Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Front Cell Neurosci ; 16: 869398, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35496917

RESUMO

Fragile X syndrome (FXS) is an inherited intellectual disability caused by a deficiency in Fragile X mental retardation 1 (Fmr1) gene expression. Recent studies have proposed the importance of cytoplasmic polyadenylation element-binding protein 1 (CPEB1) in FXS pathology; however, the molecular interaction between Fmr1 mRNA and CPEB1 has not been fully investigated. Here, we revealed that CPEB1 co-localized and interacted with Fmr1 mRNA in hippocampal and cerebellar neurons and culture cells. Furthermore, CPEB1 knockdown upregulated Fmr1 mRNA and protein levels and caused aberrant localization of Fragile X mental retardation protein in neurons. In an FXS cell model, CPEB1 knockdown upregulated the mRNA levels of several mitochondria-related genes and rescued the intracellular heat shock protein family A member 9 distribution. These findings suggest that CPEB1 post-transcriptionally regulated Fmr1 expression through the 3' untranslated region, and that CPEB1 knockdown might affect mitochondrial function.

2.
FEBS Open Bio ; 12(1): 82-94, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34480525

RESUMO

Cytoplasmic polyadenylation element binding protein 1 (CPEB1) regulates the translation of numerous mRNAs. We previously showed that AU-rich binding factor 1 (AUF1) regulates Cpeb1 expression through the 3' untranslated region (3'UTR). To investigate the molecular basis of the regulatory potential of the Cpeb1 3'UTR, here we performed reporter analyses that examined expression levels of Gfp reporter mRNA containing the Cpeb1 3'UTR. Our findings indicate that CPEB1 represses the translation of Cpeb1 mRNA and that miR-145a-5p and let-7b-5p are involved in the reduction in Cpeb1 expression in the absence of AUF1. These results suggest that Cpeb1 expression is post-transcriptionally regulated by AUF1, CPEB1, and microRNAs.


Assuntos
MicroRNAs , Regiões 3' não Traduzidas/genética , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
3.
Biochem Biophys Res Commun ; 534: 491-497, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33220927

RESUMO

Cytoplasmic polyadenylation element binding protein 1 (CPEB1) regulates polyadenylation and subsequent translation of CPE-containing mRNAs involved in various physiological and pathological phenomena. Although the significance of CPEB1-mediated translational regulation has recently been reported, the detailed regulatory mechanism of Cpeb1 expression remains unclear. To elucidate the post-transcriptional regulatory mechanisms of Cpeb1 expression, we constructed reporter plasmids containing various deletions or mutations in the Cpeb1 mRNA 3' untranslated region (3'UTR). We investigated their expression levels in Neuro2a neuroblastoma cells. We found that Cpeb1 expression is regulated through an AU-rich element in its 3'UTR. Furthermore, the mRNA decay factor AU-rich binding factor 1 (AUF1) regulates Cpeb1 expression, and knockdown of AUF1 upregulates Cpeb1 mRNA expression but results in a decrease in CPEB1 protein levels. These findings indicate that AUF1 has a discordant role in the expression of Cpeb1.


Assuntos
Ribonucleoproteína Nuclear Heterogênea D0/genética , RNA Mensageiro/genética , Fatores de Transcrição/genética , Fatores de Poliadenilação e Clivagem de mRNA/genética , Regiões 3' não Traduzidas , Animais , Linhagem Celular , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Ribonucleoproteína Nuclear Heterogênea D0/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Estabilidade de RNA
4.
Sci Rep ; 10(1): 446, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31949236

RESUMO

Adrenal cortex autotransplantation with ACTH stimulation may be an alternative therapy for patients with bilateral adrenalectomy to avoid adrenal crisis, but its underlying mechanism has not been elucidated. Previously, we detected Dhh upregulation in rat adrenocortical autografts after transplantation. Here, we investigated potential regulators such as Gata4, Gata6, Sry and Sox9 which affect Dhh transcription in adrenocortical autografts with or without ACTH stimulation. In ACTH-stimulated autografts, Gata4 and Gata6 were downregulated compared to control autografts. This response was linked to rDhh repression. A reporter assay using the upstream region of rDhh and a GATA binding motif revealed that rDhh promoters were significantly upregulated by co-transfection with Gata4 or Gata6 or both. Sry and Sox9 expression in autografts with or without ACTH stimulation were verified by PCR and RNAscope analyses. The ovarian differentiation factors Foxl2 and Rspo1 were also upregulated in the autografts. Gata4 and Gata6 were found to be significant factors in the regulation of rDhh expression and could be associated with adrenocortical autograft maintenance. Gonadal primordia with bipotential testicular and ovarian functions may also be present in these autografts.


Assuntos
Córtex Suprarrenal/metabolismo , Córtex Suprarrenal/cirurgia , Fator de Transcrição GATA4/metabolismo , Fator de Transcrição GATA6/metabolismo , Proteínas Hedgehog/genética , Córtex Suprarrenal/efeitos dos fármacos , Córtex Suprarrenal/fisiologia , Hormônio Adrenocorticotrópico/farmacologia , Animais , Ratos , Regeneração/efeitos dos fármacos , Transplante Autólogo , Regulação para Cima/efeitos dos fármacos
5.
J Neurosci Res ; 98(2): 325-337, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31385342

RESUMO

Injured optic nerves induce death in almost all retinal ganglion cells (RGC) and cause a loss of axons. To date, we have studied injured RGC axon regeneration by using a traumatic optic nerve injury (TONI) rodent model, and we revealed that axonal regeneration is induced by the graft of an autologous peripheral nerve. The efficient approach to the regeneration of axons thus needs an environmental adjustment of RGC. However, the RGC environment induced by TONI remains unknown. Here, we analyzed female and male C57BL/6 mouse retinal tissue alterations in detail after TONI and focused on the major phospholipid species that are enriched in the whole retina. Reactive astrocyte accumulation, glia scar formation, and demyelination were observed in the injured optic nerve area, while RGC cell death, astrocyte accumulation, and Glial fibrillary acidic protein (GFAP) positive Müller cell increases were detected in the retinal layer. Furthermore, phosphatidylinositol (PI) 18:0/20:4 was localized to three nuclear layer structures: the ganglion cell layer (GCL), the inner nuclear layer (INL), and the outer nuclear layer (ONL) in control retina; however, the localization of 18:0/20:4 PI in TONI was disturbed. Meanwhile, phosphatidylserine (PS) 18:0/22:6 showed that the expression was specifically in the inner plexiform layer (IPL) with similar signal intensity in both cases. Other PS species and phosphatidylethanolamine (PE) were differentially localized in the retinal layer; however, the expressions of PE including docosahexaenoic acid (DHA) were affected by TONI. These results suggest that not only GCL but also other retinal layers were influenced by TONI.


Assuntos
Traumatismos do Nervo Óptico/metabolismo , Fosfolipídeos/metabolismo , Retina/metabolismo , Animais , Astrócitos/metabolismo , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Masculino , Camundongos , Regeneração Nervosa/fisiologia , Células Ganglionares da Retina/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
6.
Front Biosci (Landmark Ed) ; 24(7): 1203-1240, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31136976

RESUMO

Recent evidence demonstrates that long non-coding RNAs (lncRNAs) regulate the expression of multiple genes in an epigenetic, transcriptional, or post-transcriptional manner. They are involved in various cellular phenomena, such as the recruitment of transcription factors, epigenetic chaperoning, control of alternative splicing, mRNA stability and translational activity, as well as acting as decoys against microRNAs. In this review, we summarize the pivotal roles of lncRNAs in regulation of the gene expression involved in neural cell differentiation, synaptogenesis and synaptic plasticity in the central nervous system (CNS). We also describe the aberrant expression of multiple lncRNAs involved in the pathogenesis of neurological diseases. The abnormal expression of lncRNAs leads to altered expression levels of target genes, which contributes to neurodegenerative diseases, such as in Alzheimer's disease and Parkinson's disease, and to the formation of tumors, such as glioma. Accordingly, we discuss recent findings for the modes of action of lncRNAs in normal CNS development and for aberrant lncRNA actions in the pathogenesis of neuronal diseases.


Assuntos
Diferenciação Celular/genética , Sistema Nervoso Central/metabolismo , Regulação da Expressão Gênica , Doenças Neurodegenerativas/genética , Neurônios/metabolismo , RNA Longo não Codificante/genética , Doença de Alzheimer/genética , Sistema Nervoso Central/crescimento & desenvolvimento , Humanos , Plasticidade Neuronal/genética , Neurônios/citologia , Doença de Parkinson/genética
7.
Int J Mol Med ; 43(5): 2164-2176, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30896835

RESUMO

The hypocretin/orexin neuropeptide system coordinates the regulation of various physiological processes. Our previous study reported that a reduction in the expression of pleomorphic adenoma gene­like 1 (Plagl1), which encodes a C2H2 zinc­finger transcription factor, occurs in hypocretin neuron­ablated transgenic mice, suggesting that PLAGL1 is co­expressed in hypocretin neurons and regulates hypocretin transcription. The present study examined whether canonical prepro­hypocretin transcription is functionally modulated by PLAGL1. Double immunostaining indicated that the majority of hypocretin neurons were positive for PLAGL1 immunoreactivity in the nucleus. Notably, PLAGL1 immunoreactivity in hypocretin neurons was altered in response to several conditions affecting hypocretin function. An uneven localization of PLAGL1 was detected in the nuclei of hypocretin neurons following sleep deprivation. Chromatin immunoprecipitation revealed that endogenous PLAGL1 may bind to a putative PLAGL1­binding site in the proximal region of the hypocretin gene, in the murine hypothalamus. In addition, electroporation of the PLAGL1 expression vector into the fetal hypothalamus promoted hypothalamic hypocretin transcription. These results suggested that PLAGL1 may regulate hypothalamic hypocretin transcription.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Orexinas/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Animais , Sequência de Bases , Embrião de Mamíferos/citologia , Genes Supressores de Tumor , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células NIH 3T3 , Regiões Promotoras Genéticas/genética , Ligação Proteica
8.
J Comp Neurol ; 527(12): 2047-2060, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30779139

RESUMO

In the dorsal root ganglia (DRG), two types of glial cells (Schwann cells and satellite glial cells) have been identified based on cell morphology and expression of specific markers. In the present study, we observed unknown glial cells that were positive for p75 neurotrophin receptor (p75NTR), and therefore were immunohistochemically and ultrastructurally characterized for the first time. These cells exhibited stronger immunoreactivity against an anti-p75NTR antibody than the DRG neurons (hereafter referred to as p75NTR++ cells). Moreover, these cells covered the glial cells surrounding proximal process of the large-diameter DRG neurons. The proximal process is called "dendro-axon." The p75NTR++ cells were predominantly distributed where the first myelinating Schwann cells appear. The p75NTR++ cells were also positive for the pan-glial cell markers S100, nestin, and Sox10, but negative for fibroblast and macrophage markers. Moreover, they were negative for a satellite glial cell marker, inwardly rectifying potassium channel Kir4.1, as well as a nonmyelinating Schwann cell marker, glial fibrillary acidic protein. In addition, their morphological features were distinct from those of the myelinating Schwann cells. To investigate the three-dimensional ultrastructure of the p75NTR++ cells, we used array tomography combined with correlative light and electron microscopic observation. Three-dimensional ultrastructural observation revealed that the p75NTR++ cells loosely covered glial cells around the dendro-axons with highly ramified processes. Glial cells with these morphological features have not been reported before, indicating that the p75NTR++ glial cells are a new glial cell type in the DRG. Our results will give new insights into cell-cell relationships.


Assuntos
Gânglios Espinais/citologia , Proteínas do Tecido Nervoso/metabolismo , Neuroglia/citologia , Receptores de Fatores de Crescimento/metabolismo , Animais , Gânglios Espinais/metabolismo , Masculino , Neuroglia/metabolismo , Ratos , Ratos Wistar
9.
Med Mol Morphol ; 52(1): 8-14, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29855715

RESUMO

The three-dimensional ultra-structure is the comprehensive structure that cannot be observed from a two-dimensional electron micrograph. Array tomography is one method for three-dimensional electron microscopy. In this method, to obtain consecutive cross sections of tissue, connected consecutive sections of a resin block are mounted on a flat substrate, and these are observed with scanning electron microscopy. Although array tomography requires some bothersome manual procedures to prepare specimens, a recent study has introduced some techniques to ease specimen preparation. In addition, array tomography has some advantages compared with other three-dimensional electron microscopy techniques. For example, sections on the substrate are stored semi-eternally, so they can be observed at different magnifications. Furthermore, various staining methods, including post-embedding immunocytochemistry, can be adopted. In the present review, the preparation of specimens for array tomography, including ribbon collection and the staining method, and the adaptability for correlative light and electron microscopy are discussed.


Assuntos
Tomografia com Microscopia Eletrônica/métodos , Animais , Imuno-Histoquímica , Microscopia Eletrônica de Varredura
10.
IBRO Rep ; 5: 99-109, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30505974

RESUMO

Lamins are type V intermediate filament proteins that are located beneath the inner nuclear membrane. In mammalian somatic cells, LMNB1 and LMNB2 encode somatic lamins B1 and B2, respectively, and the LMNA gene is alternatively spliced to generate somatic lamins A and C. Mutations in lamin genes have been linked to many human hereditary diseases, including neurodegenerative disorders. Knowledge about lamins in the nervous system has been accumulated recently, but a precise analysis of lamin subtypes in glial cells has not yet been reported. In this study we investigated the composition of lamin subtypes in neurons, astrocytes, oligodendrocyte-lineage cells, and microglia in the adult rat cerebral cortex using an immunohistochemical staining method. Lamin A was not observed in neurons and glial cells. Lamin C was observed in astrocytes, mature oligodendrocytes and neurons, but not observed in oligodendrocyte progenitor cells. Microglia also did not stain positive for lamin C which differed from macrophages, with lamin C positive. Lamin B1 and B2 were observed in all glial cells and neurons. Lamin B1 was intensely positive in oligodendrocyte progenitor cells compared with other glial cells and neurons. Lamin B2 was weakly positive in all glial cells compared to neurons. Our current study might provide useful information to reveal how the onset mechanisms of human neurodegenerative diseases are associated with mutations in genes for nuclear lamin proteins.

11.
Sci Rep ; 8(1): 14542, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30266964

RESUMO

Bilateral adrenalectomy forces the patient to undergo glucocorticoid replacement therapy and bear a lifetime risk of adrenal crisis. Adrenal autotransplantation is considered useful to avoid adrenal crisis and glucocorticoid replacement therapy. However, the basic process of regeneration in adrenal autografts is poorly understood. Here, we investigated the essential regeneration factors in rat adrenocortical autografts, with a focus on the factors involved in adrenal development and steroidogenesis, such as Hh signalling. A remarkable renewal in cell proliferation and increase in Cyp11b1, which encodes 11-beta-hydroxylase, occurred in adrenocortical autografts from 2-3 weeks after autotransplantation. Serum corticosterone and adrenocorticotropic hormone levels were almost recovered to sham level at 4 weeks after autotransplantation. The adrenocortical autografts showed increased Dhh expression at 3 weeks after autotransplantation, but not Shh, which is the only Hh family member to have been reported to be expressed in the adrenal gland. Increased Gli1 expression was also found in the regenerated capsule at 3 weeks after autotransplantation. Dhh and Gli1 might function in concert to regenerate adrenocortical autografts. This is the first report to clearly show Dhh expression and its elevation in the adrenal gland.


Assuntos
Glândulas Suprarrenais/fisiologia , Proteínas Hedgehog/metabolismo , Regeneração , Proteína GLI1 em Dedos de Zinco/metabolismo , Glândulas Suprarrenais/citologia , Glândulas Suprarrenais/transplante , Animais , Autoenxertos , Proliferação de Células , Masculino , Ratos , Ratos Wistar , Transdução de Sinais
12.
J Comp Neurol ; 526(12): 1927-1942, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29752725

RESUMO

In the adult rodent subventricular zone (SVZ), there are neural stem cells (NSCs) and the specialized neurogenic niche is critical to maintain their stemness. To date, many cellular and noncellular factors that compose the neurogenic niche and markers to identify subpopulations of Type A cells have been confirmed. In particular, neurotransmitters regulate adult neurogenesis and mature neurons in the SVZ have been only partially analyzed. Moreover, Type A cells, descendants of NSCs, are highly heterogeneous and more molecular markers are still needed to identify them. In the present study, we systematically classified NeuN, commonly used as a marker of mature and immature post-mitotic neurons, immunopositive (+) cells within the adult mouse SVZ. These SVZ-NeuN+ cells (SVZ-Ns) were mainly classified into two types. One was mature SVZ-Ns (M-SVZ-Ns). Neurochemical properties of M-SVZ-Ns were similar to those of striatal neurons, but their birth date and morphology were different. M-SVZ-Ns were generated during embryonic and early postnatal stages with bipolar peaks and extended their processes along the wall of the lateral ventricle. The second type was small SVZ-Ns (S-SVZ-Ns) with features of Type A cells. They expressed not only markers of Type A cells, but also proliferated and migrated from the SVZ to the olfactory bulb. Furthermore, S-SVZ-Ns could be classified into two types by their spatial locations and glutamic acid decarboxylase 67 expression. Our data indicate that M-SVZ-Ns are a new component of the neurogenic niche and S-SVZ-Ns are newly identified subpopulations of Type A cells.


Assuntos
Ventrículos Laterais/citologia , Proteínas do Tecido Nervoso/análise , Células-Tronco Neurais/citologia , Neurônios/citologia , Proteínas Nucleares/análise , Nicho de Células-Tronco , Animais , Biomarcadores/análise , Proteínas de Ligação a DNA , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Neurogênese/fisiologia
13.
Neurochem Res ; 43(1): 3-11, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28980095

RESUMO

One of the unsolved problems in the research field of oligodendrocyte (OL) development has been the site(s) of origin of optic nerve OLs and its precursor cells (OPCs). It is generally accepted that OLs in the optic nerve are derived from the brain, and thus optic nerve OLs are immigrant cells. We previously demonstrated the brain origin of optic nerve OPCs in chick embryos. However, the site of optic nerve OPC origin has not been examined experimentally in developing rodents for the past two decades. We have recently reported that optic nerve OPCs in mice arise in the preoptic area by E12.5 and gradually migrate caudally and enter the optic nerve. These OPCs give rise to myelinating OLs in the optic nerve in the postnatal or adult stages. Surprisingly, there are species differences with respect to the origin of optic nerve OPCs between chicks and mice. Here, we summarize the site of OPC origin in the optic nerve based on our own previous and recent results, and discuss possible mechanisms underlying these species differences.


Assuntos
Diferenciação Celular/fisiologia , Oligodendroglia/citologia , Nervo Óptico/citologia , Células-Tronco/citologia , Animais , Humanos , Neurogênese/fisiologia , Vertebrados/metabolismo
14.
Acta Histochem Cytochem ; 50(5): 135-140, 2017 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-29276315

RESUMO

"Array tomography" is a method used to observe the fine structure of cells and tissues in a three-dimensional view. In this method, serial ultrathin sections in the ribbon state (ribbons) are mounted on a solid substrate and observed by scanning electron microscopy (SEM). The method may also be used in conjunction with post-embedding immunocytochemistry. However, it is difficult to mount many serial ribbons on a substrate manually. We developed an inexpensive laboratory-made device that mounts ribbons by pulling a nylon fishing line and lifting the substrate up from the water in a knife boat. Using this device, we succeeded in mounting several ribbons consisting a mean of 205.6 (SD: 37.7) serial ultrathin sections on 1.25 (SD: 0.06) × 1.25 (SD: 0.06)-cm silicon substrates. Furthermore, it was confirmed that our method is suitable for ribbons derived from water-soluble resin blocks. We were also able to stain the specimens by post-embedding immunocytochemistry. Thus, our method is useful in mounting numerus sections on a substrate for array tomography with SEM.

15.
Med Mol Morphol ; 50(4): 211-219, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28516286

RESUMO

Neuroendocrine tumors are rare, and little is known about the existence of cancer stem cells in this disease. Identification of the tumorigenic population will contribute to the development of effective therapies targeting neuroendocrine tumors. Surgically resected brain metastases from a primary neuroendocrine tumor of unknown origin were dissociated and cultured in serum-free neurosphere medium. Stem cell properties, including self-renewal, differentiation potential, and stem cell marker expression, were examined. Tumor formation was evaluated using intracranial xenograft models. The effect of temozolomide was measured in vitro by cell viability assays. We established the neuroendocrine tumor sphere cell line ANI-27S, which displayed stable exponential growth, virtually unlimited expansion in vitro, and expression of stem-cell markers such as CD133, nestin, Sox2, and aldehyde dehydrogenase. FBS-induced differentiation decreased Sox2 and nestin expression. On the basis of real-time PCR, ANI-27S cells expressed the neuroendocrine markers synaptophysin and chromogranin A. Intracranial xenotransplanted brain tumors recapitulated the original patient tumor and temozolomide exhibited cytotoxic effects on tumor sphere cells. For the first time, we demonstrated the presence of a sphere-forming, stem cell-like population in brain metastases from a primary neuroendocrine tumor. We also demonstrated the potential therapeutic effects of temozolomide for this disease.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/tratamento farmacológico , Dacarbazina/análogos & derivados , Células-Tronco Neoplásicas/patologia , Tumores Neuroendócrinos/tratamento farmacológico , Esferoides Celulares/patologia , Antígeno AC133/genética , Antígeno AC133/metabolismo , Idoso , Aldeído Desidrogenase/genética , Aldeído Desidrogenase/metabolismo , Animais , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/cirurgia , Sobrevivência Celular/efeitos dos fármacos , Cromogranina A/genética , Cromogranina A/metabolismo , Dacarbazina/farmacologia , Humanos , Masculino , Camundongos , Transplante de Neoplasias , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Nestina/genética , Nestina/metabolismo , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/patologia , Tumores Neuroendócrinos/cirurgia , Cultura Primária de Células , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Sinaptofisina/genética , Sinaptofisina/metabolismo , Temozolomida , Células Tumorais Cultivadas
16.
Sleep ; 40(1)2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28364459

RESUMO

Study Objectives: Recent findings showed that 16%-26% of narcolepsy patients were positive for anti-tribbles pseudokinase 2 (TRIB2) antibody, and the intracerebroventricular administration of immunoglobulin-G purified from anti-TRIB2 positive narcolepsy patients caused hypocretin/orexin neuron loss. We investigated the pathophysiological role of TRIB2 antibody using TRIB2-immunized rats and hypocretin/ataxin-3 transgenic (ataxin-3) mice. Methods: Plasma, cerebrospinal fluid (CSF), and hypothalamic tissues from TRIB2-immunized rats were collected. Anti-TRIB2 titers, hypocretin contents, mRNA expressions, the cell count of hypocretin neurons, and immunoreactivity of anti-TRIB2 antibodies on hypocretin neurons were investigated. The plasma from ataxin-3 mice was also used to determine the anti-TRIB2 antibody titer changes following the loss of hypocretin neurons. Results: TRIB2 antibody titers increased in the plasma and CSF of TRIB2-immunized rats. The hypothalamic tissue immunostained with the sera from TRIB2-immunized rats revealed positive signals in the cytoplasm of hypcretin neurons. While no changes were found regarding hypothalamic hypocretin contents or cell counts, but there were significant decreases of the hypocretin mRNA level and release into the CSF. The plasma from over 26-week-old ataxin-3 mice, at the advanced stage of hypocretin cell destruction, showed positive reactions against TRIB2 antigen, and positive plasma also reacted with murine hypothalamic hypocretin neurons. Conclusions: Our results suggest that the general activation of the immune system modulates the functions of hypocretin neurons. The absence of a change in hypocretin cell populations suggested that factors other than anti-TRIB2 antibody play a part in the loss of hypocretin neurons in narcolepsy. The increased anti-TRIB2 antibody after the destruction of hypocretin neurons suggest that anti-TRIB2 antibody in narcolepsy patients is the consequence rather than the inciting cause of hypocretin cell destruction.


Assuntos
Autoanticorpos/metabolismo , Autoantígenos/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Narcolepsia/imunologia , Neurônios/imunologia , Orexinas/metabolismo , Animais , Animais Geneticamente Modificados , Ataxina-3/metabolismo , Biomarcadores/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Feminino , Hipotálamo/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Narcolepsia/metabolismo , Narcolepsia/fisiopatologia , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Ratos , Ratos Sprague-Dawley , Vacinação
17.
Pancreatology ; 17(3): 403-410, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28270361

RESUMO

OBJECTIVES: The abdominal pain associated with chronic pancreatitis (CP) may be related to the increased number and size of intrapancreatic nerves. On the other hand, patients with type 1 autoimmune pancreatitis (AIP) rarely suffer from the pain syndrome, and there are no previous studies concerning the histopathological findings of intrapancreatic nerves in patients with type 1 AIP. The current study is aimed at investigating the differences in the histopathological and immunohistochemical findings of intrapancreatic nerves in patients with CP and type 1 AIP. METHODS: Neuroanatomical differences between CP and type 1 AIP were assessed by immunostaining with a pan-neuronal marker, protein gene product 9.5 (PGP9.5). The number (neural density) and area (neural hypertrophy) of PGP9.5-immunopositive nerves were quantitatively analyzed. Furthermore, the expression of nerve growth factor (NGF), and a high affinity receptor for NGF, tyrosine kinase receptor A (TrkA), was assessed by immunohistochemistry. RESULTS: Both neural density and hypertrophy were significantly greater in pancreatic tissue samples from patients with CP than those with normal pancreas or type 1 AIP. NGF expression was stronger in type 1 AIP than in CP, whereas TrkA expression in type 1 AIP was poorer than in CP. CONCLUSIONS: Although CP and type 1 AIP are both characterized by the presence of sustained pancreatic inflammation, they are different in terms of the density and hypertrophy of intrapancreatic nerve fibers. It is possible that this may be related to the difference in the activity of the NGF/TrkA-pathway between the two types of pancreatitis.


Assuntos
Doenças Autoimunes/patologia , Pâncreas/inervação , Pâncreas/patologia , Pancreatite Crônica/patologia , Pancreatite/patologia , Adulto , Idoso , Doenças Autoimunes/metabolismo , Biomarcadores , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Fibras Nervosas/patologia , Fator de Crescimento Neural/metabolismo , Dor/etiologia , Pâncreas/metabolismo , Pancreatite/metabolismo , Pancreatite Crônica/metabolismo , Nervos Periféricos/patologia , Receptor trkA/metabolismo , Ubiquitina Tiolesterase/análise , Ubiquitina Tiolesterase/metabolismo
18.
Mol Med Rep ; 15(5): 3215-3221, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28339047

RESUMO

Patients with bilateral pheochromocytoma often require an adrenalectomy. Autotransplantation of the adrenal cortex is an alternative therapy that could potentially be performed instead of receiving glucocorticoid replacement following adrenalectomy. Adrenal cortex autotransplantation aims to avoid the side effects of long­term steroid treatment and adrenal insufficiency. Although the function of the hypothalamo­hypophysial system is critical for patients who have undergone adrenal cortex autotransplantation, the details of that system, with the exception of adrenocorticotropic hormone in the subjects with adrenal autotransplantation, have been overlooked for a long time. To clarify the precise effect of adrenal autotransplantation on the pituitary gland and hypothalamus, the current study examined the gene expression of hormones produced from the hypothalamus and pituitary gland. Bilateral adrenalectomy and adrenal autotransplantation were performed in 8 to 9­week­old male rats. The hypothalamus and pituitary tissues were collected at 4 weeks after surgery. Transcriptional regulation of hypothalamic and pituitary hormones was subsequently examined by reverse transcription­quantitative polymerase chain reaction. Proopiomelanocortin, glycoprotein hormone α polypeptide, and thyroid stimulating hormone ß were significantly elevated in the pituitary gland of autotransplanted rats when compared with sham­operated rats. In addition, there were significant differences in the levels of corticotropin releasing hormone receptor 1 (Crhr1), Crhr2, nuclear receptor subfamily 3 group C member 1 and thyrotropin releasing hormone receptor between the sham­operated rats and autotransplanted rats in the pituitary gland. In the hypothalamus, corticotropin releasing hormone and urocortin 2 mRNA was significantly upregulated in autotransplanted rats compared with sham­operated rats. The authors identified significant alterations in the function of not only the hypothalamus­pituitary­adrenal axis, but also the adenohypophysis thyrotropes in autotransplanted rats. In the future, it will be important to examine other tissues affected by glucocorticoids following adrenal cortex autotransplantation.


Assuntos
Córtex Suprarrenal/transplante , Sistema Hipotálamo-Hipofisário/metabolismo , Adrenalectomia , Animais , Hormônio Liberador da Corticotropina/genética , Hormônio Liberador da Corticotropina/metabolismo , Subunidade alfa de Hormônios Glicoproteicos/genética , Subunidade alfa de Hormônios Glicoproteicos/metabolismo , Hipotálamo/metabolismo , Masculino , Hipófise/metabolismo , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptores de Hormônio Liberador da Corticotropina/genética , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Receptores do Hormônio Liberador da Tireotropina/genética , Receptores do Hormônio Liberador da Tireotropina/metabolismo , Tireotropina Subunidade beta/genética , Tireotropina Subunidade beta/metabolismo , Transplante Autólogo , Regulação para Cima , Urocortinas/genética , Urocortinas/metabolismo
19.
J Neurochem ; 140(3): 435-450, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27861899

RESUMO

HSO3-3-galactosylceramide (Sulfatide) species comprise the major glycosphingolipid components of oligodendrocytes and myelin and play functional roles in the regulation of oligodendrocyte maturation and myelin formation. Although various sulfatide species contain different fatty acids, it is unclear how these sulfatide species affect oligodendrogenesis and myelination. The O4 monoclonal antibody reaction with sulfatide has been widely used as a useful marker for oligodendrocytes and myelin. However, sulfatide synthesis during the pro-oligodendroblast stage, where differentiation into the oligodendrocyte lineage has already occurred, has not been examined. Notably, this stage comprises O4-positive cells. In this study, we identified a sulfatide species from the pro-oligodendroblast-to-myelination stage by imaging mass spectrometry. The results demonstrated that short-chain sulfatides with 16 carbon non-hydroxylated fatty acids (C16) and 18 carbon non-hydroxylated fatty acids (C18) or 18 carbon hydroxylated fatty acids (C18-OH) existed in restricted regions of the early embryonic spinal cord, where pro-oligodendroblasts initially appear, and co-localized with Olig2-positive pro-oligodendroblasts. C18 and C18-OH sulfatides also existed in isolated pro-oligodendroblasts. C22-OH sulfatide became predominant later in oligodendrocyte development and the longer C24 sulfatide was predominant in the adult brain. Additionally, the presence of each sulfatide species in a different area of the adult brain was demonstrated by imaging mass spectrometry at an increased lateral resolution. These findings indicated that O4 recognized sulfatides with short-chain fatty acids in pro-oligodendroblasts. Moreover, the fatty acid chain of the sulfatide became longer as the oligodendrocyte matured. Therefore, individual sulfatide species may have unique roles in oligodendrocyte maturation and myelination. Read the Editorial Highlight for this article on page 356.


Assuntos
Encéfalo/crescimento & desenvolvimento , Ácidos Graxos/análise , Oligodendroglia/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Medula Espinal/crescimento & desenvolvimento , Sulfoglicoesfingolipídeos/análise , Animais , Encéfalo/metabolismo , Bovinos , Ácidos Graxos/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oligodendroglia/metabolismo , Ratos , Ratos Wistar , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Medula Espinal/química , Medula Espinal/metabolismo , Sulfoglicoesfingolipídeos/metabolismo
20.
Brain Behav Immun ; 57: 58-67, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27318095

RESUMO

Hypocretin, also known as orexin, maintains the vigilance state and regulates various physiological processes, such as arousal, sleep, food intake, energy expenditure, and reward. Previously, we found that when wild-type mice and hypocretin/ataxin-3 littermates (which are depleted of hypothalamic hypocretin-expressing neurons postnatally) were administered lipopolysaccharide (LPS), the two genotypes exhibited significant differences in their sleep/wake cycle, including differences in the degree of increase in sleep periods and in recovery from sickness behaviour. In the present study, we examined changes in the hypothalamic vigilance system and in the hypothalamic expression of inflammatory factors in response to LPS in hypocretin/ataxin-3 mice. Peripheral immune challenge with LPS affected the hypothalamic immune response and vigilance states. This response was altered by the loss of hypocretin. Hypocretin expression was inhibited after LPS injection in both hypocretin/ataxin-3 mice and their wild-type littermates, but expression was completely abolished only in hypocretin/ataxin-3 mice. Increases in the number of histidine decarboxylase (HDC)-positive cells and in Hdc mRNA expression were found in hypocretin/ataxin-3 mice, and this increase was suppressed by LPS. Hypocretin loss did not impact the change in expression of hypothalamic inflammatory factors in response to LPS, except for interferon gamma and colony stimulating factor 3. The number of c-Fos-positive/HDC-positive cells in hypocretin/ataxin-3 mice administered LPS injections was elevated, even during the rest period, in all areas, suggesting that there is an increase in the activity of histaminergic neurons in hypocretin/ataxin-3 mice following LPS injection. Taken together, our results suggest a novel role for hypocretin in the hypothalamic response to peripheral immune challenge. Our findings contribute to the understanding of the pathophysiology of narcolepsy.


Assuntos
Hipotálamo/imunologia , Hipotálamo/metabolismo , Inflamação , Lipopolissacarídeos/farmacologia , Orexinas/metabolismo , Sono/imunologia , Vigília , Animais , Ataxina-3/metabolismo , Expressão Gênica , Inflamação/induzido quimicamente , Inflamação/imunologia , Inflamação/metabolismo , Lipopolissacarídeos/administração & dosagem , Masculino , Camundongos , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA