Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
J Cell Biol ; 223(8)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38709169

RESUMO

Histone H3 lysine36 dimethylation (H3K36me2) is generally distributed in the gene body and euchromatic intergenic regions. However, we found that H3K36me2 is enriched in pericentromeric heterochromatin in some mouse cell lines. We here revealed the mechanism of heterochromatin targeting of H3K36me2. Among several H3K36 methyltransferases, NSD2 was responsible for inducing heterochromatic H3K36me2. Depletion and overexpression analyses of NSD2-associating proteins revealed that NSD2 recruitment to heterochromatin was mediated through the imitation switch (ISWI) chromatin remodeling complexes, such as BAZ1B-SMARCA5 (WICH), which directly binds to AT-rich DNA via a BAZ1B domain-containing AT-hook-like motifs. The abundance and stoichiometry of NSD2, SMARCA5, and BAZ1B could determine the localization of H3K36me2 in different cell types. In mouse embryos, H3K36me2 heterochromatin localization was observed at the two- to four-cell stages, suggesting its physiological relevance.


Assuntos
Montagem e Desmontagem da Cromatina , Heterocromatina , Histona-Lisina N-Metiltransferase , Histonas , Proteínas Repressoras , Animais , Humanos , Camundongos , Adenosina Trifosfatases , Proteínas que Contêm Bromodomínio/genética , Proteínas que Contêm Bromodomínio/metabolismo , Centrômero/metabolismo , Centrômero/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/genética , Heterocromatina/metabolismo , Heterocromatina/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histonas/metabolismo , Histonas/genética , Metilação , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
2.
Histochem Cell Biol ; 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38762823

RESUMO

During development and differentiation, histone modifications dynamically change locally and globally, associated with transcriptional regulation, DNA replication and repair, and chromosome condensation. The level of histone H4 Lys20 monomethylation (H4K20me1) increases during the G2 to M phases of the cell cycle and is enriched in facultative heterochromatin, such as inactive X chromosomes in cycling cells. To track the dynamic changes of H4K20me1 in living cells, we have developed a genetically encoded modification-specific intracellular antibody (mintbody) probe that specifically binds to the modification. Here, we report the generation of knock-in mice in which the coding sequence of the mCherry-tagged version of the H4K20me1-mintbody is inserted into the Rosa26 locus. The knock-in mice, which ubiquitously expressed the H4K20me1-mintbody, developed normally and were fertile, indicating that the expression of the probe does not disturb the cell growth, development, or differentiation. Various tissues isolated from the knock-in mice exhibited nuclear fluorescence without the need for fixation. The H4K20me1-mintbody was enriched in inactive X chromosomes in developing embryos and in XY bodies during spermatogenesis. The knock-in mice will be useful for the histochemical analysis of H4K20me1 in any cell types.

3.
J Reprod Dev ; 70(3): 160-168, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38494726

RESUMO

Ovarian stimulation protocols are widely used to collect oocytes in assisted reproductive technologies (ARTs). Although the influence of ovarian stimulation on embryo quality has been described, this issue remains controversial. Here, we analyzed the influence of ovarian stimulation on developmental speed and chromosome segregation using live cell imaging. Female mice at the proestrus stage were separated by the appearance of the vagina as the non-stimulation (-) group, and other mice were administered pregnant mare serum gonadotropin (PMSG) and human chorionic gonadotropin (hCG) as the stimulation (+) groups. The cumulus-oocyte complexes from both groups were inseminated with sperm suspensions from the same male mice. Fertilization rates and developmental capacities were examined, and the developmental speed and frequency of chromosome segregation errors were measured by live-cell imaging using a Histone H2B-mCherry probe. The number of fertilized oocytes obtained was 1.4-fold more frequent in the stimulation (+) group. The developmental rate and chromosome stability did not differ between the groups. Image analysis showed that the mean speed of development in the stimulation (+) group was slightly higher than that in the non-stimulation (-) group. This increase in speed seemed to arise from the slight shortening of the 2- and 4-cell stages and third division lengths and consequent synchronization of cleavage timing in each embryo, not from the emergence of an extremely rapidly developing subpopulation of embryos. In conclusion, ovarian stimulation does not necessarily affect embryo quality but rather increases the chances of obtaining high-quality oocytes in mice.


Assuntos
Blastocisto , Desenvolvimento Embrionário , Oócitos , Indução da Ovulação , Animais , Feminino , Camundongos , Desenvolvimento Embrionário/fisiologia , Blastocisto/fisiologia , Masculino , Oócitos/fisiologia , Gravidez , Gonadotropinas Equinas/farmacologia , Gonadotropina Coriônica/farmacologia , Segregação de Cromossomos , Fertilização in vitro/métodos
4.
Genes Cells ; 28(12): 906-914, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37886801

RESUMO

A simple method for producing pseudopregnant mice supports pup production. In this study, pregnant ICR were obtained mice without mating with vasectomized mice via administration of mouse Kisspeptin-10 (mKp-10) and transferring blastocysts to the uterus. Blastocyst transfer after mKp-10 administration to mice with gapping and reddish pink vagina resulted in 65.2% (15/23) pregnancies, and 39.1% (34/87) of the transferred blastocysts showed full-term growth. Vaginal smears were observed for accurate estrus cycle determination, and subsequent administration of mKp10 to mice during the estrus stage and blastocyst transfer resulted in 95.2% (20/21) pregnancies and 50.7% (104/205) birth rates. Regarding 2-cell transfer after administration of mKp-10, 100% (8/8) of the mice became pregnant, and 45.0% (36/80) of the embryos were born. Administration of mKp-10 to mice during the estrus stage is a convenient way to generate pseudopregnant mice.


Assuntos
Pseudogravidez , Útero , Gravidez , Feminino , Camundongos , Animais , Camundongos Endogâmicos ICR , Estro
5.
Life Sci Alliance ; 6(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37225425

RESUMO

Ubiquitin-like with PHD and RING finger domains 1 (UHRF1) is a protein essential for the maintenance of DNA methylation in somatic cells. However, UHRF1 is predominantly localized in the cytoplasm of mouse oocytes and preimplantation embryos, where it may play a role unrelated to the nuclear function. We herein report that oocyte-specific Uhrf1 KO results in impaired chromosome segregation, abnormal cleavage division, and preimplantation lethality of derived embryos. Our nuclear transfer experiment showed that the phenotype is attributable to cytoplasmic rather than nuclear defects of the zygotes. A proteomic analysis of KO oocytes revealed the down-regulation of proteins associated with microtubules including tubulins, which occurred independently of transcriptomic changes. Intriguingly, cytoplasmic lattices were disorganized, and mitochondria, endoplasmic reticulum, and components of the subcortical maternal complex were mislocalized. Thus, maternal UHRF1 regulates the proper cytoplasmic architecture and function of oocytes and preimplantation embryos, likely through a mechanism unrelated to DNA methylation.


Assuntos
Oócitos , Proteômica , Animais , Camundongos , Citosol , Retículo Endoplasmático , Mitocôndrias , Proteínas Estimuladoras de Ligação a CCAAT/genética , Ubiquitina-Proteína Ligases/genética
6.
Prostaglandins Other Lipid Mediat ; 167: 106733, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37028469

RESUMO

Stroke and dementia are global leading causes of neurological disability and death. The pathology of these diseases is interrelated and they share common, modifiable risk factors. It is suggested that docosahexaenoic acid (DHA) prevents neurological and vascular disorders induced by ischemic stroke and also prevent dementia. The purpose of this study was to review the potential preventative role of DHA against ischemic stroke-induced vascular dementia and Alzheimer's disease. In this review, I analyzed studies on stroke-induced dementia from the PubMed, ScienceDirect, and Web of Science databases as well as studies on the effects of DHA on stroke-induced dementia. As per the results of interventional studies, DHA intake can potentially ameliorate dementia and cognitive function. In particular, DHA derived from foods such as fish oil enters the blood and then migrates to the brain by binding to fatty acid binding protein 5 that is present in cerebral vascular endothelial cells. At this point, the esterified form of DHA produced by lysophosphatidylcholine is preferentially absorbed into the brain instead of free DHA. DHA accumulates in nerve cell membrane and is involved in the prevention of dementia. The antioxidative and anti-inflammatory properties of DHA and DHA metabolites as well as their ability to decrease amyloid beta (Aß) 42 production were implicated in the improvement of cognitive function. The antioxidant effect of DHA, the inhibition of neuronal cell death by Aß peptide, improvement in learning ability, and enhancement of synaptic plasticity may contribute to the prevention of dementia induced by ischemic stroke.


Assuntos
Doença de Alzheimer , Demência Vascular , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/prevenção & controle , Doença de Alzheimer/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/uso terapêutico , Ácidos Docosa-Hexaenoicos/metabolismo , Peptídeos beta-Amiloides/metabolismo , Demência Vascular/tratamento farmacológico , Demência Vascular/prevenção & controle , Células Endoteliais/metabolismo , Antioxidantes , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/prevenção & controle
7.
Theriogenology ; 200: 96-105, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36805250

RESUMO

Direct cleavage, a type of abnormal cleavage in which one zygote divides into three or more blastomeres, has been reported in mammals. The incidence of direct cleavage increases in zygotes with three or more pronuclei (multi-PN) and those showing abnormal pronuclei migration. However, there are few reports on the relationship between pronuclei and direct cleavage, and the effects of these relationships on subsequent embryogenesis have not been clarified. It is difficult to observe pronuclei under visible light, especially in bovine zygotes, because of abundant dark lipid droplets in the cytoplasm. We visualized pronuclei by removing lipid droplets from bovine zygotes and analyzed the relationship between the number of pronuclei and direct cleavage using time-lapse cinematography. The direct cleavage rate of multi-PN zygotes was 78.6%, which was significantly higher than that of zygotes with one pronucleus (1 PN, 0.0%) and two pronuclei (2 PN, 8.2%). Observation of pronuclei migration in 2 PN zygotes showed that 3.1% of 2 PN zygotes had non-apposed pronuclei. The direct cleavage rate of zygotes with non-apposed pronuclei was 66.7%, which was significantly higher than that of zygotes with apposed pronuclei (6.4%). Among multi-PN zygotes, the proportions of zygotes with apposed pronuclei and non-apposed pronuclei were 37.5% and 64.3%, respectively. The direct cleavage rate of multi-PN zygotes with non-apposed pronuclei was 100.0%, which was significantly higher than that of zygotes with apposed pronuclei (40.0%). Three-dimensional live-cell imaging of bovine zygotes injected with the mRNA-encoding histone H2B-mCherry showed that the direct cleavage rates of 2 PN and multi-PN zygotes bypassing syngamy were 63.2% and 75.5%, respectively. These rates were significantly higher than that of 2 PN and multi-PN zygotes that underwent syngamy (5.6% and 20.0%, respectively). Regardless of the number of pronuclei, a high frequency of direct cleavage was observed in zygotes in which the pronuclei did not migrate inward the cytoplasm and bypassed syngamy. These results suggest that abnormal fertilization such as multi-PN and migration error of pronuclei in cattle is the primary reason for direct cleavage during the first mitosis. Assessment of direct cleavage during the first mitosis allows exclusion of embryos with abnormal fertilization and may contribute to in vitro produced embryo transfer success.


Assuntos
Desenvolvimento Embrionário , Fertilização in vitro , Animais , Bovinos , Fertilização in vitro/veterinária , Zigoto , Mitose , Núcleo Celular , Fertilização , Mamíferos
8.
Prostaglandins Other Lipid Mediat ; 165: 106704, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36621562

RESUMO

Endothelial cells (ECs) maintain the health of blood vessels and prevent the development of cardiovascular disease (CVD). Free saturated fatty acids (FAs) induce EC damage and increase the risk of CVD by promoting arteriosclerosis. Conversely, polyunsaturated FAs (PUFAs), such as docosahexaenoic acid, are thought to suppress EC damage induced during the early stages of CVD. This review describes the effects of multiple dietary FAs on EC disorders involved in the development of CVD. The roles of FAs in atherosclerosis and CVD were analyzed by evaluating articles published in PubMed, Science Direct, and Web of Science. Saturated FAs were found to induce EC damage by reducing the production and action of EC-derived nitric oxide. Oxidative stress, inflammation, and the renin-angiotensin system were found to be involved in EC disorder. Furthermore, n-3 PUFAs were found to reduce EC dysfunction and prevent the development of EC disorder. These results indicate that FAs may affect EC failure induced during the early stages of CVD and reduce the risk of developing the disease.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Ácidos Graxos Ômega-3 , Humanos , Ácidos Graxos/farmacologia , Células Endoteliais , Ácidos Graxos Ômega-3/farmacologia
9.
Methods Mol Biol ; 2577: 243-254, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36173578

RESUMO

In germ cell lines, including early preimplantation embryos, centromeres and pericentromeres are known to show a marked hypomethylation pattern compared to somatic cells. Elucidation of the biological function of this region-specific DNA hypomethylation state, region-specific epigenomic manipulation is essential as an analytical method. We have applied genome editing to show that region-specific DNA methylation can be effectively introduced by a fusion protein, TALE, which recognizes pericentromeres, and SssI, a bacterial CpG methyltransferase. This makes it possible to increase the DNA methylation state of the pericentromeres, which is normally about 20%, to about 60-75%, enabling comparative analysis of the developmental processes of normal embryos with hypomethylated pericentromeres and embryos that have been epigenetically edited to be hypermethylated. In this chapter, we describe a method for introducing DNA methylation into pericentromeres of early mouse embryos by expressing TALE-SssI fusion protein and a method for detecting DNA methylation.


Assuntos
Blastocisto , Metilação de DNA , Animais , Blastocisto/metabolismo , DNA/metabolismo , Edição de Genes/métodos , Metiltransferases/metabolismo , Camundongos
10.
Artif Intell Med ; 134: 102432, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36462898

RESUMO

In assisted reproductive technology (ART), embryos produced by in vitro fertilization (IVF) are graded according to their live birth potential, and high-grade embryos are preferentially transplanted. However, rates of live birth following clinical ART remain low worldwide. Grading is based on the embryo shape at a limited number of stages and does not consider the shape of embryos and intracellular structures, e.g., nuclei, at various stages important for normal embryogenesis. Here, we developed a Normalized Multi-View Attention Network (NVAN) that directly predicts live birth potential from the nuclear structure in live-cell fluorescence images of mouse embryos from zygote to across a wide range of stages. The input is morphological features of cell nuclei, which were extracted as multivariate time-series data by using the segmentation algorithm for mouse embryos. The classification accuracy of our method (83.87%) greatly exceeded that of existing machine-learning methods and that of visual inspection by embryo culture specialists. Our method also has a new attention mechanism that allows us to determine which values of multivariate time-series data, used to describe nuclear morphology, were the basis for the prediction. By visualizing the features that contributed most to the prediction of live birth potential, we found that the size and shape of the nucleus at the morula stage and at the time of cell division were important for live birth prediction. We anticipate that our method will help ART and developmental engineering as a new basic technology for IVF embryo selection.


Assuntos
Aprendizado Profundo , Nascido Vivo , Camundongos , Animais , Gravidez , Feminino , Algoritmos , Aprendizado de Máquina , Fatores de Tempo
11.
iScience ; 25(12): 105609, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36465133

RESUMO

While androgen is considered a pivotal regulator of sexually dimorphic development, it remains unclear how it orchestrates the differentiation of reproductive organs. Using external genitalia development as a model, we showed that androgen, through the transcription factor MafB, induced cell migration by remodeling the local extracellular matrix (ECM), leading to increased cell contractility and focal adhesion assembly. Furthermore, we identified the matrix metalloproteinase Mmp11 as a MafB target gene under androgen signaling. MMP11 remodels the local ECM environment by degrading Collagen VI (ColVI). The reduction of ColVI led to the fibrillar deposition of fibronectin in the MafB-expressing bilateral mesenchyme both in vivo and ex vivo. The ECM remodeling and development of migratory cell characteristics were lost in the MafB loss-of-function mice. These results demonstrate the requirement of mesenchymal-derived androgen signaling on ECM-dependent cell migration, providing insights into the regulatory cellular mechanisms underlying androgen-driven sexual differentiation.

12.
Biochem Biophys Res Commun ; 617(Pt 2): 25-32, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35689839

RESUMO

In assisted reproductive technology (ART)-derived embryos of non-rodent mammals, including humans and cattle, chromosome segregation errors are highly likely to occur during early cleavage division, resulting in aneuploidy, including mosaicism. However, the relationship between chromosomal segregation errors during early cleavage and subsequent embryonic development has not been detailed in these mammals. In the present study, we developed non-invasive live-cell imaging of chromosome segregation dynamics using a histone H2B-mCherry mRNA probe in bovine preimplantation embryos. Chromosome segregation errors in early cleavage affected blastocyst formation. Especially, embryos that underwent abnormal chromosome segregation (ACS) with multiple or large micronucleus formation rarely developed into blastocysts. Embryos with the severe ACS had prolonged cell cycle duration. After transfer of blastocysts with live-cell imaging of chromosome segregation to ten cows, six became pregnant and four of them gave full-term offspring. Interestingly, two of them were derived from blastocysts with ACS. Hence, chromosomal segregation errors with micronucleus formation during early cleavage can be a fatal hallmark of preimplantation embryogenesis in cattle. This technique has shown potential for understanding the relationship between chromosome segregation error and subsequent embryo development, and for selecting viable ART-derived embryos for medical and livestock production.


Assuntos
Aneuploidia , Blastocisto , Animais , Blastocisto/metabolismo , Bovinos , Segregação de Cromossomos , Desenvolvimento Embrionário/genética , Feminino , Mamíferos , Mosaicismo , Gravidez
13.
Sci Rep ; 12(1): 9411, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672442

RESUMO

To improve the performance of assisted reproductive technology, it is necessary to find an indicator that can identify and select embryos that will be born or be aborted. We searched for indicators of embryo selection by comparing born/abort mouse embryos. We found that asynchronous embryos during the 4-8-cell stage were predisposed to be aborted. In asynchronous mouse embryos, the nuclear translocation of YAP1 in some blastomeres and compaction were delayed, and the number of ICMs was reduced. Hence, it is possible that asynchronous embryos have abnormal differentiation. When the synchrony of human embryos was observed, it was confirmed that embryos that did not reach clinical pregnancy had asynchrony as in mice. This could make synchrony a universal indicator common to all animal species.


Assuntos
Diagnóstico Pré-Implantação , Animais , Blastocisto , Blastômeros , Embrião de Mamíferos , Feminino , Nascido Vivo , Camundongos , Gravidez
14.
PeerJ ; 10: e13441, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35602891

RESUMO

Background: Although the current evaluation of human blastocysts is based on the Gardner criteria, there may be other notable parameters. The purpose of our study was to clarify whether the morphology of blastocysts has notable indicators other than the Gardner criteria. Methods: To find such indicators, we compared blastocysts that showed elevated human chorionic gonadotropin (hCG) levels after transplantation (hCG-positive group; n = 129) and those that did not (hCG-negative group; n = 105) using principal component analysis of pixel brightness of the images. Results: The comparison revealed that the hCG-positive group had grainy morphology and the hCG-negative group had non-grainy morphology. Classification of the blastocysts by this indicator did not make a difference in Gardner score. Interestingly, all embryos with ≥20% fragmentation were non-grainy. The visual classification based on this analysis was significantly more accurate than the prediction of implantation using the Gardner score ≥3BB. As graininess can be used in combination with the Gardner score, this indicator will enhance current reproductive technologies.


Assuntos
Gonadotropina Coriônica , Implantação do Embrião , Humanos , Análise de Componente Principal , Blastocisto
15.
Nat Genet ; 54(3): 318-327, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35256805

RESUMO

Totipotency emerges in early embryogenesis, but its molecular underpinnings remain poorly characterized. In the present study, we employed DNA fiber analysis to investigate how pluripotent stem cells are reprogrammed into totipotent-like 2-cell-like cells (2CLCs). We show that totipotent cells of the early mouse embryo have slow DNA replication fork speed and that 2CLCs recapitulate this feature, suggesting that fork speed underlies the transition to a totipotent-like state. 2CLCs emerge concomitant with DNA replication and display changes in replication timing (RT), particularly during the early S-phase. RT changes occur prior to 2CLC emergence, suggesting that RT may predispose to gene expression changes and consequent reprogramming of cell fate. Slowing down replication fork speed experimentally induces 2CLCs. In vivo, slowing fork speed improves the reprogramming efficiency of somatic cell nuclear transfer. Our data suggest that fork speed regulates cellular plasticity and that remodeling of replication features leads to changes in cell fate and reprogramming.


Assuntos
Embrião de Mamíferos , Células-Tronco Pluripotentes , Animais , Diferenciação Celular/genética , Reprogramação Celular/genética , Replicação do DNA/genética , Desenvolvimento Embrionário/genética , Camundongos
16.
Genes Cells ; 27(3): 214-228, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35114033

RESUMO

In preimplantation embryos, an abnormal chromosome number causes developmental failure and a reduction in the pregnancy rate. Conventional chromosome testing methods requiring biopsy reduce the risk of associated genetic diseases; nevertheless, the reduction in cell number also reduces the pregnancy rate. Therefore, we attempted to count the chromosomes in mouse embryos using super-resolution live-cell imaging as a new method of chromosome counting that does not reduce the cell number or viability. We counted the 40 chromosomes at the first mitosis by injecting embryos with histone H2B-mCherry mRNA under conditions by which pups could be obtained; however, the results were often an underestimation of chromosome number and varied by embryo and time point. Therefore, we developed a method to count the chromosomes via CRISPR/dCas-mediated live-cell fluorescence in situ hybridization targeting the sequence of the centromere region, enabling us to count the chromosomes more accurately in mouse embryos. The methodology presented here may provide useful information for assisted reproductive technologies, such as those used in livestock animals/humans, as a technique for assessing the chromosomal integrity of embryos prior to transfer.


Assuntos
Aneuploidia , Zigoto , Animais , Blastocisto/patologia , Centrômero/genética , Feminino , Hibridização in Situ Fluorescente , Camundongos , Gravidez
17.
Neuroscience ; 481: 219-231, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34843897

RESUMO

Glucose transported to the brain is metabolized to lactate in astrocytes and supplied to neuronal cells via a monocarboxylic acid transporter (MCT). Lactate is used in neuronal cells for various functions, including learning and memory formation. Furthermore, lactate can block stroke-induced neurodegeneration. We aimed to clarify the effect of astrocyte-produced lactate on stroke-induced neurodegeneration. Previously published in vivo and in vitro animal and cell studies, respectively, were searched in PubMed, ScienceDirect, and Web of Science. Under physiological conditions, lactate production and release by astrocytes are regulated by changes in lactate dehydrogenase (LDH) and MCT expression. Moreover, considering stroke, lactate production and supply are regulated through hypoxia-inducible factor (HIF)-1α expression, especially with hypoxic stimulation, which may promote neuronal apoptosis; contrastingly, neuronal survival may be promoted via HIF-1α. Stroke stimulation could prevent neurodegeneration through the strong enhancement of lactate production, as well as upregulation of MCT4 expression to accelerate lactate supply. However, studies using astrocytes derived from animal stroke models revealed significantly reduced lactate production and MCT expression. These findings suggest that the lack of lactate supply may strongly contribute to hypoxia-induced neurodegeneration. Furthermore, diminished lactate supply from astrocytes could facilitate stroke-induced neurodegeneration. Therefore, astrocyte-derived lactate may contribute to stroke prevention.


Assuntos
Astrócitos , AVC Isquêmico , Animais , Astrócitos/metabolismo , Hipóxia/metabolismo , Ácido Láctico/metabolismo , Neurônios/metabolismo
18.
Cell Mol Neurobiol ; 42(1): 243-253, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32648236

RESUMO

The blood-brain barrier (BBB) comprises three cell types: brain capillary endothelial cells (BECs), astrocytes, and pericytes. Abnormal interaction among these cells may induce BBB dysfunction and lead to cerebrovascular diseases. The stroke-prone spontaneously hypertensive rat (SHRSP) harbors a defective BBB, so we designed the present study to examine the role of these three cell types in a functional disorder of the BBB in SHRSP in order to elucidate the role of these cells in the BBB more generally. To this end, we employed a unique in vitro model of BBB, in which various combinations of the cells could be tested. The three types of cells were prepared from both SHRSPs and Wistar Kyoto rats (WKYs). They were then co-cultured in various combinations to construct in vitro BBB models. The barrier function of the models was estimated by measuring transendothelial electrical resistance and the permeability of the endothelial monolayer to sodium fluorescein. The in vitro models revealed that (1) BECs from SHRSPs had an inherent lower barrier function, (2) astrocytes of SHRSPs had an impaired ability to induce barrier function in BECs, although (3) both pericytes and astrocytes of SHRSPs and WKYs could potentiate the barrier function of BECs under co-culture conditions. Furthermore, we found that claudin-5 expression was consistently lower in models that used BECs and/or SHRSP astrocytes. These results suggested that defective interaction among BBB cells-especially BECs and astrocytes-was responsible for a functional disorder of the BBB in SHRSPs.


Assuntos
Barreira Hematoencefálica , Acidente Vascular Cerebral , Animais , Astrócitos/metabolismo , Barreira Hematoencefálica/metabolismo , Técnicas de Cultura de Células , Células Cultivadas , Técnicas de Cocultura , Células Endoteliais/metabolismo , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Acidente Vascular Cerebral/metabolismo
19.
Molecules ; 26(19)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34641407

RESUMO

Isoflavones are polyphenols primarily contained in soybean. As phytoestrogens, isoflavones exert beneficial effects on various chronic diseases. Metabolic syndrome increases the risk of death due to arteriosclerosis in individuals with various pathological conditions, including obesity, hypertension, hyperglycemia, and dyslipidemia. Although the health benefits of soybean-derived isoflavones are widely known, their beneficial effects on the pathogenesis of metabolic syndrome are incompletely understood. This review aims to describe the association between soybean-derived isoflavone intake and the risk of metabolic syndrome development. We reviewed studies on soy isoflavones, particularly daidzein and genistein, and metabolic syndrome, using PubMed, ScienceDirect, and Web of Science. We describe the pathological characteristics of metabolic syndrome, including those contributing to multiple pathological conditions. Furthermore, we summarize the effects of soybean-derived daidzein and genistein on metabolic syndrome reported in human epidemiological studies and experiments using in vitro and in vivo models. In particular, we emphasize the role of soy isoflavones in metabolic syndrome-induced cardiovascular diseases. In conclusion, this review focuses on the potential of soy isoflavones to prevent metabolic syndrome by influencing the onset of hypertension, hyperglycemia, dyslipidemia, and arteriosclerosis and discusses the anti-inflammatory effects of isoflavones.


Assuntos
Glycine max/química , Isoflavonas/farmacologia , Síndrome Metabólica/prevenção & controle , Alimentos de Soja/análise , Animais , Humanos
20.
J Cell Biol ; 220(10)2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34424312

RESUMO

Zygotes require two accurate sets of parental chromosomes, one each from the mother and the father, to undergo normal embryogenesis. However, upon egg-sperm fusion in vertebrates, the zygote has three sets of chromosomes, one from the sperm and two from the egg. The zygote therefore eliminates one set of maternal chromosomes (but not the paternal chromosomes) into the polar body through meiosis, but how the paternal chromosomes are protected from maternal meiosis has been unclear. Here we report that RanGTP and F-actin dynamics prevent egg-sperm fusion in proximity to maternal chromosomes. RanGTP prevents the localization of Juno and CD9, egg membrane proteins that mediate sperm fusion, at the cell surface in proximity to maternal chromosomes. Following egg-sperm fusion, F-actin keeps paternal chromosomes away from maternal chromosomes. Disruption of these mechanisms causes the elimination of paternal chromosomes during maternal meiosis. This study reveals a novel critical mechanism that prevents aneuploidy in zygotes.


Assuntos
Citoesqueleto de Actina/metabolismo , Cromossomos/metabolismo , Fertilização , Proteína ran de Ligação ao GTP/metabolismo , Animais , Células Cultivadas , Feminino , Humanos , Camundongos , Camundongos Endogâmicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA