Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
BMC Geriatr ; 22(1): 574, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35831789

RESUMO

BACKGROUND: Exercise has been one of the key strategies for preventing frailty. While training programs for preventing frailty have been mainly developed in person, which have now become difficult to perform due to the coronavirus disease pandemic. It would be worthwhile to explore a feasibility of methods for a remote-based training with information and communications technology (ICT) in the pre-frail/robust older adults living at home. METHODS: We assessed the feasibility of a remote-based training with ICT device in terms of 1) a measurement accuracy and 2) whether it could be used for remote-based training of different intensities. To evaluate a measurement accuracy of the ICT device, we evaluated an inter-rater reliability between a true score and scores obtaining from the ICT device in 20 participants aged 65 years and older. Intraclass correlation was calculated. To evaluate a feasibility of remote-based training interventions of different intensities, we did a parallel, randomized, active controlled trial. Participants aged 65 years or older were randomly allocated to the two 3-month intervention programs with different intensity of exercise with the ICT (i.e., an Exercise-Intensive program and a Light-load exercise program). The primary outcome was 3-month scores of the 30-s chair-stand test (CS-30), which was compared between two groups using mixed models for repeated measures to account for within-person correlations. RESULTS: The ICT device showed a high intraclass correlation of over 0.99 for all outcomes including CS-30. Between Aug and Oct 2020, 70 participants (36 and 34 in the Exercise-Intensive and Light-load exercise programs, respectively) were randomized. After 3 months of intervention, CS-30 scores and other physical function improved in both groups. Difference in the 3-month CS-30 scores between two programs was found to be 0.08 (95% confidence interval: - 2.64, 2.79; p = 0.955), which was not statistically significant. No harmful incidents, such as falls, occurred in either group. CONCLUSION: We showed a remote-based training with ICT device in the older adults living at home was feasible. Further studies are warranted to determine what kind of remote exercise intervention programs is more effective for maintaining a physical performance and, beyond that, preventing frailty. TRIAL REGISTRATION NUMBER: UMIN000041616 (05/09/2020) https://center6.umin.ac.jp/cgi-open-bin/ctr/ctr.cgi?function=brows&action=brows&recptno=R000047504&type=summary&language=E.


Assuntos
Fragilidade , Idoso , Terapia por Exercício/métodos , Estudos de Viabilidade , Humanos , Reprodutibilidade dos Testes , Tecnologia
2.
Nucleic Acids Res ; 50(7): 3601-3615, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-34568951

RESUMO

Genomic DNA replication requires replisome assembly. We show here the molecular mechanism by which CMG (GAN-MCM-GINS)-like helicase cooperates with the family D DNA polymerase (PolD) in Thermococcus kodakarensis. The archaeal GINS contains two Gins51 subunits, the C-terminal domain of which (Gins51C) interacts with GAN. We discovered that Gins51C also interacts with the N-terminal domain of PolD's DP1 subunit (DP1N) to connect two PolDs in GINS. The two replicases in the replisome should be responsible for leading- and lagging-strand synthesis, respectively. Crystal structure analysis of the DP1N-Gins51C-GAN ternary complex was provided to understand the structural basis of the connection between the helicase and DNA polymerase. Site-directed mutagenesis analysis supported the interaction mode obtained from the crystal structure. Furthermore, the assembly of helicase and replicase identified in this study is also conserved in Eukarya. PolD enhances the parental strand unwinding via stimulation of ATPase activity of the CMG-complex. This is the first evidence of the functional connection between replicase and helicase in Archaea. These results suggest that the direct interaction of PolD with CMG-helicase is critical for synchronizing strand unwinding and nascent strand synthesis and possibly provide a functional machinery for the effective progression of the replication fork.


Assuntos
DNA Helicases , DNA Polimerase Dirigida por DNA , Thermococcus , DNA Helicases/genética , DNA Helicases/metabolismo , Replicação do DNA , DNA Polimerase Dirigida por DNA/genética , Eucariotos/metabolismo , Thermococcus/enzimologia , Thermococcus/metabolismo
3.
Nucleic Acids Res ; 49(8): 4599-4612, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33849056

RESUMO

The eukaryotic replisome is comprised of three family-B DNA polymerases (Polα, δ and ϵ). Polα forms a stable complex with primase to synthesize short RNA-DNA primers, which are subsequently elongated by Polδ and Polϵ in concert with proliferating cell nuclear antigen (PCNA). In some species of archaea, family-D DNA polymerase (PolD) is the only DNA polymerase essential for cell viability, raising the question of how it alone conducts the bulk of DNA synthesis. We used a hyperthermophilic archaeon, Thermococcus kodakarensis, to demonstrate that PolD connects primase to the archaeal replisome before interacting with PCNA. Whereas PolD stably connects primase to GINS, a component of CMG helicase, cryo-EM analysis indicated a highly flexible PolD-primase complex. A conserved hydrophobic motif at the C-terminus of the DP2 subunit of PolD, a PIP (PCNA-Interacting Peptide) motif, was critical for the interaction with primase. The dissociation of primase was induced by DNA-dependent binding of PCNA to PolD. Point mutations in the alternative PIP-motif of DP2 abrogated the molecular switching that converts the archaeal replicase from de novo to processive synthesis mode.


Assuntos
Proteínas Arqueais/metabolismo , DNA Helicases/metabolismo , DNA Polimerase III/metabolismo , DNA Primase/química , Antígeno Nuclear de Célula em Proliferação/metabolismo , Thermococcus/metabolismo , Motivos de Aminoácidos , Proteínas Arqueais/química , Cromatografia em Gel , DNA Helicases/genética , DNA Polimerase III/química , DNA Primase/genética , DNA Primase/metabolismo , Escherichia coli/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Mutagênese Sítio-Dirigida , Eletroforese em Gel de Poliacrilamida Nativa , Antígeno Nuclear de Célula em Proliferação/genética , Ligação Proteica , Proteínas Recombinantes , Ressonância de Plasmônio de Superfície , Thermococcus/genética
4.
BMC Biol ; 18(1): 152, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33115459

RESUMO

BACKGROUND: DNA polymerase D (PolD) is the representative member of the D family of DNA polymerases. It is an archaea-specific DNA polymerase required for replication and unrelated to other known DNA polymerases. PolD consists of a heterodimer of two subunits, DP1 and DP2, which contain catalytic sites for 3'-5' editing exonuclease and DNA polymerase activities, respectively, with both proteins being mutually required for the full activities of each enzyme. However, the processivity of the replicase holoenzyme has additionally been shown to be enhanced by the clamp molecule proliferating cell nuclear antigen (PCNA), making it crucial to elucidate the interaction between PolD and PCNA on a structural level for a full understanding of its functional relevance. We present here the 3D structure of a PolD-PCNA-DNA complex from Thermococcus kodakarensis using single-particle cryo-electron microscopy (EM). RESULTS: Two distinct forms of the PolD-PCNA-DNA complex were identified by 3D classification analysis. Fitting the reported crystal structures of truncated forms of DP1 and DP2 from Pyrococcus abyssi onto our EM map showed the 3D atomic structural model of PolD-PCNA-DNA. In addition to the canonical interaction between PCNA and PolD via PIP (PCNA-interacting protein)-box motif, we found a new contact point consisting of a glutamate residue at position 171 in a ß-hairpin of PCNA, which mediates interactions with DP1 and DP2. The DNA synthesis activity of a mutant PolD with disruption of the E171-mediated PCNA interaction was not stimulated by PCNA in vitro. CONCLUSIONS: Based on our analyses, we propose that glutamate residues at position 171 in each subunit of the PCNA homotrimer ring can function as hooks to lock PolD conformation on PCNA for conversion of its activity. This hook function of the clamp molecule may be conserved in the three domains of life.


Assuntos
Proteínas Arqueais/química , DNA Arqueal/química , DNA Polimerase Dirigida por DNA/química , Conformação de Ácido Nucleico , Thermococcus/genética , Microscopia Crioeletrônica , Pyrococcus abyssi/genética , Thermococcus/enzimologia
5.
Biosci Biotechnol Biochem ; 83(4): 695-704, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30582424

RESUMO

Replication protein A (RPA) is an essential component of DNA metabolic processes. RPA binds to single-stranded DNA (ssDNA) and interacts with multiple DNA-binding proteins. In this study, we showed that two DNA polymerases, PolB and PolD, from the hyperthermophilic archaeon Thermococcus kodakarensis interact directly with RPA in vitro. RPA was expected to play a role in resolving the secondary structure, which may stop the DNA synthesis reaction, in the template ssDNA. Our in vitro DNA synthesis assay showed that the pausing was resolved by RPA for both PolB and PolD. These results supported the fact that RPA interacts with DNA polymerases as a member of the replisome and is involved in the normal progression of DNA replication forks.


Assuntos
Proteínas Arqueais/genética , Replicação do DNA , DNA Polimerase Dirigida por DNA/genética , Regulação da Expressão Gênica em Archaea , Proteína de Replicação A/genética , Thermococcus/genética , Proteínas Arqueais/metabolismo , Clonagem Molecular , DNA Arqueal/genética , DNA Arqueal/metabolismo , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína de Replicação A/metabolismo , Thermococcus/metabolismo
6.
Extremophiles ; 23(1): 161-172, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30506100

RESUMO

DNA polymerase D (PolD), originally discovered in Pyrococcus furiosus, has no sequence homology with any other DNA polymerase family. Genes encoding PolD are found in most of archaea, except for those archaea in the Crenarchaeota phylum. PolD is composed of two proteins: DP1 and DP2. To date, the 3D structure of the PolD heteromeric complex is yet to be determined. In this study, we established a method that prepared highly purified PolD from Thermococcus kodakarensis, and purified DP1 and DP2 proteins formed a stable complex in solution. An intrinsically disordered region was identified in the N-terminal region of DP1, but the static light scattering analysis provided a reasonable molecular weight of DP1. In addition, PolD forms as a complex of DP1 and DP2 in a 1:1 ratio. Electron microscope single particle analysis supported this composition of PolD. Both proteins play an important role in DNA synthesis activity and in 3'-5' degradation activity. DP1 has extremely low affinity for DNA, while DP2 is mainly responsible for DNA binding. Our work will provide insight and the means to further understand PolD structure and the molecular mechanism of this archaea-specific DNA polymerase.


Assuntos
Proteínas Arqueais/metabolismo , DNA Polimerase III/metabolismo , Thermococcus/enzimologia , Proteínas Arqueais/química , DNA Polimerase III/química , Estabilidade Enzimática , Domínios Proteicos , Multimerização Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Especificidade por Substrato
7.
Front Mol Biosci ; 5: 37, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29713633

RESUMO

Living organisms are divided into three domains, Bacteria, Eukarya, and Archaea. Comparative studies in the three domains have provided useful information to understand the evolution of the DNA replication machinery. DNA polymerase is the central enzyme of DNA replication. The presence of multiple family B DNA polymerases is unique in Crenarchaeota, as compared with other archaeal phyla, which have a single enzyme each for family B (PolB) and family D (PolD). We analyzed PolB1 and PolB3 in the hyperthermophilic crenarchaeon, Aeropyrum pernix, and found that they are larger proteins than those predicted from the coding regions in our previous study and from public database annotations. The recombinant larger PolBs exhibited the same DNA polymerase activities as previously reported. However, the larger PolB3 showed remarkably higher thermostability, which made this enzyme applicable to PCR. In addition, the high tolerance to salt and heparin suggests that PolB3 will be useful for amplification from the samples with contaminants, and therefore it has a great potential for diagnostic use in the medical and environmental field.

8.
Sci Rep ; 7(1): 16949, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-29209094

RESUMO

RecJ was originally identified in Escherichia coli and plays an important role in the DNA repair and recombination pathways. Thermococcus kodakarensis, a hyperthermophilic archaeon, has two RecJ-like nucleases. These proteins are designated as GAN (GINS-associated nuclease) and HAN (Hef-associated nuclease), based on the protein they interact with. GAN is probably a counterpart of Cdc45 in the eukaryotic CMG replicative helicase complex. HAN is considered mainly to function with Hef for restoration of the stalled replication fork. In this study, we characterized HAN to clarify its functions in Thermococcus cells. HAN showed single-strand specific 3' to 5' exonuclease activity, which was stimulated in the presence of Hef. A gene disruption analysis revealed that HAN was non-essential for viability, but the ΔganΔhan double mutant did not grow under optimal conditions at 85 °C. This deficiency was not fully recovered by introducing the mutant han gene, encoding the nuclease-deficient HAN protein, back into the genome. These results suggest that the unstable replicative helicase complex without GAN performs ineffective fork progression, and thus the stalled fork repair system including HAN becomes more important. The nuclease activity of HAN is required for the function of this protein in T. kodakarensis.


Assuntos
Proteínas Arqueais/metabolismo , Replicação do DNA , Exodesoxirribonucleases/metabolismo , Thermococcus/genética , Proteínas Arqueais/genética , Dano ao DNA , DNA Arqueal/genética , DNA Arqueal/metabolismo , Proteínas de Escherichia coli/genética , Exodesoxirribonucleases/genética , Mutação , Filogenia , Thermococcus/metabolismo
9.
Nucleic Acids Res ; 45(18): 10693-10705, 2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-28977567

RESUMO

The archaeal minichromosome maintenance (MCM) has DNA helicase activity, which is stimulated by GINS in several archaea. In the eukaryotic replicative helicase complex, Cdc45 forms a complex with MCM and GINS, named as CMG (Cdc45-MCM-GINS). Cdc45 shares sequence similarity with bacterial RecJ. A Cdc45/RecJ-like protein from Thermococcus kodakarensis shows a bacterial RecJ-like exonuclease activity, which is stimulated by GINS in vitro. Therefore, this archaeal Cdc45/RecJ is designated as GAN, from GINS-associated nuclease. In this study, we identified the CMG-like complex in T. kodakarensis cells. The GAN·GINS complex stimulated the MCM helicase, but MCM did not affect the nuclease activity of GAN in vitro. The gene disruption analysis showed that GAN was non-essential for its viability but the Δgan mutant did not grow at 93°C. Furthermore, the Δgan mutant showed a clear retardation in growth as compared with the parent cells under optimal conditions at 85°C. These deficiencies were recovered by introducing the gan gene encoding the nuclease deficient GAN protein back to the genome. These results suggest that the replicative helicase complex without GAN may become unstable and ineffective in replication fork progression. The nuclease activity of GAN is not related to the growth defects of the Δgan mutant cells.


Assuntos
Proteínas Arqueais/metabolismo , Replicação do DNA , Exodesoxirribonucleases/metabolismo , Componente 3 do Complexo de Manutenção de Minicromossomo/metabolismo , Thermococcus/enzimologia , Thermococcus/genética , Proteínas Arqueais/genética , Exodesoxirribonucleases/genética , Deleção de Genes , Metais , Thermococcus/crescimento & desenvolvimento , Thermococcus/metabolismo , Raios Ultravioleta
10.
Nucleic Acids Res ; 44(19): 9505-9517, 2016 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-27599844

RESUMO

In eukaryotic DNA replication initiation, hexameric MCM (mini-chromosome maintenance) unwinds the template double-stranded DNA to form the replication fork. MCM is activated by two proteins, Cdc45 and GINS, which constitute the 'CMG' unwindosome complex together with the MCM core. The archaeal DNA replication system is quite similar to that of eukaryotes, but only limited knowledge about the DNA unwinding mechanism is available, from a structural point of view. Here, we describe the crystal structure of an archaeal GAN (GINS-associated nuclease) from Thermococcus kodakaraensis, the homolog of eukaryotic Cdc45, in both the free form and the complex with the C-terminal domain of the cognate Gins51 subunit (Gins51C). This first archaeal GAN structure exhibits a unique, 'hybrid' structure between the bacterial RecJ and the eukaryotic Cdc45. GAN possesses the conserved DHH and DHH1 domains responsible for the exonuclease activity, and an inserted CID (CMG interacting domain)-like domain structurally comparable to that in Cdc45, suggesting its dual roles as an exonuclease in DNA repair and a CMG component in DNA replication. A structural comparison of the GAN-Gins51C complex with the GINS tetramer suggests that GINS uses the mobile Gins51C as a hook to bind GAN for CMG formation.


Assuntos
Archaea/genética , Archaea/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Reparo do DNA , Replicação do DNA , Exonucleases/química , Exonucleases/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteínas Arqueais/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Ativação Enzimática , Exonucleases/genética , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica , Proteólise , Proteínas Recombinantes , Relação Estrutura-Atividade , Ressonância de Plasmônio de Superfície
11.
Sci Rep ; 6: 25532, 2016 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-27150116

RESUMO

To maintain genome integrity for transfer to their offspring, and to maintain order in cellular processes, all living organisms have DNA repair systems. Besides the well-conserved DNA repair machineries, organisms thriving in extreme environments are expected to have developed efficient repair systems. We recently discovered a novel endonuclease, which cleaves the 5' side of deoxyinosine, from the hyperthermophilic archaeon, Pyrococcus furiosus. The novel endonuclease, designated as Endonulcease Q (EndoQ), recognizes uracil, abasic site and xanthine, as well as hypoxanthine, and cuts the phosphodiester bond at their 5' sides. To understand the functional process involving EndoQ, we searched for interacting partners of EndoQ and identified Proliferating Cell Nuclear Angigen (PCNA). The EndoQ activity was clearly enhanced by addition of PCNA in vitro. The physical interaction between the two proteins through a PIP-motif of EndoQ and the toroidal structure of PCNA are critical for the stimulation of the endonuclease activity. These findings provide us a clue to elucidate a unique DNA repair system in Archaea.


Assuntos
Reparo do DNA , Endodesoxirribonucleases/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Pyrococcus furiosus/enzimologia , Endodesoxirribonucleases/genética , Mapeamento de Interação de Proteínas , Pyrococcus furiosus/genética
12.
Nucleic Acids Res ; 44(7): 2977-86, 2016 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-27001046

RESUMO

The common mismatch repair system processed by MutS and MutL and their homologs was identified in Bacteria and Eukarya. However, no evidence of a functional MutS/L homolog has been reported for archaeal organisms, and it is not known whether the mismatch repair system is conserved in Archaea. Here, we describe an endonuclease that cleaves double-stranded DNA containing a mismatched base pair, from the hyperthermophilic archaeon Pyrococcus furiosus The corresponding gene revealed that the activity originates from PF0012, and we named this enzyme Endonuclease MS (EndoMS) as the mismatch-specific Endonuclease. The sequence similarity suggested that EndoMS is the ortholog of NucS isolated from Pyrococcus abyssi, published previously. Biochemical characterizations of the EndoMS homolog from Thermococcus kodakarensis clearly showed that EndoMS specifically cleaves both strands of double-stranded DNA into 5'-protruding forms, with the mismatched base pair in the central position. EndoMS cleaves G/T, G/G, T/T, T/C and A/G mismatches, with a more preference for G/T, G/G and T/T, but has very little or no effect on C/C, A/C and A/A mismatches. The discovery of this endonuclease suggests the existence of a novel mismatch repair process, initiated by the double-strand break generated by the EndoMS endonuclease, in Archaea and some Bacteria.


Assuntos
Proteínas Arqueais/metabolismo , Pareamento Incorreto de Bases , Endodesoxirribonucleases/metabolismo , Thermococcus/enzimologia , Proteínas Arqueais/genética , Proteínas Arqueais/isolamento & purificação , Clivagem do DNA , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/isolamento & purificação , Temperatura Alta , Mutação , Antígeno Nuclear de Célula em Proliferação/metabolismo , Pyrococcus furiosus/enzimologia , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
13.
Gene ; 576(2 Pt 1): 690-5, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26476294

RESUMO

The family A DNA polymerases from thermophilic bacteria are useful for PCR. The DNA polymerase from Thermus aquaticus (Taq polymerase) was the original enzyme used when practical PCR was developed, and it has remained the standard enzyme for PCR to date. Knowledge gained from structure-function relationship studies of Taq polymerase is applicable to create PCR enzymes with enhanced performance. We collected the deduced amino acid sequences of the regions from motif A to motif C in the family A DNA polymerases from metagenomic sequence data, obtained by sequencing DNAs from microorganisms isolated from various hot spring areas in Japan. The corresponding regions of the polA gene for Taq polymerase were substituted with the metagenomic DNA gene fragments, and various chimeric DNA polymerases were prepared. Based on the properties of these chimeric enzymes and their sequences, we found an insertion sequence that affects the primer extension ability of the family A DNA polymerases. The insertion sequence is located in the finger subdomain, and it may enhance the affinity of the enzyme to DNA. Mutant Taq polymerases with the corresponding 9 amino acid insertion displayed enhanced PCR performance.


Assuntos
Metagenômica , Taq Polimerase/genética , Sequência de Aminoácidos , Primers do DNA , Modelos Moleculares , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Ligação Proteica , Homologia de Sequência de Aminoácidos , Taq Polimerase/química , Taq Polimerase/metabolismo
14.
Biochimie ; 118: 264-9, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26116888

RESUMO

Base deamination is a typical form of DNA damage, and it must be repaired quickly to maintain the genome integrity of living organisms. Endonuclease Q (EndoQ), recently found in the hyperthermophilic archaea, is an enzyme that cleaves the phosphodiester bond 5' from the damaged nucleotide in the DNA strand, and may primarily function to start the repair process for the damaged bases. Endonuclease V (EndoV) also hydrolyzes the second phosphodiester bond 3' from the damaged nucleotide, although the hyperthermophilic archaeal EndoV is a strictly hypoxanthine-specific endonuclease. To understand the relationships of the EndoQ and EndoV functions in hyperthermophilic archaea, we analyzed their interactions in hypoxanthine repair. EndoQ and EndoV do not directly interact with each other in either the presence or absence of DNA. However, EndoQ and EndoV individually worked on deoxyinosine (dI)-containing DNA at each cleavage site. EndoQ has higher affinity to dI-containing DNA than EndoV, and cells produce higher amounts of EndoQ, as compared to EndoV. These data support the proposal that EndoQ primarily functions for, at least, dI-containing DNA.


Assuntos
Reparo do DNA/fisiologia , Endonucleases/metabolismo , Pyrococcus furiosus/genética , Dano ao DNA/genética , Ensaio de Desvio de Mobilidade Eletroforética , Imunoprecipitação , Modelos Moleculares
15.
Nucleic Acids Res ; 43(5): 2853-63, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25694513

RESUMO

DNA is constantly damaged by endogenous and environmental influences. Deaminated adenine (hypoxanthine) tends to pair with cytosine and leads to the A:T→G:C transition mutation during DNA replication. Endonuclease V (EndoV) hydrolyzes the second phosphodiester bond 3' from deoxyinosine in the DNA strand, and was considered to be responsible for hypoxanthine excision repair. However, the downstream pathway after EndoV cleavage remained unclear. The activity to cleave the phosphodiester bond 5' from deoxyinosine was detected in a Pyrococcus furiosus cell extract. The protein encoded by PF1551, obtained from the mass spectrometry analysis of the purified fraction, exhibited the corresponding cleavage activity. A putative homolog from Thermococcus kodakarensis (TK0887) showed the same activity. Further biochemical analyses revealed that the purified PF1551 and TK0887 proteins recognize uracil, xanthine and the AP site, in addition to hypoxanthine. We named this endonuclease Endonuclease Q (EndoQ), as it may be involved in damaged base repair in the Thermococcals of Archaea.


Assuntos
Proteínas Arqueais/metabolismo , Dano ao DNA , Reparo do DNA , Endonucleases/metabolismo , Pyrococcus furiosus/enzimologia , Sequência de Aminoácidos , Proteínas Arqueais/genética , Sequência de Bases , Western Blotting , DNA Arqueal/genética , DNA Arqueal/metabolismo , Endonucleases/classificação , Endonucleases/genética , Dados de Sequência Molecular , Filogenia , Pyrococcus furiosus/genética , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Especificidade por Substrato
16.
Front Microbiol ; 5: 461, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25232352

RESUMO

DNA polymerases are widely used for DNA manipulation in vitro, including DNA cloning, sequencing, DNA labeling, mutagenesis, and other experiments. Thermostable DNA polymerases are especially useful and became quite valuable after the development of PCR technology. A DNA polymerase from Thermus aquaticus (Taq polymerase) is the most famous DNA polymerase as a PCR enzyme, and has been widely used all over the world. In this study, the gene fragments of the family A DNA polymerases were amplified by PCR from the DNAs from microorganisms within environmental soil samples, using a primer set for the two conserved regions. The corresponding region of the pol gene for Taq polymerase was substituted with the amplified gene fragments, and various chimeric DNA polymerases were prepared. Based on the properties of these chimeric enzymes and their sequences, two residues, E742 and A743, in Taq polymerase were found to be critical for its elongation ability. Taq polymerases with mutations at 742 and 743 actually showed higher DNA affinity and faster primer extension ability. These factors also affected the PCR performance of the DNA polymerase, and improved PCR results were observed with the mutant Taq polymerase.

17.
J Biol Chem ; 289(31): 21627-39, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24947516

RESUMO

Hef is an archaeal protein that probably functions mainly in stalled replication fork repair. The presence of an unstructured region was predicted between the two distinct domains of the Hef protein. We analyzed the interdomain region of Thermococcus kodakarensis Hef and demonstrated its disordered structure by CD, NMR, and high speed atomic force microscopy (AFM). To investigate the functions of this intrinsically disordered region (IDR), we screened for proteins interacting with the IDR of Hef by a yeast two-hybrid method, and 10 candidate proteins were obtained. We found that PCNA1 and a RecJ-like protein specifically bind to the IDR in vitro. These results suggested that the Hef protein interacts with several different proteins that work together in the pathways downstream from stalled replication fork repair by converting the IDR structure depending on the partner protein.


Assuntos
Proteínas Arqueais/metabolismo , DNA Helicases/metabolismo , Endonucleases/metabolismo , Proteínas Intrinsicamente Desordenadas/metabolismo , Thermococcus/metabolismo , Sequência de Bases , Dicroísmo Circular , Primers do DNA , Reparo do DNA , Microscopia de Força Atômica , Ressonância Magnética Nuclear Biomolecular , Reação em Cadeia da Polimerase , Ligação Proteica , Técnicas do Sistema de Duplo-Híbrido
18.
Genes Cells ; 17(11): 923-37, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23078585

RESUMO

The DNA sliding clamp is a multifunctional protein involved in cellular DNA transactions. In Archaea and Eukaryota, proliferating cell nuclear antigen (PCNA) is the sliding clamp. The ring-shaped PCNA encircles double-stranded DNA within its central hole and tethers other proteins on DNA. The majority of Crenarchaeota, a subdomain of Archaea, have multiple PCNA homologues, and they are capable of forming heterotrimeric rings for their functions. In contrast, most organisms in Euryarchaeota, the other major subdomain, have a single PCNA forming a homotrimeric ring structure. Among the Euryarchaeota whose genome is sequenced, Thermococcus kodakarensis is the only species with two genes encoding PCNA homologues on its genome. We cloned the two genes from the T. kodakarensis genome, and the gene products, PCNA1 and PCNA2, were characterized. PCNA1 stimulated the DNA synthesis reactions of the two DNA polymerases, PolB and PolD, from T. kodakarensis in vitro. PCNA2, however, only had an effect on PolB. We were able to disrupt the gene for PCNA2, whereas gene disruption for PCNA1 was not possible, suggesting that PCNA1 is essential for DNA replication. The sensitivities of the Δpcna2 mutant strain to ultraviolet irradiation (UV), methyl methanesulfonate (MMS) and mitomycin C (MMC) were indistinguishable from those of the wild-type strain.


Assuntos
Proteínas Arqueais/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Thermococcus/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/isolamento & purificação , Adenosina Trifosfatases/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/genética , Proteínas Arqueais/isolamento & purificação , Dano ao DNA , DNA Polimerase III/química , DNA Polimerase beta/química , Reparo do DNA , Replicação do DNA , DNA Arqueal/química , DNA Arqueal/metabolismo , Técnicas de Inativação de Genes , Antígeno Nuclear de Célula em Proliferação/química , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/isolamento & purificação , Ligação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/isolamento & purificação , Subunidades Proteicas/metabolismo , Proteína de Replicação C/química , Proteína de Replicação C/isolamento & purificação , Proteína de Replicação C/metabolismo , Thermococcus/genética , Thermococcus/crescimento & desenvolvimento
19.
J Biochem ; 151(3): 317-27, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22247560

RESUMO

OsGEN-L has a 5'-flap endonuclease activity and plays an essential role in rice microspore development. The Class 4 RAD2/XPG family nucleases, including OsGEN-L, were recently found to have resolving activity for the Holliday junction (HJ), the intermediate of DNA strand recombination. In this study, we performed a detailed characterization of OsGEN-L, as a structure-specific endonuclease. Highly purified OsGEN-L was prepared as the full-length protein for in vitro endonuclease assays using various structured DNAs, and the 5'-flap endonuclease activity, which is stimulated in a PCNA-dependent manner, was demonstrated. In addition, the in vitro HJ resolving activity of OsGEN-L represents the first such activity originating from plant cells. OsGEN-L cleaved HJ at symmetrically related sites of the branch point. However, the two branched strands seemed to be cleaved individually, and not cooperatively, by each OsGEN-L monomer protein. The substrate specificity suggests that OsGEN-L functions in multiple processes of DNA metabolism in rice cells.


Assuntos
DNA Cruciforme/metabolismo , Endonucleases Flap/metabolismo , Resolvases de Junção Holliday/metabolismo , Oryza/enzimologia , Proteínas de Plantas/metabolismo , Reparo do DNA/genética , Reparo do DNA/fisiologia , Endonucleases Flap/genética , Resolvases de Junção Holliday/genética , Proteínas de Plantas/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo
20.
Genes Cells ; 15(5): 537-52, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20384788

RESUMO

Archaea have one or more Cdc6/Orc1 proteins, which share sequence similarities with eukaryotic Cdc6 and Orc1. These proteins are involved in the initiation process of DNA replication, although their specific function has not been elucidated, except for origin recognition and binding. We showed that the Cdc6/Orc1 protein from the hyperthermophilic archaeon Pyrococcus furiosus specifically binds to the oriC region in the whole genome. However, it remains unclear how this initiator protein specifically recognizes the oriC region and how the Mcm helicase is recruited to oriC. In the current study, we characterized the biochemical properties of Cdc6/Orc1 in P. furiosus. The ATPase activity of the Cdc6/Orc1 protein was completely suppressed by binding to DNA containing the origin recognition box (ORB). Limited proteolysis and DNase I-footprint experiments suggested that the Cdc6/Orc1 protein changes its conformation on the ORB sequence in the presence of ATP. This conformational change may have an unknown, important function in the initiation process. Results from an in vitro recruiting assay indicated that Mcm is recruited onto the oriC region in a Cdc6/Orc1-dependent, but not ATP-dependent, manner. However, some other function is required for the functional loading of this helicase to start the unwinding of the replication fork DNA.


Assuntos
DNA Helicases/metabolismo , Replicação do DNA , Complexo de Reconhecimento de Origem/metabolismo , Pyrococcus furiosus/metabolismo , Origem de Replicação , Proteínas Arqueais/química , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , DNA Helicases/genética , Substâncias Macromoleculares/química , Substâncias Macromoleculares/metabolismo , Complexo de Reconhecimento de Origem/química , Complexo de Reconhecimento de Origem/genética , Conformação Proteica , Pyrococcus furiosus/genética , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA