ CSC) and a separate discoidin domain-containing receptor 2 (DDR2) lineage stem cell (DDR2+ CSC) that we identified in this study. Deletion of Twist1, a gene associated with craniosynostosis in humans2,3, solely in CTSK+ CSCs is sufficient to drive craniosynostosis in mice, but the sites that are destined to fuse exhibit an unexpected depletion of CTSK+ CSCs and a corresponding expansion of DDR2+ CSCs, with DDR2+ CSC expansion being a direct maladaptive response to CTSK+ CSC depletion. DDR2+ CSCs display full stemness features, and our results establish the presence of two distinct stem cell lineages in the sutures, with both populations contributing to physiologic calvarial mineralization. DDR2+ CSCs mediate a distinct form of endochondral ossification without the typical haematopoietic marrow formation. Implantation of DDR2+ CSCs into suture sites is sufficient to induce fusion, and this phenotype was prevented by co-transplantation of CTSK+ CSCs. Finally, the human counterparts of DDR2+ CSCs and CTSK+ CSCs display conserved functional properties in xenograft assays. The interaction between these two stem cell populations provides a new biologic interface for the modulation of calvarial mineralization and suture patency.


Assuntos
Craniossinostoses , Humanos , Camundongos , Animais , Craniossinostoses/genética , Osteogênese , Linhagem da Célula , Fenótipo , Células-Tronco
4.
Bone ; 172: 116761, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37030497

RESUMO

Often, disorders of impaired bone formation involve not only a cell intrinsic defect in the ability of osteoblasts to form bone, but moreover a broader dysfunction of the skeletal microenvironment that limits osteoblast activity. Developing approaches to osteoanabolic therapy that not only augment osteoblast activity but moreover correct this microenvironmental dysfunction may enable both more effective osteoanabolic therapies and also addressing a broader set of indications where vasculopathy or other forms microenvironment dysfunction feature prominently. We here review evidence that SHN3 acts as a suppressor of not only the cell intrinsic bone formation activity of osteoblasts, but moreover of the creation of a local osteoanabolic microenvironment. Mice lacking Schnurri3 (SHN3, HIVEP3) display a very robust increase in bone formation, that is due to de-repression of ERK pathway signaling in osteoblasts. In addition to loss of SHN3 augmenting the differentiation and bone formation activity of osteoblasts, loss of SHN3 increases secretion of SLIT3 by osteoblasts, which in a skeletal context acts as an angiogenic factor. Through this angiogenic activity, SLIT3 creates an osteoanabolic microenvironment, and accordingly treatment with SLIT3 can increase bone formation and enhance fracture healing. These features both validate vascular endothelial cells as a therapeutic target for disorders of low bone mass alongside the traditionally targeted osteoblasts and osteoclasts and indicate that targeting the SHN3/SLIT3 pathway provides a new mechanism to induce therapeutic osteoanabolic responses.


Assuntos
Proteínas de Ligação a DNA , Células Endoteliais , Camundongos , Animais , Células Endoteliais/metabolismo , Proteínas de Ligação a DNA/metabolismo , Osteoclastos/metabolismo , Osso e Ossos/metabolismo , Osteoblastos/metabolismo , Osteogênese/fisiologia , Diferenciação Celular , Proteínas de Membrana/metabolismo
5.
Res Sq ; 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36747772

RESUMO

Vertebral bone is subject to a distinct set of disease processes from those of long bones, notably including a much higher rate of solid tumor metastases that cannot be explained by passive blood flow distribution alone. The basis for this distinct biology of vertebral bone has remained elusive. Here we identify a vertebral skeletal stem cell (vSSC), co-expressing the transcription factors ZIC1 and PAX1 together with additional cell surface markers, whose expression profile and function are markedly distinct from those of long bone skeletal stem cells (lbSSCs). vSSCs display formal evidence of stemness, including self-renewal, label retention and sitting at the apex of their differentiation hierarchy. Lineage tracing of vSSCs confirms that they make a persistent contribution to multiple mature cell lineages in the native vertebrae. vSSCs are physiologic mediators of spine mineralization, as genetic blockade of the ability of vSSCs to generate osteoblasts results in defects in the vertebral neural arch and body. Human counterparts of vSSCs can be identified in vertebral endplate specimens and display a conserved differentiation hierarchy and stemness. Multiple lines of evidence indicate that vSSCs contribute to the high rates of vertebral metastatic tropism observed clinically in breast cancer. Specifically, when an organoid system is used to place both vSSCs and lbSSCs in an identical anatomic context, vSSC-lineage cells are more efficient than lbSSC-lineage cells at recruiting metastases, a phenotype that is due in part to increased secretion of the novel metastatic trophic factor MFGE8. Similarly, genetically targeting loss-of-function to the vSSC lineage results in reduced metastasis rates in the native vertebral environment. Taken together, vSSCs are distinct from other skeletal stem cells and mediate the unique physiology and pathology of vertebrae, including contributing to the high rate of metastatic seeding of the vertebrae.

6.
Dev Dyn ; 252(4): 536-546, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36577717

RESUMO

BACKGROUND: Hox genes encode transcription factors that are important for establishing the body plan. Hoxa5 is a member of the mammalian Hox5 paralogous group that regulates the patterning and morphology of the cervical-thoracic region of the axial skeleton. Hoxa5 also plays crucial functions in lung morphogenesis. RESULTS: We generated a Hoxa5eGFP reporter mouse line using CRISPR technology, allowing real-time visualization of Hoxa5 expression. Hoxa5eGFP recapitulates reported embryonic Hoxa5 mRNA expression patterns. Specifically, Hoxa5eGFP can be visualized in the developing mouse neural tube, somites, lung, diaphragm, foregut, and midgut, among other organs. In the stomach, posteriorly biased Hoxa5eGFP expression correlates with a drastic morphological reduction of the corpus in Hox5 paralogous mutants. Expression of Hoxa5eGFP in the lung continues in all lung fibroblast populations through postnatal and adult stages. CONCLUSIONS: We identified cell types that express Hoxa5 in postnatal and adult mouse lungs, including various fibroblasts and vascular endothelial cells. This reporter line will be a powerful tool for studies of the function of Hoxa5 during mouse development, homeostasis, and disease processes.


Assuntos
Células Endoteliais , Proteínas de Homeodomínio , Camundongos , Animais , Células Endoteliais/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/metabolismo , Pulmão , Genes Homeobox , Organogênese/genética , Fosfoproteínas/genética , Mamíferos/metabolismo
7.
Nat Commun ; 12(1): 4611, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34326333

RESUMO

Hedgehog signaling is essential for bone formation, including functioning as a means for the growth plate to drive skeletal mineralization. However, the mechanisms regulating hedgehog signaling specifically in bone-forming osteoblasts are largely unknown. Here, we identified SLIT and NTRK-like protein-5(Slitrk5), a transmembrane protein with few identified functions, as a negative regulator of hedgehog signaling in osteoblasts. Slitrk5 is selectively expressed in osteoblasts and loss of Slitrk5 enhanced osteoblast differentiation in vitro and in vivo. Loss of SLITRK5 in vitro leads to increased hedgehog signaling and overexpression of SLITRK5 in osteoblasts inhibits the induction of targets downstream of hedgehog signaling. Mechanistically, SLITRK5 binds to hedgehog ligands via its extracellular domain and interacts with PTCH1 via its intracellular domain. SLITRK5 is present in the primary cilium, and loss of SLITRK5 enhances SMO ciliary enrichment upon SHH stimulation. Thus, SLITRK5 is a negative regulator of hedgehog signaling in osteoblasts that may be attractive as a therapeutic target to enhance bone formation.


Assuntos
Cílios/metabolismo , Proteínas Hedgehog/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Osteoblastos/metabolismo , Osteogênese/fisiologia , Receptor Patched-1/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Proteínas Hedgehog/genética , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Osteoblastos/citologia , Receptor Patched-1/genética , Transdução de Sinais
8.
Nat Commun ; 11(1): 5704, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33177525

RESUMO

Neurofibromatosis type I (NF1) is characterized by prominent skeletal manifestations caused by NF1 loss. While inhibitors of the ERK activating kinases MEK1/2 are promising as a means to treat NF1, the broad blockade of the ERK pathway produced by this strategy is potentially associated with therapy limiting toxicities. Here, we have sought targets offering a more narrow inhibition of ERK activation downstream of NF1 loss in the skeleton, finding that MEKK2 is a novel component of a noncanonical ERK pathway in osteoblasts that mediates aberrant ERK activation after NF1 loss. Accordingly, despite mice with conditional deletion of Nf1 in mature osteoblasts (Nf1fl/fl;Dmp1-Cre) and Mekk2-/- each displaying skeletal defects, Nf1fl/fl;Mekk2-/-;Dmp1-Cre mice show an amelioration of NF1-associated phenotypes. We also provide proof-of-principle that FDA-approved inhibitors with activity against MEKK2 can ameliorate NF1 skeletal pathology. Thus, MEKK2 functions as a MAP3K in the ERK pathway in osteoblasts, offering a potential new therapeutic strategy for the treatment of NF1.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Imidazóis/farmacologia , MAP Quinase Quinase Quinase 2/metabolismo , Neurofibromatose 1/etiologia , Piridazinas/farmacologia , Animais , Modelos Animais de Doenças , Ativação Enzimática , Proteínas da Matriz Extracelular/genética , Feminino , Humanos , MAP Quinase Quinase Quinase 2/antagonistas & inibidores , MAP Quinase Quinase Quinase 2/genética , Masculino , Camundongos Transgênicos , Neurofibromatose 1/tratamento farmacológico , Neurofibromina 1/genética , Neurofibromina 1/metabolismo , Osteoblastos/metabolismo , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Crânio/citologia
9.
Sci Adv ; 6(45)2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33148658

RESUMO

Bone fracture is repaired predominantly through endochondral ossification. However, the regulation of endochondral ossification by key factors during fracture healing remains largely enigmatic. Here, we identify histone modification enzyme LSD1 as a critical factor regulating endochondral ossification during bone regeneration. Loss of LSD1 in Prx1 lineage cells severely impaired bone fracture healing. Mechanistically, LSD1 tightly controls retinoic acid signaling through regulation of Aldh1a2 expression level. The increased retinoic acid signaling in LSD1-deficient mice suppressed SOX9 expression and impeded the cartilaginous callus formation during fracture repair. The discovery that LSD1 can regulate endochondral ossification during fracture healing will benefit the understanding of bone regeneration and have implications for regenerative medicine.


Assuntos
Consolidação da Fratura , Fraturas Ósseas , Animais , Regeneração Óssea , Histona Desmetilases/genética , Camundongos , Osteogênese/genética , Tretinoína
10.
Nature ; 562(7725): 133-139, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30250253

RESUMO

Bone consists of separate inner endosteal and outer periosteal compartments, each with distinct contributions to bone physiology and each maintaining separate pools of cells owing to physical separation by the bone cortex. The skeletal stem cell that gives rise to endosteal osteoblasts has been extensively studied; however, the identity of periosteal stem cells remains unclear1-5. Here we identify a periosteal stem cell (PSC) that is present in the long bones and calvarium of mice, displays clonal multipotency and self-renewal, and sits at the apex of a differentiation hierarchy. Single-cell and bulk transcriptional profiling show that PSCs display transcriptional signatures that are distinct from those of other skeletal stem cells and mature mesenchymal cells. Whereas other skeletal stem cells form bone via an initial cartilage template using the endochondral pathway4, PSCs form bone via a direct intramembranous route, providing a cellular basis for the divergence between intramembranous versus endochondral developmental pathways. However, there is plasticity in this division, as PSCs acquire endochondral bone formation capacity in response to injury. Genetic blockade of the ability of PSCs to give rise to bone-forming osteoblasts results in selective impairments in cortical bone architecture and defects in fracture healing. A cell analogous to mouse PSCs is present in the human periosteum, raising the possibility that PSCs are attractive targets for drug and cellular therapy for skeletal disorders. The identification of PSCs provides evidence that bone contains multiple pools of stem cells, each with distinct physiologic functions.


Assuntos
Desenvolvimento Ósseo , Osso e Ossos/citologia , Periósteo/citologia , Células-Tronco/citologia , Animais , Catepsina K/metabolismo , Diferenciação Celular , Feminino , Fêmur/citologia , Consolidação da Fratura , Regulação da Expressão Gênica , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Camundongos , Osteoblastos/citologia , Crânio/citologia
11.
Mol Cancer Res ; 13(4): 743-54, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25573952

RESUMO

UNLABELLED: The EGFR family (ErbB2/Her2 and EGFR/ErbB1/Her1) often modulates the transcriptional program involved in promoting mammary tumorigenesis. In humans, the majority of ErbB2-positive sporadic breast cancers harbor p53 mutations, which correlate with poor prognosis. Also, the extremely high incidence of ErbB2-positive breast cancer in women with p53 germline mutations (Li-Fraumeni syndrome) suggests a key role of mutant p53 specifically in ErbB2-mediated mammary tumorigenesis. To examine the role of mutant p53 during ErbB2-mediated mammary tumorigenesis, a mutant p53 allele (R172H) was introduced into the (MMTV)-ErbB2/Neu mouse model system. Interestingly, we show in heterozygous p53 mice that mutant p53 R172H is a more potent activator of ErbB2-mediated mammary tumorigenesis than simple loss of p53. The more aggressive disease in mutant p53 animals was reflected by earlier tumor onset, increased mammary tumor multiplicity, and shorter survival. These in vivo and in vitro data provide mechanistic evidence that mutant p53 amplifies ErbB2 and EGFR signaling to promote the expansion of mammary stem cells and induce cell proliferation. IMPLICATIONS: This study identifies mutant p53 as an essential player in ErbB2 and EGFR-mediated mammary tumorigenesis and indicates the potential translational importance of targeting mutant p53 in this subset of patients with breast cancer.


Assuntos
Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/patologia , Mutação , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Carcinoma Ductal de Mama/genética , Carcinoma Ductal de Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Receptores ErbB/metabolismo , Feminino , Humanos , Neoplasias Mamárias Experimentais , Camundongos , Células-Tronco Neoplásicas/patologia , Receptor ErbB-2/genética , Análise de Sobrevida , Proteína Supressora de Tumor p53/metabolismo
12.
Invest Ophthalmol Vis Sci ; 55(8): 5445-55, 2014 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-25082886

RESUMO

PURPOSE: Posterior capsular opacification (PCO), the most prevalent side effect of cataract surgery, occurs when residual lens epithelial cells (LECs) undergo fiber cell differentiation or epithelial-to-mesenchymal transition (EMT). Here, we used a murine cataract surgery model to investigate the role of the Zeb proteins, Smad interacting protein 1 (Sip1) and δ-crystallin enhancer-binding factor 1 (δEF1), during PCO. METHODS: Extracapsular extraction of lens fiber cells was performed on wild-type and Sip1 knockout mice. Protein expression patterns were assessed at multiple time points after surgery using confocal immunofluorescence. ßB1-Crystallin mRNA levels were measured using quantitative RT-PCR. We used Transfac searches to identify δEF1 binding sites in the ßB1-crystallin promoter and transfection analysis to test the ability of δEF1 to regulate ßB1-crystallin expression. RESULTS: δEF1, which, in other systems, can activate fibrotic genes (e.g., α-smooth muscle actin) and repress epithelial genes, upregulates by 48 hours after fiber cell removal. In culture, δEF1 repressed ßB1-crystallin promoter activity, suggesting that it may also turn off lens gene expression following surgery, contributing to "fibrotic PCO" development. Sip1 also upregulates in LECs by 48 hours, but analysis of Sip1 knockout lenses demonstrated that Sip1 does not play a major role in EMT or fiber cell differentiation after surgery. However, Sip1 knockout LECs do express the ectodermal marker keratin 8, suggesting that Sip1 may limit the reprogramming of residual LECs to an embryonic state. CONCLUSIONS: Zeb transcription factors likely play important, but distinct roles in PCO development after cataract surgery.


Assuntos
Extração de Catarata/efeitos adversos , Catarata/metabolismo , Proteínas de Homeodomínio/fisiologia , Cristalino/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Fatores de Transcrição/fisiologia , Animais , Catarata/patologia , Modelos Animais de Doenças , Camundongos Knockout , Complicações Pós-Operatórias , RNA Mensageiro/metabolismo
13.
PLoS One ; 6(8): e23410, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21858105

RESUMO

Organogenesis requires the differentiation and integration of distinct populations of cells to form a functional organ. In the kidney, reciprocal interactions between the ureter and the nephrogenic mesenchyme are required for organ formation. Additionally, the differentiation and integration of stromal cells are also necessary for the proper development of this organ. Much remains to be understood regarding the origin of cortical stromal cells and the pathways involved in their formation and function. By generating triple mutants in the Hox10 paralogous group genes, we demonstrate that Hox10 genes play a critical role in the developing kidney. Careful examination of control kidneys show that Foxd1-expressing stromal precursor cells are first observed in a cap-like pattern anterior to the metanephric mesenchyme and these cells subsequently integrate posteriorly into the kidney periphery as development proceeds. While the initial cap-like pattern of Foxd1-expressing cortical stromal cells is unaffected in Hox10 mutants, these cells fail to become properly integrated into the kidney, and do not differentiate to form the kidney capsule. Consistent with loss of cortical stromal cell function, Hox10 mutant kidneys display reduced and aberrant ureter branching, decreased nephrogenesis. These data therefore provide critical novel insights into the cellular and genetic mechanisms governing cortical cell development during kidney organogenesis. These results, combined with previous evidence demonstrating that Hox11 genes are necessary for patterning the metanephric mesenchyme, support a model whereby distinct populations in the nephrogenic cord are regulated by unique Hox codes, and that differential Hox function along the AP axis of the nephrogenic cord is critical for the differentiation and integration of these cell types during kidney organogenesis.


Assuntos
Diferenciação Celular/fisiologia , Proteínas de Homeodomínio/fisiologia , Córtex Renal/embriologia , Rim/embriologia , Fatores de Transcrição/fisiologia , Animais , Diferenciação Celular/genética , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Rim/citologia , Rim/metabolismo , Córtex Renal/citologia , Córtex Renal/metabolismo , Camundongos , Camundongos Knockout , Técnicas de Cultura de Órgãos , Organogênese/genética , Organogênese/fisiologia , Células Estromais/citologia , Células Estromais/metabolismo , Fatores de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ureter/embriologia , Ureter/metabolismo
14.
Development ; 137(22): 3795-800, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20978074

RESUMO

Hox11 genes are essential for zeugopod skeletal element development but their roles in synovial joint formation remain largely unknown. Here, we show that the elbow and knee joints of mouse embryos lacking all Hox11 paralogous genes are specifically remodeled and reorganized. The proximal ends of developing mutant ulna and radius elements became morphologically similar and formed an anatomically distinct elbow joint. The mutant ulna lacked the olecranon that normally attaches to the triceps brachii muscle tendon and connects the humerus to the ulna. In its place, an ulnar patella-like element developed that expressed lubricin on its ventral side facing the joint and was connected to the triceps muscle tendon. In mutant knees, both tibia and fibula fully articulated with an enlarged femoral epiphyseal end that accommodated both elements, and the neo-tripartite knee joint was enclosed in a single synovial cavity and displayed an additional anterior ligament. The mutant joints also exhibited a different organization of the superficial zone of articular cartilage that normally exerts an anti-friction function. In conclusion, Hox11 genes co-regulate and coordinate the development of zeugopod skeletal elements and adjacent elbow and knee joints, and dictate joint identity, morphogenesis and anatomical and functional organization. Notably, the ulnar patella and tripartite knee joints in the mouse mutants actually characterize several lower vertebrates, including certain reptiles and amphibians. The re-emergence of such anatomical structures suggests that their genetic blueprint is still present in the mouse genome but is normally modified to the needs of the mammalian joint-formation program by distinct Hox11 function.


Assuntos
Articulação do Cotovelo/embriologia , Embrião de Mamíferos/metabolismo , Proteínas de Homeodomínio/metabolismo , Articulação do Joelho/embriologia , Fatores de Transcrição/metabolismo , Animais , Proteínas de Homeodomínio/genética , Camundongos , Mutação , Fatores de Transcrição/genética
15.
Dev Biol ; 335(1): 156-65, 2009 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-19716816

RESUMO

Hox genes control many developmental events along the AP axis, but few target genes have been identified. Whether target genes are activated or repressed, what enhancer elements are required for regulation, and how different domains of the Hox proteins contribute to regulatory specificity are poorly understood. Six2 is genetically downstream of both the Hox11 paralogous genes in the developing mammalian kidney and Hoxa2 in branchial arch and facial mesenchyme. Loss-of-function of Hox11 leads to loss of Six2 expression and loss-of-function of Hoxa2 leads to expanded Six2 expression. Herein we demonstrate that a single enhancer site upstream of the Six2 coding sequence is responsible for both activation by Hox11 proteins in the kidney and repression by Hoxa2 in the branchial arch and facial mesenchyme in vivo. DNA-binding activity is required for both activation and repression, but differential activity is not controlled by differences in the homeodomains. Rather, protein domains N- and C-terminal to the homeodomain confer activation versus repression activity. These data support a model in which the DNA-binding specificity of Hox proteins in vivo may be similar, consistent with accumulated in vitro data, and that unique functions result mainly from differential interactions mediated by non-homeodomain regions of Hox proteins.


Assuntos
Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Isoformas de Proteínas/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Animais , Região Branquial/anatomia & histologia , Região Branquial/embriologia , Região Branquial/metabolismo , DNA/metabolismo , Genes Reporter , Proteínas de Homeodomínio/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fator de Transcrição PAX2/genética , Fator de Transcrição PAX2/metabolismo , Isoformas de Proteínas/genética , Estrutura Terciária de Proteína , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/genética
16.
Mol Cell Biol ; 27(21): 7661-8, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17785448

RESUMO

During embryonic development, the anterior-posterior body axis is specified in part by the combinatorial activities of Hox genes. Given the poor DNA binding specificity of Hox proteins, their interaction with cofactors to regulate target genes is critical. However, few regulatory partners or downstream target genes have been identified. Herein, we demonstrate that Hox11 paralogous proteins form a complex with Pax2 and Eya1 to directly activate expression of Six2 and Gdnf in the metanephric mesenchyme. We have identified the binding site within the Six2 enhancer necessary for Hox11-Eya1-Pax2-mediated activation and demonstrate that this site is essential for Six2 expression in vivo. Furthermore, genetic interactions between Hox11 and Eya1 are consistent with their participation in the same pathway. Thus, anterior-posterior-patterning Hox proteins interact with Pax2 and Eya1, factors important for nephrogenic mesoderm specification, to directly regulate the activation of downstream target genes during early kidney development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Genes Controladores do Desenvolvimento/genética , Proteínas de Homeodomínio/metabolismo , Rim/embriologia , Rim/metabolismo , Proteínas Nucleares/metabolismo , Fator de Transcrição PAX2/metabolismo , Animais , Sequência de Bases , Sítios de Ligação , Linhagem Celular , Cães , Feminino , Humanos , Rim/citologia , Camundongos , Camundongos Endogâmicos C57BL , Modelos Genéticos , Dados de Sequência Molecular
17.
Development ; 134(16): 2981-9, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17626057

RESUMO

Unlike the rest of the axial skeleton, which develops solely from somitic mesoderm, patterning of the rib cage is complicated by its derivation from two distinct tissues. The thoracic skeleton is derived from both somitic mesoderm, which forms the vertebral bodies and ribs, and from lateral plate mesoderm, which forms the sternum. By generating mouse mutants in Hox5, Hox6 and Hox9 paralogous group genes, along with a dissection of the Hox10 and Hox11 group mutants, several important conclusions regarding the nature of the ;Hox code' in rib cage and axial skeleton development are revealed. First, axial patterning is consistently coded by the unique and redundant functions of Hox paralogous groups throughout the axial skeleton. Loss of paralogous function leads to anterior homeotic transformations of colinear regions throughout the somite-derived axial skeleton. In the thoracic region, Hox genes pattern the lateral plate-derived sternum in a non-colinear manner, independent from the patterning of the somite-derived vertebrae and vertebral ribs. Finally, between adjacent sets of paralogous mutants, the regions of vertebral phenotypes overlap considerably; however, each paralogous group imparts unique morphologies within these regions. In all cases examined, the next-most posterior Hox paralogous group does not prevent the function of the more-anterior Hox group in axial patterning. Thus, the ;Hox code' in somitic mesoderm is the result of the distinct, graded effects of two or more Hox paralogous groups functioning in any anteroposterior location.


Assuntos
Osso e Ossos/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Costelas/embriologia , Vertebrados/genética , Animais , Animais Geneticamente Modificados , Padronização Corporal/genética , Osso e Ossos/metabolismo , Perfilação da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Camundongos , Modelos Biológicos , Costelas/metabolismo , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA